tock_registers/fields.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Register bitfield types and macros
//!
//! To conveniently access and manipulate fields of a register, this
//! library provides types and macros to describe and access bitfields
//! of a register. This can be especially useful in conjuction with
//! the APIs defined in [`interfaces`](crate::interfaces), which make
//! use of these types and hence allow to access and manipulate
//! bitfields of proper registers directly.
//!
//! A specific section (bitfield) in a register is described by the
//! [`Field`] type, consisting of an unshifted bitmask over the base
//! register [`UIntLike`] type, and a shift
//! parameter. It is further associated with a specific
//! [`RegisterLongName`], which can prevent its use with incompatible
//! registers.
//!
//! A value of a section of a register is described by the
//! [`FieldValue`] type. It stores the information of the respective
//! section in the register, as well as the associated value. A
//! [`FieldValue`] can be created from a [`Field`] through the
//! [`val`](Field::val) method.
//!
//! ## `register_bitfields` macro
//!
//! For defining register layouts with an associated
//! [`RegisterLongName`], along with
//! [`Field`]s and matching [`FieldValue`]s, a convenient macro-based
//! interface can be used.
//!
//! The following example demonstrates how two registers can be
//! defined, over a `u32` base type:
//!
//! ```rust
//! # use tock_registers::register_bitfields;
//! # use tock_registers::registers::InMemoryRegister;
//! # use tock_registers::interfaces::{Readable, ReadWriteable};
//! register_bitfields![u32,
//! Uart [
//! ENABLE OFFSET(0) NUMBITS(4) [
//! ON = 8,
//! OFF = 0
//! ]
//! ],
//! Psel [
//! PIN OFFSET(0) NUMBITS(6),
//! CONNECT OFFSET(31) NUMBITS(1)
//! ],
//! ];
//!
//! // In this scope, `Uart` is a module, representing the register and
//! // its fields. `Uart::Register` is a `RegisterLongName` type
//! // identifying this register. `Uart::ENABLE` is a field covering the
//! // first 4 bits of this register. `Uart::ENABLE::ON` is a
//! // `FieldValue` over that field, with the associated value 8.
//! // We can now use the types like so:
//! let reg: InMemoryRegister<u32, Uart::Register> = InMemoryRegister::new(0);
//! assert!(reg.read(Uart::ENABLE) == 0x00000000);
//! reg.modify(Uart::ENABLE::ON);
//! assert!(reg.get() == 0x00000008);
//!
//! use tock_registers::interfaces::Debuggable;
//! assert!(
//! &format!("{:?}", reg.debug())
//! == "Uart { ENABLE: ON }"
//! );
//! ```
// The register interface uses `+` in a way that is fine for bitfields, but
// looks unusual (and perhaps problematic) to a linter. We just ignore those
// lints for this file.
#![allow(clippy::suspicious_op_assign_impl)]
#![allow(clippy::suspicious_arithmetic_impl)]
use core::marker::PhantomData;
use core::ops::{Add, AddAssign};
use crate::{RegisterLongName, UIntLike};
/// Specific section of a register.
///
/// For the Field, the mask is unshifted, ie. the LSB should always be set.
pub struct Field<T: UIntLike, R: RegisterLongName> {
pub mask: T,
pub shift: usize,
associated_register: PhantomData<R>,
}
impl<T: UIntLike, R: RegisterLongName> Field<T, R> {
pub const fn new(mask: T, shift: usize) -> Field<T, R> {
Field {
mask,
shift,
associated_register: PhantomData,
}
}
#[inline]
pub fn read(self, val: T) -> T {
(val & (self.mask << self.shift)) >> self.shift
}
#[inline]
/// Check if one or more bits in a field are set
pub fn is_set(self, val: T) -> bool {
val & (self.mask << self.shift) != T::zero()
}
#[inline]
/// Read value of the field as an enum member
///
/// This method expects to be passed the unasked and unshifted register
/// value, extracts the field value by calling [`Field::read`] and
/// subsequently passes that value to the [`TryFromValue`] implementation on
/// the passed enum type.
///
/// The [`register_bitfields!`](crate::register_bitfields) macro will
/// generate an enum containing the various named field variants and
/// implementing the required [`TryFromValue`] trait. It is accessible as
/// `$REGISTER_NAME::$FIELD_NAME::Value`.
///
/// This method can be useful to symbolically represent read register field
/// states throughout the codebase and to enforce exhaustive matches over
/// all defined valid register field values.
///
/// ## Usage Example
///
/// ```rust
/// # use tock_registers::interfaces::Readable;
/// # use tock_registers::registers::InMemoryRegister;
/// # use tock_registers::register_bitfields;
/// register_bitfields![u8,
/// EXAMPLEREG [
/// TESTFIELD OFFSET(3) NUMBITS(3) [
/// Foo = 2,
/// Bar = 3,
/// Baz = 6,
/// ],
/// ],
/// ];
///
/// assert_eq!(
/// EXAMPLEREG::TESTFIELD.read_as_enum::<EXAMPLEREG::TESTFIELD::Value>(0x9C).unwrap(),
/// EXAMPLEREG::TESTFIELD::Value::Bar
/// );
/// ```
pub fn read_as_enum<E: TryFromValue<T, EnumType = E>>(self, val: T) -> Option<E> {
E::try_from_value(self.read(val))
}
}
// #[derive(Copy, Clone)] won't work here because it will use
// incorrect bounds, as a result of using a PhantomData over the
// generic R. The PhantomData<R> implements Copy regardless of whether
// R does, but the #[derive(Copy, Clone)] generates
//
// #[automatically_derived]
// #[allow(unused_qualifications)]
// impl<T: ::core::marker::Copy + UIntLike,
// R: ::core::marker::Copy + RegisterLongName>
// ::core::marker::Copy for Field<T, R> {}
//
// , so Field will only implement Copy if R: Copy.
//
// Manually implementing Clone and Copy works around this issue.
//
// Relevant Rust issue: https://github.com/rust-lang/rust/issues/26925
impl<T: UIntLike, R: RegisterLongName> Clone for Field<T, R> {
fn clone(&self) -> Self {
*self
}
}
impl<T: UIntLike, R: RegisterLongName> Copy for Field<T, R> {}
macro_rules! Field_impl_for {
($type:ty) => {
impl<R: RegisterLongName> Field<$type, R> {
pub const fn val(&self, value: $type) -> FieldValue<$type, R> {
FieldValue::<$type, R>::new(self.mask, self.shift, value)
}
}
};
}
Field_impl_for!(u8);
Field_impl_for!(u16);
Field_impl_for!(u32);
Field_impl_for!(u64);
Field_impl_for!(u128);
Field_impl_for!(usize);
/// Values for the specific register fields.
///
/// For the FieldValue, the masks and values are shifted into their actual
/// location in the register.
#[derive(Copy, Clone)]
pub struct FieldValue<T: UIntLike, R: RegisterLongName> {
mask: T,
pub value: T,
associated_register: PhantomData<R>,
}
macro_rules! FieldValue_impl_for {
($type:ty) => {
// Necessary to split the implementation of new() out because the bitwise
// math isn't treated as const when the type is generic.
// Tracking issue: https://github.com/rust-lang/rfcs/pull/2632
impl<R: RegisterLongName> FieldValue<$type, R> {
pub const fn new(mask: $type, shift: usize, value: $type) -> Self {
FieldValue {
mask: mask << shift,
value: (value & mask) << shift,
associated_register: PhantomData,
}
}
}
// Necessary to split the implementation of From<> out because of the orphan rule
// for foreign trait implementation (see [E0210](https://doc.rust-lang.org/error-index.html#E0210)).
impl<R: RegisterLongName> From<FieldValue<$type, R>> for $type {
fn from(val: FieldValue<$type, R>) -> $type {
val.value
}
}
};
}
FieldValue_impl_for!(u8);
FieldValue_impl_for!(u16);
FieldValue_impl_for!(u32);
FieldValue_impl_for!(u64);
FieldValue_impl_for!(u128);
FieldValue_impl_for!(usize);
impl<T: UIntLike, R: RegisterLongName> FieldValue<T, R> {
#[inline]
pub fn none() -> Self {
Self {
mask: T::zero(),
value: T::zero(),
associated_register: PhantomData,
}
}
/// Get the raw bitmask represented by this FieldValue.
#[inline]
pub const fn mask(&self) -> T {
self.mask as T
}
#[inline]
pub fn read(&self, field: Field<T, R>) -> T {
field.read(self.value)
}
/// Modify fields in a register value
#[inline]
pub fn modify(self, val: T) -> T {
(val & !self.mask) | self.value
}
/// Check if any of the bits covered by the mask for this
/// `FieldValue` and set in the `FieldValue` are also set
/// in the passed value
#[inline]
pub fn any_matching_bits_set(&self, val: T) -> bool {
val & self.mask & self.value != T::zero()
}
/// Check if all specified parts of a field match
#[inline]
pub fn matches_all(&self, val: T) -> bool {
val & self.mask == self.value
}
}
// Combine two fields with the addition operator
impl<T: UIntLike, R: RegisterLongName> Add for FieldValue<T, R> {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
FieldValue {
mask: self.mask | rhs.mask,
value: self.value | rhs.value,
associated_register: PhantomData,
}
}
}
// Combine two fields with the += operator
impl<T: UIntLike, R: RegisterLongName> AddAssign for FieldValue<T, R> {
#[inline]
fn add_assign(&mut self, rhs: FieldValue<T, R>) {
self.mask |= rhs.mask;
self.value |= rhs.value;
}
}
/// Conversion of raw register value into enumerated values member.
/// Implemented inside register_bitfields! macro for each bit field.
pub trait TryFromValue<V> {
type EnumType;
fn try_from_value(v: V) -> Option<Self::EnumType>;
}
/// Helper macro for computing bitmask of variable number of bits
#[macro_export]
macro_rules! bitmask {
($numbits:expr) => {
(1 << ($numbits - 1)) + ((1 << ($numbits - 1)) - 1)
};
}
/// Helper macro for defining register fields.
#[macro_export]
macro_rules! register_bitmasks {
{
// BITFIELD_NAME OFFSET(x)
$(#[$outer:meta])*
$valtype:ident, $reg_mod:ident, $reg_desc:ident, [
$( $(#[$inner:meta])* $field:ident OFFSET($offset:expr)),+ $(,)?
]
} => {
$(#[$outer])*
$( $crate::register_bitmasks!($valtype, $reg_desc, $(#[$inner])* $field, $offset, 1, []); )*
$crate::register_bitmasks!(@debug $valtype, $reg_mod, $reg_desc, [$($field),*]);
};
{
// BITFIELD_NAME OFFSET
// All fields are 1 bit
$(#[$outer:meta])*
$valtype:ident, $reg_mod:ident, $reg_desc:ident, [
$( $(#[$inner:meta])* $field:ident $offset:expr ),+ $(,)?
]
} => {
$(#[$outer])*
$( $crate::register_bitmasks!($valtype, $reg_desc, $(#[$inner])* $field, $offset, 1, []); )*
$crate::register_bitmasks!(@debug $valtype, $reg_mod, $reg_desc, [$($field),*]);
};
{
// BITFIELD_NAME OFFSET(x) NUMBITS(y)
$(#[$outer:meta])*
$valtype:ident, $reg_mod:ident, $reg_desc:ident, [
$( $(#[$inner:meta])* $field:ident OFFSET($offset:expr) NUMBITS($numbits:expr) ),+ $(,)?
]
} => {
$(#[$outer])*
$( $crate::register_bitmasks!($valtype, $reg_desc, $(#[$inner])* $field, $offset, $numbits, []); )*
$crate::register_bitmasks!(@debug $valtype, $reg_mod, $reg_desc, [$($field),*]);
};
{
// BITFIELD_NAME OFFSET(x) NUMBITS(y) []
$(#[$outer:meta])*
$valtype:ident, $reg_mod:ident, $reg_desc:ident, [
$( $(#[$inner:meta])* $field:ident OFFSET($offset:expr) NUMBITS($numbits:expr)
$values:tt ),+ $(,)?
]
} => {
$(#[$outer])*
$( $crate::register_bitmasks!($valtype, $reg_desc, $(#[$inner])* $field, $offset, $numbits,
$values); )*
$crate::register_bitmasks!(@debug $valtype, $reg_mod, $reg_desc, [$($field),*]);
};
{
$valtype:ident, $reg_desc:ident, $(#[$outer:meta])* $field:ident,
$offset:expr, $numbits:expr,
[$( $(#[$inner:meta])* $valname:ident = $value:expr ),+ $(,)?]
} => { // this match arm is duplicated below with an allowance for 0 elements in the valname -> value array,
// to seperately support the case of zero-variant enums not supporting non-default
// representations.
#[allow(non_upper_case_globals)]
#[allow(unused)]
pub const $field: Field<$valtype, $reg_desc> =
Field::<$valtype, $reg_desc>::new($crate::bitmask!($numbits), $offset);
#[allow(non_snake_case)]
#[allow(unused)]
$(#[$outer])*
pub mod $field {
#[allow(unused_imports)]
use $crate::fields::{TryFromValue, FieldValue};
use super::$reg_desc;
$(
#[allow(non_upper_case_globals)]
#[allow(unused)]
$(#[$inner])*
pub const $valname: FieldValue<$valtype, $reg_desc> =
FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
$offset, $value);
)*
#[allow(non_upper_case_globals)]
#[allow(unused)]
pub const SET: FieldValue<$valtype, $reg_desc> =
FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
$offset, $crate::bitmask!($numbits));
#[allow(non_upper_case_globals)]
#[allow(unused)]
pub const CLEAR: FieldValue<$valtype, $reg_desc> =
FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
$offset, 0);
#[allow(dead_code)]
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr($valtype)] // so that values larger than isize::MAX can be stored
$(#[$outer])*
pub enum Value {
$(
$(#[$inner])*
$valname = $value,
)*
}
impl TryFromValue<$valtype> for Value {
type EnumType = Value;
fn try_from_value(v: $valtype) -> Option<Self::EnumType> {
match v {
$(
$(#[$inner])*
x if x == Value::$valname as $valtype => Some(Value::$valname),
)*
_ => Option::None
}
}
}
impl From<Value> for FieldValue<$valtype, $reg_desc> {
fn from(v: Value) -> Self {
Self::new($crate::bitmask!($numbits), $offset, v as $valtype)
}
}
}
};
{
$valtype:ident, $reg_desc:ident, $(#[$outer:meta])* $field:ident,
$offset:expr, $numbits:expr,
[]
} => { //same pattern as previous match arm, for 0 elements in array. Removes code associated with array.
#[allow(non_upper_case_globals)]
#[allow(unused)]
pub const $field: Field<$valtype, $reg_desc> =
Field::<$valtype, $reg_desc>::new($crate::bitmask!($numbits), $offset);
#[allow(non_snake_case)]
#[allow(unused)]
$(#[$outer])*
pub mod $field {
#[allow(unused_imports)]
use $crate::fields::{FieldValue, TryFromValue};
use super::$reg_desc;
#[allow(non_upper_case_globals)]
#[allow(unused)]
pub const SET: FieldValue<$valtype, $reg_desc> =
FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
$offset, $crate::bitmask!($numbits));
#[allow(non_upper_case_globals)]
#[allow(unused)]
pub const CLEAR: FieldValue<$valtype, $reg_desc> =
FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
$offset, 0);
#[allow(dead_code)]
#[allow(non_camel_case_types)]
#[derive(Debug)]
$(#[$outer])*
pub enum Value {}
impl TryFromValue<$valtype> for Value {
type EnumType = Value;
fn try_from_value(_v: $valtype) -> Option<Self::EnumType> {
Option::None
}
}
}
};
// Implement the `RegisterDebugInfo` trait for the register. Refer to its
// documentation for more information on the individual types and fields.
(
// final implementation of the macro
@debug $valtype:ident, $reg_mod:ident, $reg_desc:ident, [$($field:ident),*]
) => {
impl $crate::debug::RegisterDebugInfo<$valtype> for $reg_desc {
// Sequence of field value enum types (implementing `TryFromValue`,
// produced above), generated by recursing over the fields:
type FieldValueEnumTypes = $crate::register_bitmasks!(
@fv_enum_type_seq $valtype, $($field::Value),*
);
fn name() -> &'static str {
stringify!($reg_mod)
}
fn field_names() -> &'static [&'static str] {
&[
$(
stringify!($field)
),*
]
}
fn fields() -> &'static [Field<$valtype, Self>] {
&[
$(
$field
),*
]
}
}
};
// Build the recursive `FieldValueEnumSeq` type sequence. This will generate
// a type signature of the form:
//
// ```
// FieldValueEnumCons<u32, Foo,
// FieldValueEnumCons<u32, Bar,
// FieldValueEnumCons<u32, Baz,
// FieldValueEnumNil
// >
// >
// >
// ```
(
@fv_enum_type_seq $valtype:ident, $enum_val:path $(, $($rest:path),+)?
) => {
$crate::debug::FieldValueEnumCons<
$valtype,
$enum_val,
$crate::register_bitmasks!(@fv_enum_type_seq $valtype $(, $($rest),*)*)
>
};
(
@fv_enum_type_seq $valtype:ident $(,)?
) => {
$crate::debug::FieldValueEnumNil
};
}
/// Define register types and fields.
///
/// Implementations of memory-mapped registers can use this macro to define the
/// structure and bitwise meaning of individual registers in the peripheral. An
/// example use for a hypothetical UART driver might look like:
///
/// ```rust,ignore
/// register_bitfields![u32,
/// CONTROL [
/// ENABLE OFFSET(0) NUMBITS(1),
/// STOP_BITS OFFSET(1) NUMBITS(2) [
/// StopBits1 = 0,
/// StopBits2 = 1,
/// StopBits0 = 2
/// ]
/// ],
/// BYTE [
/// CHARACTER OFFSET(0) NUMBITS(8)
/// ],
/// INTERRUPT [
/// TRANSMITTED OFFSET(0) NUMBITS(1),
/// RECEIVED OFFSET(1) NUMBITS(1),
/// FIFO_FULL OFFSET(2) NUMBITS(1)
/// ]
/// ];
/// ```
///
/// Each field in the register can be identified by its offset within the
/// register and its bitwidth. Fields that have discrete options with semantic
/// meaning can be enumerated.
#[macro_export]
macro_rules! register_bitfields {
{
$valtype:ident, $( $(#[$inner:meta])* $vis:vis $reg:ident $fields:tt ),* $(,)?
} => {
$(
#[allow(non_snake_case)]
$(#[$inner])*
$vis mod $reg {
// Visibility note: This is left always `pub` as it is not
// meaningful to restrict access to the `Register` element of
// the register module if the module itself is in scope
//
// (if you can access $reg, you can access $reg::Register)
#[derive(Clone, Copy)]
pub struct Register;
impl $crate::RegisterLongName for Register {}
use $crate::fields::Field;
$crate::register_bitmasks!( $valtype, $reg, Register, $fields );
}
)*
}
}
#[cfg(test)]
mod tests {
#[derive(Debug, PartialEq, Eq)]
enum Foo {
Foo0,
Foo1,
Foo2,
Foo3,
Foo4,
Foo5,
Foo6,
Foo7,
}
impl crate::fields::TryFromValue<u16> for Foo {
type EnumType = Foo;
fn try_from_value(v: u16) -> Option<Self::EnumType> {
Self::try_from_value(v as u32)
}
}
impl crate::fields::TryFromValue<u32> for Foo {
type EnumType = Foo;
fn try_from_value(v: u32) -> Option<Self::EnumType> {
match v {
0 => Some(Foo::Foo0),
1 => Some(Foo::Foo1),
2 => Some(Foo::Foo2),
3 => Some(Foo::Foo3),
4 => Some(Foo::Foo4),
5 => Some(Foo::Foo5),
6 => Some(Foo::Foo6),
7 => Some(Foo::Foo7),
_ => None,
}
}
}
mod field {
use super::Foo;
use crate::fields::{Field, TryFromValue};
#[test]
fn test_new() {
let field8 = Field::<u8, ()>::new(0x12, 3);
assert_eq!(field8.mask, 0x12_u8);
assert_eq!(field8.shift, 3);
let field16 = Field::<u16, ()>::new(0x1234, 5);
assert_eq!(field16.mask, 0x1234_u16);
assert_eq!(field16.shift, 5);
let field32 = Field::<u32, ()>::new(0x12345678, 9);
assert_eq!(field32.mask, 0x12345678_u32);
assert_eq!(field32.shift, 9);
let field64 = Field::<u64, ()>::new(0x12345678_9abcdef0, 1);
assert_eq!(field64.mask, 0x12345678_9abcdef0_u64);
assert_eq!(field64.shift, 1);
let field128 = Field::<u128, ()>::new(0x12345678_9abcdef0_0fedcba9_87654321, 1);
assert_eq!(field128.mask, 0x12345678_9abcdef0_0fedcba9_87654321_u128);
assert_eq!(field128.shift, 1);
}
#[test]
fn test_read() {
let field = Field::<u32, ()>::new(0xFF, 4);
assert_eq!(field.read(0x123), 0x12);
let field = Field::<u32, ()>::new(0xF0F, 4);
assert_eq!(field.read(0x1234), 0x103);
}
#[test]
fn test_is_set() {
let field = Field::<u16, ()>::new(0xFF, 4);
assert_eq!(field.is_set(0), false);
assert_eq!(field.is_set(0xFFFF), true);
assert_eq!(field.is_set(0x0FF0), true);
assert_eq!(field.is_set(0x1000), false);
assert_eq!(field.is_set(0x0100), true);
assert_eq!(field.is_set(0x0010), true);
assert_eq!(field.is_set(0x0001), false);
for shift in 0..24 {
let field = Field::<u32, ()>::new(0xFF, shift);
for x in 1..=0xFF {
assert_eq!(field.is_set(x << shift), true);
}
assert_eq!(field.is_set(!(0xFF << shift)), false);
}
}
#[test]
fn test_read_as_enum() {
let field = Field::<u16, ()>::new(0x7, 4);
assert_eq!(field.read_as_enum(0x1234), Some(Foo::Foo3));
assert_eq!(field.read_as_enum(0x5678), Some(Foo::Foo7));
assert_eq!(field.read_as_enum(0xFFFF), Some(Foo::Foo7));
assert_eq!(field.read_as_enum(0x0000), Some(Foo::Foo0));
assert_eq!(field.read_as_enum(0x0010), Some(Foo::Foo1));
assert_eq!(field.read_as_enum(0x1204), Some(Foo::Foo0));
for shift in 0..29 {
let field = Field::<u32, ()>::new(0x7, shift);
for x in 0..8 {
assert_eq!(field.read_as_enum(x << shift), Foo::try_from_value(x));
}
}
}
}
mod field_value {
use crate::fields::Field;
#[test]
fn test_from() {
let field = Field::<u32, ()>::new(0xFF, 4);
assert_eq!(u32::from(field.val(0)), 0);
assert_eq!(u32::from(field.val(0xFFFFFFFF)), 0xFF0);
assert_eq!(u32::from(field.val(0x12)), 0x120);
assert_eq!(u32::from(field.val(0x123)), 0x230);
for shift in 0..32 {
let field = Field::<u32, ()>::new(0xFF, shift);
for x in 0..=0xFF {
assert_eq!(u32::from(field.val(x)), x << shift);
}
}
}
#[test]
fn test_read_same_field() {
let field = Field::<u32, ()>::new(0xFF, 4);
assert_eq!(field.val(0).read(field), 0);
assert_eq!(field.val(0xFFFFFFFF).read(field), 0xFF);
assert_eq!(field.val(0x12).read(field), 0x12);
assert_eq!(field.val(0x123).read(field), 0x23);
for shift in 0..24 {
let field = Field::<u32, ()>::new(0xFF, shift);
for x in 0..=0xFF {
assert_eq!(field.val(x).read(field), x);
}
}
}
#[test]
fn test_read_disjoint_fields() {
for shift in 0..24 {
let field1 = Field::<u32, ()>::new(0xF0, shift);
let field2 = Field::<u32, ()>::new(0x0F, shift);
for x in 0..=0xFF {
assert_eq!(field1.val(x).read(field2), 0);
assert_eq!(field2.val(x).read(field1), 0);
}
}
for shift in 0..24 {
let field1 = Field::<u32, ()>::new(0xF, shift);
let field2 = Field::<u32, ()>::new(0xF, shift + 4);
for x in 0..=0xFF {
assert_eq!(field1.val(x).read(field2), 0);
assert_eq!(field2.val(x).read(field1), 0);
}
}
}
#[test]
fn test_modify() {
let field = Field::<u32, ()>::new(0xFF, 4);
assert_eq!(field.val(0x23).modify(0x0000), 0x0230);
assert_eq!(field.val(0x23).modify(0xFFFF), 0xF23F);
assert_eq!(field.val(0x23).modify(0x1234), 0x1234);
assert_eq!(field.val(0x23).modify(0x5678), 0x5238);
}
#[test]
fn test_any_matching_bits_set() {
let field = Field::<u32, ()>::new(0xFF, 4);
assert_eq!(field.val(0x23).any_matching_bits_set(0x1234), true);
assert_eq!(field.val(0x23).any_matching_bits_set(0x5678), true);
assert_eq!(field.val(0x23).any_matching_bits_set(0x5008), false);
for shift in 0..24 {
let field = Field::<u32, ()>::new(0xFF, shift);
let field_value = field.val(0xff);
for y in 1..=0xff {
assert_eq!(field_value.any_matching_bits_set(y << shift), true,);
}
assert_eq!(field_value.any_matching_bits_set(0), false);
assert_eq!(field_value.any_matching_bits_set(!(0xFF << shift)), false);
}
}
#[test]
fn test_matches_all() {
let field = Field::<u32, ()>::new(0xFF, 4);
assert_eq!(field.val(0x23).matches_all(0x1234), true);
assert_eq!(field.val(0x23).matches_all(0x5678), false);
for shift in 0..24 {
let field = Field::<u32, ()>::new(0xFF, shift);
for x in 0..=0xFF {
assert_eq!(field.val(x).matches_all(x << shift), true);
assert_eq!(field.val(x + 1).matches_all(x << shift), false);
}
}
}
#[test]
fn test_matches_any() {
register_bitfields! {
u32,
TEST [
FLAG OFFSET(18) NUMBITS(1) [],
SIZE OFFSET(0) NUMBITS(2) [
Byte = 0,
Halfword = 1,
Word = 2
],
]
}
let value: crate::LocalRegisterCopy<u32, TEST::Register> =
crate::LocalRegisterCopy::new(2);
assert!(value.matches_any(&[TEST::SIZE::Word]));
assert!(!value.matches_any(&[TEST::SIZE::Halfword]));
assert!(!value.matches_any(&[TEST::SIZE::Byte]));
assert!(value.matches_any(&[TEST::SIZE::Word, TEST::FLAG::SET]));
assert!(value.matches_any(&[TEST::SIZE::Halfword, TEST::FLAG::CLEAR]));
assert!(!value.matches_any(&[TEST::SIZE::Halfword, TEST::FLAG::SET]));
let value: crate::LocalRegisterCopy<u32, TEST::Register> =
crate::LocalRegisterCopy::new(266241);
assert!(value.matches_any(&[TEST::FLAG::SET]));
assert!(!value.matches_any(&[TEST::FLAG::CLEAR]));
}
#[test]
fn test_add_disjoint_fields() {
let field1 = Field::<u32, ()>::new(0xFF, 24);
let field2 = Field::<u32, ()>::new(0xFF, 16);
let field3 = Field::<u32, ()>::new(0xFF, 8);
let field4 = Field::<u32, ()>::new(0xFF, 0);
assert_eq!(
u32::from(
field1.val(0x12) + field2.val(0x34) + field3.val(0x56) + field4.val(0x78)
),
0x12345678
);
for shift in 0..24 {
let field1 = Field::<u32, ()>::new(0xF, shift);
let field2 = Field::<u32, ()>::new(0xF, shift + 4);
for x in 0..=0xF {
for y in 0..=0xF {
assert_eq!(
u32::from(field1.val(x) + field2.val(y)),
(x | (y << 4)) << shift
);
}
}
}
}
#[test]
fn test_add_assign_disjoint_fields() {
let field1 = Field::<u32, ()>::new(0xFF, 24);
let field2 = Field::<u32, ()>::new(0xFF, 16);
let field3 = Field::<u32, ()>::new(0xFF, 8);
let field4 = Field::<u32, ()>::new(0xFF, 0);
let mut value = field1.val(0x12);
value += field2.val(0x34);
value += field3.val(0x56);
value += field4.val(0x78);
assert_eq!(u32::from(value), 0x12345678);
for shift in 0..24 {
let field1 = Field::<u32, ()>::new(0xF, shift);
let field2 = Field::<u32, ()>::new(0xF, shift + 4);
for x in 0..=0xF {
for y in 0..=0xF {
let mut value = field1.val(x);
value += field2.val(y);
assert_eq!(u32::from(value), (x | (y << 4)) << shift);
}
}
}
}
}
// TODO: More unit tests here.
}