cortexm/mpu.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Implementation of the memory protection unit for the Cortex-M0+, Cortex-M3,
//! Cortex-M4, and Cortex-M7
use core::cell::Cell;
use core::cmp;
use core::fmt;
use core::num::NonZeroUsize;
use kernel::platform::mpu;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::math;
use kernel::utilities::registers::interfaces::{Readable, Writeable};
use kernel::utilities::registers::{register_bitfields, FieldValue, ReadOnly, ReadWrite};
use kernel::utilities::StaticRef;
/// Smallest allowable MPU region across all CortexM cores
/// Individual cores may have bigger min sizes, but never lower than 32
const CORTEXM_MIN_REGION_SIZE: usize = 32;
/// MPU Registers for the Cortex-M3, Cortex-M4 and Cortex-M7 families
/// Described in section 4.5 of
/// <http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf>
#[repr(C)]
pub struct MpuRegisters {
/// Indicates whether the MPU is present and, if so, how many regions it
/// supports.
pub mpu_type: ReadOnly<u32, Type::Register>,
/// The control register:
/// * Enables the MPU (bit 0).
/// * Enables MPU in hard-fault, non-maskable interrupt (NMI).
/// * Enables the default memory map background region in privileged mode.
pub ctrl: ReadWrite<u32, Control::Register>,
/// Selects the region number (zero-indexed) referenced by the region base
/// address and region attribute and size registers.
pub rnr: ReadWrite<u32, RegionNumber::Register>,
/// Defines the base address of the currently selected MPU region.
pub rbar: ReadWrite<u32, RegionBaseAddress::Register>,
/// Defines the region size and memory attributes of the selected MPU
/// region. The bits are defined as in 4.5.5 of the Cortex-M4 user guide.
pub rasr: ReadWrite<u32, RegionAttributes::Register>,
}
register_bitfields![u32,
Type [
/// The number of MPU instructions regions supported. Always reads 0.
IREGION OFFSET(16) NUMBITS(8) [],
/// The number of data regions supported. If this field reads-as-zero the
/// processor does not implement an MPU
DREGION OFFSET(8) NUMBITS(8) [],
/// Indicates whether the processor support unified (0) or separate
/// (1) instruction and data regions. Always reads 0 on the
/// Cortex-M4.
SEPARATE OFFSET(0) NUMBITS(1) []
],
Control [
/// Enables privileged software access to the default
/// memory map
PRIVDEFENA OFFSET(2) NUMBITS(1) [
Enable = 0,
Disable = 1
],
/// Enables the operation of MPU during hard fault, NMI,
/// and FAULTMASK handlers
HFNMIENA OFFSET(1) NUMBITS(1) [
Enable = 0,
Disable = 1
],
/// Enables the MPU
ENABLE OFFSET(0) NUMBITS(1) [
Disable = 0,
Enable = 1
]
],
RegionNumber [
/// Region indicating the MPU region referenced by the MPU_RBAR and
/// MPU_RASR registers. Range 0-7 corresponding to the MPU regions.
REGION OFFSET(0) NUMBITS(8) []
],
RegionBaseAddress [
/// Base address of the currently selected MPU region.
ADDR OFFSET(5) NUMBITS(27) [],
/// MPU Region Number valid bit.
VALID OFFSET(4) NUMBITS(1) [
/// Use the base address specified in Region Number Register (RNR)
UseRNR = 0,
/// Use the value of the REGION field in this register (RBAR)
UseRBAR = 1
],
/// Specifies which MPU region to set if VALID is set to 1.
REGION OFFSET(0) NUMBITS(4) []
],
RegionAttributes [
/// Enables instruction fetches/execute permission
XN OFFSET(28) NUMBITS(1) [
Enable = 0,
Disable = 1
],
/// Defines access permissions
AP OFFSET(24) NUMBITS(3) [
// Privileged Unprivileged
// Access Access
NoAccess = 0b000, // -- --
PrivilegedOnly = 0b001, // RW --
UnprivilegedReadOnly = 0b010, // RW R-
ReadWrite = 0b011, // RW RW
Reserved = 0b100, // undef undef
PrivilegedOnlyReadOnly = 0b101, // R- --
ReadOnly = 0b110, // R- R-
ReadOnlyAlias = 0b111 // R- R-
],
/// Subregion disable bits
SRD OFFSET(8) NUMBITS(8) [],
/// Specifies the region size, being 2^(SIZE+1) (minimum 3)
SIZE OFFSET(1) NUMBITS(5) [],
/// Enables the region
ENABLE OFFSET(0) NUMBITS(1) []
]
];
const MPU_BASE_ADDRESS: StaticRef<MpuRegisters> =
unsafe { StaticRef::new(0xE000ED90 as *const MpuRegisters) };
/// State related to the real physical MPU.
///
/// There should only be one instantiation of this object as it represents
/// real hardware.
pub struct MPU<const NUM_REGIONS: usize, const MIN_REGION_SIZE: usize> {
/// MMIO reference to MPU registers.
registers: StaticRef<MpuRegisters>,
/// Monotonically increasing counter for allocated regions, used
/// to assign unique IDs to `CortexMConfig` instances.
config_count: Cell<NonZeroUsize>,
/// Optimization logic. This is used to indicate which application the MPU
/// is currently configured for so that the MPU can skip updating when the
/// kernel returns to the same app.
hardware_is_configured_for: OptionalCell<NonZeroUsize>,
}
impl<const NUM_REGIONS: usize, const MIN_REGION_SIZE: usize> MPU<NUM_REGIONS, MIN_REGION_SIZE> {
pub const unsafe fn new() -> Self {
Self {
registers: MPU_BASE_ADDRESS,
config_count: Cell::new(NonZeroUsize::MIN),
hardware_is_configured_for: OptionalCell::empty(),
}
}
// Function useful for boards where the bootloader sets up some
// MPU configuration that conflicts with Tock's configuration:
pub unsafe fn clear_mpu(&self) {
self.registers.ctrl.write(Control::ENABLE::CLEAR);
}
}
/// Per-process struct storing MPU configuration for cortex-m MPUs.
///
/// The cortex-m MPU has eight regions, all of which must be configured (though
/// unused regions may be configured as disabled). This struct caches the result
/// of region configuration calculation.
pub struct CortexMConfig<const NUM_REGIONS: usize> {
/// Unique ID for this configuration, assigned from a
/// monotonically increasing counter in the MPU struct.
id: NonZeroUsize,
/// The computed region configuration for this process.
regions: [CortexMRegion; NUM_REGIONS],
/// Has the configuration changed since the last time the this process
/// configuration was written to hardware?
is_dirty: Cell<bool>,
}
/// Records the index of the last region used for application RAM memory.
/// Regions 0-APP_MEMORY_REGION_MAX_NUM are used for application RAM. Regions
/// with indices above APP_MEMORY_REGION_MAX_NUM can be used for other MPU
/// needs.
const APP_MEMORY_REGION_MAX_NUM: usize = 1;
impl<const NUM_REGIONS: usize> fmt::Display for CortexMConfig<NUM_REGIONS> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\r\n Cortex-M MPU")?;
for (i, region) in self.regions.iter().enumerate() {
if let Some(location) = region.location() {
let access_bits = region.attributes().read(RegionAttributes::AP);
let access_str = match access_bits {
0b000 => "NoAccess",
0b001 => "PrivilegedOnly",
0b010 => "UnprivilegedReadOnly",
0b011 => "ReadWrite",
0b100 => "Reserved",
0b101 => "PrivilegedOnlyReadOnly",
0b110 => "ReadOnly",
0b111 => "ReadOnlyAlias",
_ => "ERR",
};
let start = location.0 as usize;
write!(
f,
"\
\r\n Region {}: [{:#010X}:{:#010X}], length: {} bytes; {} ({:#x})",
i,
start,
start + location.1,
location.1,
access_str,
access_bits,
)?;
let subregion_bits = region.attributes().read(RegionAttributes::SRD);
let subregion_size = location.1 / 8;
for j in 0..8 {
write!(
f,
"\
\r\n Sub-region {}: [{:#010X}:{:#010X}], {}",
j,
start + j * subregion_size,
start + (j + 1) * subregion_size,
if (subregion_bits >> j) & 1 == 0 {
"Enabled"
} else {
"Disabled"
},
)?;
}
} else {
write!(f, "\r\n Region {}: Unused", i)?;
}
}
write!(f, "\r\n")
}
}
impl<const NUM_REGIONS: usize> CortexMConfig<NUM_REGIONS> {
fn unused_region_number(&self) -> Option<usize> {
for (number, region) in self.regions.iter().enumerate() {
if number <= APP_MEMORY_REGION_MAX_NUM {
continue;
}
if let None = region.location() {
return Some(number);
}
}
None
}
}
/// Struct storing configuration for a Cortex-M MPU region.
#[derive(Copy, Clone)]
pub struct CortexMRegion {
location: Option<(*const u8, usize)>,
base_address: FieldValue<u32, RegionBaseAddress::Register>,
attributes: FieldValue<u32, RegionAttributes::Register>,
}
impl PartialEq<mpu::Region> for CortexMRegion {
fn eq(&self, other: &mpu::Region) -> bool {
self.location
.is_some_and(|(addr, size)| addr == other.start_address() && size == other.size())
}
}
impl CortexMRegion {
fn new(
logical_start: *const u8,
logical_size: usize,
region_start: *const u8,
region_size: usize,
region_num: usize,
subregions: Option<(usize, usize)>,
permissions: mpu::Permissions,
) -> Option<CortexMRegion> {
// Logical size must be above minimum size for cortexM MPU regions and
// and less than the size of the underlying physical region
if logical_size < CORTEXM_MIN_REGION_SIZE || region_size < logical_size {
return None;
}
// Determine access and execute permissions
let (access, execute) = match permissions {
mpu::Permissions::ReadWriteExecute => (
RegionAttributes::AP::ReadWrite,
RegionAttributes::XN::Enable,
),
mpu::Permissions::ReadWriteOnly => (
RegionAttributes::AP::ReadWrite,
RegionAttributes::XN::Disable,
),
mpu::Permissions::ReadExecuteOnly => (
RegionAttributes::AP::UnprivilegedReadOnly,
RegionAttributes::XN::Enable,
),
mpu::Permissions::ReadOnly => (
RegionAttributes::AP::UnprivilegedReadOnly,
RegionAttributes::XN::Disable,
),
mpu::Permissions::ExecuteOnly => (
RegionAttributes::AP::PrivilegedOnly,
RegionAttributes::XN::Enable,
),
};
// Base address register
let base_address = RegionBaseAddress::ADDR.val((region_start as u32) >> 5)
+ RegionBaseAddress::VALID::UseRBAR
+ RegionBaseAddress::REGION.val(region_num as u32);
let size_value = math::log_base_two(region_size as u32) - 1;
// Attributes register
let mut attributes = RegionAttributes::ENABLE::SET
+ RegionAttributes::SIZE.val(size_value)
+ access
+ execute;
// If using subregions, add a subregion mask. The mask is a 8-bit
// bitfield where `0` indicates that the corresponding subregion is enabled.
// To compute the mask, we start with all subregions disabled and enable
// the ones in the inclusive range [min_subregion, max_subregion].
if let Some((min_subregion, max_subregion)) = subregions {
let mask = (min_subregion..=max_subregion).fold(u8::MAX, |res, i| {
// Enable subregions bit by bit (1 ^ 1 == 0)
res ^ (1 << i)
});
attributes += RegionAttributes::SRD.val(mask as u32);
}
Some(CortexMRegion {
location: Some((logical_start, logical_size)),
base_address,
attributes,
})
}
fn empty(region_num: usize) -> CortexMRegion {
CortexMRegion {
location: None,
base_address: RegionBaseAddress::VALID::UseRBAR
+ RegionBaseAddress::REGION.val(region_num as u32),
attributes: RegionAttributes::ENABLE::CLEAR,
}
}
fn location(&self) -> Option<(*const u8, usize)> {
self.location
}
fn base_address(&self) -> FieldValue<u32, RegionBaseAddress::Register> {
self.base_address
}
fn attributes(&self) -> FieldValue<u32, RegionAttributes::Register> {
self.attributes
}
fn overlaps(&self, other_start: *const u8, other_size: usize) -> bool {
let other_start = other_start as usize;
let other_end = other_start + other_size;
let (region_start, region_end) = match self.location {
Some((region_start, region_size)) => {
let region_start = region_start as usize;
let region_end = region_start + region_size;
(region_start, region_end)
}
None => return false,
};
region_start < other_end && other_start < region_end
}
}
impl<const NUM_REGIONS: usize, const MIN_REGION_SIZE: usize> mpu::MPU
for MPU<NUM_REGIONS, MIN_REGION_SIZE>
{
type MpuConfig = CortexMConfig<NUM_REGIONS>;
fn enable_app_mpu(&self) {
// Enable the MPU, disable it during HardFault/NMI handlers, and allow
// privileged code access to all unprotected memory.
self.registers
.ctrl
.write(Control::ENABLE::SET + Control::HFNMIENA::CLEAR + Control::PRIVDEFENA::SET);
}
fn disable_app_mpu(&self) {
// The MPU is not enabled for privileged mode, so we don't have to do
// anything
self.registers.ctrl.write(Control::ENABLE::CLEAR);
}
fn number_total_regions(&self) -> usize {
self.registers.mpu_type.read(Type::DREGION) as usize
}
fn new_config(&self) -> Option<Self::MpuConfig> {
let id = self.config_count.get();
self.config_count.set(id.checked_add(1)?);
// Allocate the regions with index `0` first, then use `reset_config` to
// write the properly-indexed `CortexMRegion`s:
let mut ret = CortexMConfig {
id,
regions: [CortexMRegion::empty(0); NUM_REGIONS],
is_dirty: Cell::new(true),
};
self.reset_config(&mut ret);
Some(ret)
}
fn reset_config(&self, config: &mut Self::MpuConfig) {
for i in 0..NUM_REGIONS {
config.regions[i] = CortexMRegion::empty(i);
}
config.is_dirty.set(true);
}
fn allocate_region(
&self,
unallocated_memory_start: *const u8,
unallocated_memory_size: usize,
min_region_size: usize,
permissions: mpu::Permissions,
config: &mut Self::MpuConfig,
) -> Option<mpu::Region> {
// Check that no previously allocated regions overlap the unallocated memory.
for region in config.regions.iter() {
if region.overlaps(unallocated_memory_start, unallocated_memory_size) {
return None;
}
}
let region_num = config.unused_region_number()?;
// Logical region
let mut start = unallocated_memory_start as usize;
let mut size = min_region_size;
// Region start always has to align to minimum region size bytes
if start % MIN_REGION_SIZE != 0 {
start += MIN_REGION_SIZE - (start % MIN_REGION_SIZE);
}
// Regions must be at least minimum region size bytes
if size < MIN_REGION_SIZE {
size = MIN_REGION_SIZE;
}
// Physical MPU region (might be larger than logical region if some subregions are disabled)
let mut region_start = start;
let mut region_size = size;
let mut subregions = None;
// We can only create an MPU region if the size is a power of two and it divides
// the start address. If this is not the case, the first thing we try to do to
// cover the memory region is to use a larger MPU region and expose certain subregions.
if size.count_ones() > 1 || start % size != 0 {
// Which (power-of-two) subregion size would align with the start
// address?
//
// We find this by taking smallest binary substring of the start
// address with exactly one bit:
//
// 1 << (start.trailing_zeros())
let subregion_size = {
let tz = start.trailing_zeros();
if tz < 32 {
// Find the largest power of two that divides `start`
1_usize << tz
} else {
// This case means `start` is 0.
let mut ceil = math::closest_power_of_two(size as u32) as usize;
if ceil < 256 {
ceil = 256
}
ceil / 8
}
};
// Once we have a subregion size, we get a region size by
// multiplying it by the number of subregions per region.
let underlying_region_size = subregion_size * 8;
// Finally, we calculate the region base by finding the nearest
// address below `start` that aligns with the region size.
let underlying_region_start = start - (start % underlying_region_size);
// If `size` doesn't align to the subregion size, extend it.
if size % subregion_size != 0 {
size += subregion_size - (size % subregion_size);
}
let end = start + size;
let underlying_region_end = underlying_region_start + underlying_region_size;
// To use subregions, the region must be at least 256 bytes. Also, we need
// the amount of left over space in the region after `start` to be at least as
// large as the memory region we want to cover.
if subregion_size >= 32 && underlying_region_end >= end {
// The index of the first subregion to activate is the number of
// regions between `region_start` (MPU) and `start` (memory).
let min_subregion = (start - underlying_region_start) / subregion_size;
// The index of the last subregion to activate is the number of
// regions that fit in `len`, plus the `min_subregion`, minus one
// (because subregions are zero-indexed).
let max_subregion = min_subregion + size / subregion_size - 1;
region_start = underlying_region_start;
region_size = underlying_region_size;
subregions = Some((min_subregion, max_subregion));
} else {
// In this case, we can't use subregions to solve the alignment
// problem. Instead, we round up `size` to a power of two and
// shift `start` up in memory to make it align with `size`.
size = math::closest_power_of_two(size as u32) as usize;
start += size - (start % size);
region_start = start;
region_size = size;
}
}
// Check that our logical region fits in memory.
if start + size > (unallocated_memory_start as usize) + unallocated_memory_size {
return None;
}
let region = CortexMRegion::new(
start as *const u8,
size,
region_start as *const u8,
region_size,
region_num,
subregions,
permissions,
)?;
config.regions[region_num] = region;
config.is_dirty.set(true);
Some(mpu::Region::new(start as *const u8, size))
}
fn remove_memory_region(
&self,
region: mpu::Region,
config: &mut Self::MpuConfig,
) -> Result<(), ()> {
let (idx, _r) = config
.regions
.iter()
.enumerate()
.find(|(_idx, r)| **r == region)
.ok_or(())?;
if idx <= APP_MEMORY_REGION_MAX_NUM {
return Err(());
}
config.regions[idx] = CortexMRegion::empty(idx);
config.is_dirty.set(true);
Ok(())
}
// When allocating memory for apps, we use two regions, each a power of two
// in size. By using two regions we halve their size, and also halve their
// alignment restrictions.
fn allocate_app_memory_region(
&self,
unallocated_memory_start: *const u8,
unallocated_memory_size: usize,
min_memory_size: usize,
initial_app_memory_size: usize,
initial_kernel_memory_size: usize,
permissions: mpu::Permissions,
config: &mut Self::MpuConfig,
) -> Option<(*const u8, usize)> {
// Check that no previously allocated regions overlap the unallocated
// memory.
for region in config.regions.iter() {
if region.overlaps(unallocated_memory_start, unallocated_memory_size) {
return None;
}
}
// Make sure there is enough memory for app memory and kernel memory.
let memory_size = cmp::max(
min_memory_size,
initial_app_memory_size + initial_kernel_memory_size,
);
// Size must be a power of two, so:
// https://www.youtube.com/watch?v=ovo6zwv6DX4.
let mut memory_size_po2 = math::closest_power_of_two(memory_size as u32) as usize;
let exponent = math::log_base_two(memory_size_po2 as u32);
// Check for compliance with the constraints of the MPU.
if exponent < 9 {
// Region sizes must be 256 bytes or larger to support subregions.
// Since we are using two regions, and each must be at least 256
// bytes, we need the entire memory region to be at least 512 bytes.
memory_size_po2 = 512;
} else if exponent > 32 {
// Region sizes must be 4GB or smaller.
return None;
}
// Region size is the actual size the MPU region will be set to, and is
// half of the total power of two size we are allocating to the app.
let mut region_size = memory_size_po2 / 2;
// The region should start as close as possible to the start of the
// unallocated memory.
let mut region_start = unallocated_memory_start as usize;
// If the start and length don't align, move region up until it does.
if region_start % region_size != 0 {
region_start += region_size - (region_start % region_size);
}
// We allocate two MPU regions exactly over the process memory block,
// and we disable subregions at the end of this region to disallow
// access to the memory past the app break. As the app break later
// increases, we will be able to linearly grow the logical region
// covering app-owned memory by enabling more and more subregions. The
// Cortex-M MPU supports 8 subregions per region, so the size of this
// logical region is always a multiple of a sixteenth of the MPU region
// length.
// Determine the number of subregions to enable.
// Want `round_up(app_memory_size / subregion_size)`.
let mut num_enabled_subregions = initial_app_memory_size * 8 / region_size + 1;
let subregion_size = region_size / 8;
// Calculates the end address of the enabled subregions and the initial
// kernel memory break.
let subregions_enabled_end = region_start + num_enabled_subregions * subregion_size;
let kernel_memory_break = region_start + memory_size_po2 - initial_kernel_memory_size;
// If the last subregion covering app-owned memory overlaps the start of
// kernel-owned memory, we make the entire process memory block twice as
// big so there is plenty of space between app-owned and kernel-owned
// memory.
if subregions_enabled_end > kernel_memory_break {
region_size *= 2;
if region_start % region_size != 0 {
region_start += region_size - (region_start % region_size);
}
num_enabled_subregions = initial_app_memory_size * 8 / region_size + 1;
}
// Make sure the region fits in the unallocated memory.
if region_start + memory_size_po2
> (unallocated_memory_start as usize) + unallocated_memory_size
{
return None;
}
// Get the number of subregions enabled in each of the two MPU regions.
let num_enabled_subregions0 = cmp::min(num_enabled_subregions, 8);
let num_enabled_subregions1 = num_enabled_subregions.saturating_sub(8);
let region0 = CortexMRegion::new(
region_start as *const u8,
region_size,
region_start as *const u8,
region_size,
0,
Some((0, num_enabled_subregions0 - 1)),
permissions,
)?;
// We cannot have a completely unused MPU region
let region1 = if num_enabled_subregions1 == 0 {
CortexMRegion::empty(1)
} else {
CortexMRegion::new(
(region_start + region_size) as *const u8,
region_size,
(region_start + region_size) as *const u8,
region_size,
1,
Some((0, num_enabled_subregions1 - 1)),
permissions,
)?
};
config.regions[0] = region0;
config.regions[1] = region1;
config.is_dirty.set(true);
Some((region_start as *const u8, memory_size_po2))
}
fn update_app_memory_region(
&self,
app_memory_break: *const u8,
kernel_memory_break: *const u8,
permissions: mpu::Permissions,
config: &mut Self::MpuConfig,
) -> Result<(), ()> {
// Get first region, or error if the process tried to update app memory
// MPU region before it was created.
let (region_start_ptr, region_size) = config.regions[0].location().ok_or(())?;
let region_start = region_start_ptr as usize;
let app_memory_break = app_memory_break as usize;
let kernel_memory_break = kernel_memory_break as usize;
// Out of memory
if app_memory_break > kernel_memory_break {
return Err(());
}
// Number of bytes the process wants access to.
let app_memory_size = app_memory_break - region_start;
// There are eight subregions for every region in the Cortex-M3/4 MPU.
let subregion_size = region_size / 8;
// Determine the number of subregions to enable.
// Want `round_up(app_memory_size / subregion_size)`.
let num_enabled_subregions = app_memory_size.div_ceil(subregion_size);
let subregions_enabled_end = region_start + subregion_size * num_enabled_subregions;
// If we can no longer cover app memory with an MPU region without
// overlapping kernel memory, we fail.
if subregions_enabled_end > kernel_memory_break {
return Err(());
}
// Get the number of subregions enabled in each of the two MPU regions.
let num_enabled_subregions0 = cmp::min(num_enabled_subregions, 8);
let num_enabled_subregions1 = num_enabled_subregions.saturating_sub(8);
let region0 = CortexMRegion::new(
region_start as *const u8,
region_size,
region_start as *const u8,
region_size,
0,
Some((0, num_enabled_subregions0 - 1)),
permissions,
)
.ok_or(())?;
let region1 = if num_enabled_subregions1 == 0 {
CortexMRegion::empty(1)
} else {
CortexMRegion::new(
(region_start + region_size) as *const u8,
region_size,
(region_start + region_size) as *const u8,
region_size,
1,
Some((0, num_enabled_subregions1 - 1)),
permissions,
)
.ok_or(())?
};
config.regions[0] = region0;
config.regions[1] = region1;
config.is_dirty.set(true);
Ok(())
}
fn configure_mpu(&self, config: &Self::MpuConfig) {
// If the hardware is already configured for this app and the app's MPU
// configuration has not changed, then skip the hardware update.
if !self.hardware_is_configured_for.contains(&config.id) || config.is_dirty.get() {
// Set MPU regions
for region in config.regions.iter() {
self.registers.rbar.write(region.base_address());
self.registers.rasr.write(region.attributes());
}
self.hardware_is_configured_for.set(config.id);
config.is_dirty.set(false);
}
}
}