kernel/kernel.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Tock's main kernel loop, scheduler loop, and Scheduler trait.
//!
//! This module also includes utility functions that are commonly used by
//! scheduler policy implementations. Scheduling policy (round robin, priority,
//! etc.) is defined in the `scheduler` subcrate and selected by a board.
use core::cell::Cell;
use core::num::NonZeroU32;
use crate::capabilities;
use crate::config;
use crate::debug;
use crate::deferred_call::DeferredCall;
use crate::errorcode::ErrorCode;
use crate::grant::{AllowRoSize, AllowRwSize, Grant, UpcallSize};
use crate::ipc;
use crate::memop;
use crate::platform::chip::Chip;
use crate::platform::mpu::MPU;
use crate::platform::platform::ContextSwitchCallback;
use crate::platform::platform::KernelResources;
use crate::platform::platform::{ProcessFault, SyscallDriverLookup, SyscallFilter};
use crate::platform::scheduler_timer::SchedulerTimer;
use crate::platform::watchdog::WatchDog;
use crate::process::{self, ProcessId, Task};
use crate::scheduler::{Scheduler, SchedulingDecision};
use crate::syscall::SyscallDriver;
use crate::syscall::{ContextSwitchReason, SyscallReturn};
use crate::syscall::{Syscall, YieldCall};
use crate::syscall_driver::CommandReturn;
use crate::upcall::{Upcall, UpcallId};
use crate::utilities::cells::NumericCellExt;
/// Threshold in microseconds to consider a process's timeslice to be exhausted.
/// That is, Tock will skip re-scheduling a process if its remaining timeslice
/// is less than this threshold.
pub(crate) const MIN_QUANTA_THRESHOLD_US: u32 = 500;
/// Main object for the kernel. Each board will need to create one.
pub struct Kernel {
/// This holds a pointer to the static array of Process pointers.
processes: &'static [Option<&'static dyn process::Process>],
/// A counter which keeps track of how many process identifiers have been
/// created. This is used to create new unique identifiers for processes.
process_identifier_max: Cell<usize>,
/// How many grant regions have been setup. This is incremented on every
/// call to `create_grant()`. We need to explicitly track this so that when
/// processes are created they can be allocated pointers for each grant.
grant_counter: Cell<usize>,
/// Flag to mark that grants have been finalized. This means that the kernel
/// cannot support creating new grants because processes have already been
/// created and the data structures for grants have already been
/// established.
grants_finalized: Cell<bool>,
}
/// Represents the different outcomes when trying to allocate a grant region
enum AllocResult {
NoAllocation,
NewAllocation,
SameAllocation,
}
/// Tries to allocate the grant region for specified driver and process.
/// Returns if a new grant was allocated or not
fn try_allocate_grant(driver: &dyn SyscallDriver, process: &dyn process::Process) -> AllocResult {
let before_count = process.grant_allocated_count().unwrap_or(0);
match driver.allocate_grant(process.processid()).is_ok() {
true if before_count == process.grant_allocated_count().unwrap_or(0) => {
AllocResult::SameAllocation
}
true => AllocResult::NewAllocation,
false => AllocResult::NoAllocation,
}
}
impl Kernel {
/// Create the kernel object that knows about the list of processes.
///
/// Crucially, the processes included in the `processes` array MUST be valid
/// to execute. Any credential checks or validation MUST happen before the
/// `Process` object is included in this array.
pub fn new(processes: &'static [Option<&'static dyn process::Process>]) -> Kernel {
Kernel {
processes,
process_identifier_max: Cell::new(0),
grant_counter: Cell::new(0),
grants_finalized: Cell::new(false),
}
}
/// Helper function that moves all non-generic portions of process_map_or
/// into a non-generic function to reduce code bloat from monomorphization.
pub(crate) fn get_process(&self, processid: ProcessId) -> Option<&dyn process::Process> {
// We use the index in the [`ProcessId`] so we can do a direct lookup.
// However, we are not guaranteed that the app still exists at that
// index in the processes array. To avoid additional overhead, we do the
// lookup and check here, rather than calling `.index()`.
match self.processes.get(processid.index) {
Some(Some(process)) => {
// Check that the process stored here matches the identifier
// in the `processid`.
if process.processid() == processid {
Some(*process)
} else {
None
}
}
_ => None,
}
}
/// Run a closure on a specific process if it exists. If the process with a
/// matching [`ProcessId`] does not exist at the index specified within the
/// [`ProcessId`], then `default` will be returned.
///
/// A match will not be found if the process was removed (and there is a
/// `None` in the process array), if the process changed its identifier
/// (likely after being restarted), or if the process was moved to a
/// different index in the processes array. Note that a match _will_ be
/// found if the process still exists in the correct location in the array
/// but is in any "stopped" state.
pub(crate) fn process_map_or<F, R>(&self, default: R, processid: ProcessId, closure: F) -> R
where
F: FnOnce(&dyn process::Process) -> R,
{
match self.get_process(processid) {
Some(process) => closure(process),
None => default,
}
}
/// Run a closure on a specific process if it exists. If the process with a
/// matching `ProcessId` does not exist at the index specified within the
/// `ProcessId`, then `default` will be returned.
///
/// A match will not be found if the process was removed (and there is a
/// `None` in the process array), if the process changed its identifier
/// (likely after being restarted), or if the process was moved to a
/// different index in the processes array. Note that a match _will_ be
/// found if the process still exists in the correct location in the array
/// but is in any "stopped" state.
///
/// This is functionally the same as `process_map_or()`, but this method is
/// available outside the kernel crate and requires a
/// `ProcessManagementCapability` to use.
pub fn process_map_or_external<F, R>(
&self,
default: R,
processid: ProcessId,
closure: F,
_capability: &dyn capabilities::ProcessManagementCapability,
) -> R
where
F: FnOnce(&dyn process::Process) -> R,
{
match self.get_process(processid) {
Some(process) => closure(process),
None => default,
}
}
/// Run a closure on every valid process. This will iterate the array of
/// processes and call the closure on every process that exists.
pub(crate) fn process_each<F>(&self, mut closure: F)
where
F: FnMut(&dyn process::Process),
{
for process in self.processes.iter() {
match process {
Some(p) => {
closure(*p);
}
None => {}
}
}
}
/// Returns an iterator over all processes loaded by the kernel.
pub(crate) fn get_process_iter(
&self,
) -> core::iter::FilterMap<
core::slice::Iter<Option<&dyn process::Process>>,
fn(&Option<&'static dyn process::Process>) -> Option<&'static dyn process::Process>,
> {
fn keep_some(
&x: &Option<&'static dyn process::Process>,
) -> Option<&'static dyn process::Process> {
x
}
self.processes.iter().filter_map(keep_some)
}
/// Run a closure on every valid process. This will iterate the array of
/// processes and call the closure on every process that exists.
///
/// This is functionally the same as `process_each()`, but this method is
/// available outside the kernel crate and requires a
/// `ProcessManagementCapability` to use.
pub fn process_each_capability<F>(
&'static self,
_capability: &dyn capabilities::ProcessManagementCapability,
mut closure: F,
) where
F: FnMut(&dyn process::Process),
{
for process in self.processes.iter() {
match process {
Some(p) => {
closure(*p);
}
None => {}
}
}
}
/// Run a closure on every process, but only continue if the closure returns
/// `None`. That is, if the closure returns any non-`None` value, iteration
/// stops and the value is returned from this function to the called.
pub(crate) fn process_until<T, F>(&self, closure: F) -> Option<T>
where
F: Fn(&dyn process::Process) -> Option<T>,
{
for process in self.processes.iter() {
match process {
Some(p) => {
let ret = closure(*p);
if ret.is_some() {
return ret;
}
}
None => {}
}
}
None
}
/// Checks if the provided [`ProcessId`] is still valid given the processes
/// stored in the processes array. Returns `true` if the ProcessId still
/// refers to a valid process, and `false` if not.
///
/// This is needed for `ProcessId` itself to implement the `.index()`
/// command to verify that the referenced app is still at the correct index.
pub(crate) fn processid_is_valid(&self, processid: &ProcessId) -> bool {
self.processes
.get(processid.index)
.is_some_and(|p| p.is_some_and(|process| process.processid().id() == processid.id()))
}
/// Create a new grant. This is used in board initialization to setup grants
/// that capsules use to interact with processes.
///
/// Grants **must** only be created _before_ processes are initialized.
/// Processes use the number of grants that have been allocated to correctly
/// initialize the process's memory with a pointer for each grant. If a
/// grant is created after processes are initialized this will panic.
///
/// Calling this function is restricted to only certain users, and to
/// enforce this calling this function requires the
/// `MemoryAllocationCapability` capability.
pub fn create_grant<
T: Default,
Upcalls: UpcallSize,
AllowROs: AllowRoSize,
AllowRWs: AllowRwSize,
>(
&'static self,
driver_num: usize,
_capability: &dyn capabilities::MemoryAllocationCapability,
) -> Grant<T, Upcalls, AllowROs, AllowRWs> {
if self.grants_finalized.get() {
panic!("Grants finalized. Cannot create a new grant.");
}
// Create and return a new grant.
let grant_index = self.grant_counter.get();
self.grant_counter.increment();
Grant::new(self, driver_num, grant_index)
}
/// Returns the number of grants that have been setup in the system and
/// marks the grants as "finalized". This means that no more grants can
/// be created because data structures have been setup based on the number
/// of grants when this function is called.
///
/// In practice, this is called when processes are created, and the process
/// memory is setup based on the number of current grants.
pub(crate) fn get_grant_count_and_finalize(&self) -> usize {
self.grants_finalized.set(true);
self.grant_counter.get()
}
/// Returns the number of grants that have been setup in the system and
/// marks the grants as "finalized". This means that no more grants can
/// be created because data structures have been setup based on the number
/// of grants when this function is called.
///
/// In practice, this is called when processes are created, and the process
/// memory is setup based on the number of current grants.
///
/// This is exposed publicly, but restricted with a capability. The intent
/// is that external implementations of `Process` need to be able to
/// retrieve the final number of grants.
pub fn get_grant_count_and_finalize_external(
&self,
_capability: &dyn capabilities::ExternalProcessCapability,
) -> usize {
self.get_grant_count_and_finalize()
}
/// Create a new unique identifier for a process and return the identifier.
///
/// Typically we just choose a larger number than we have used for any
/// process before which ensures that the identifier is unique.
pub(crate) fn create_process_identifier(&self) -> usize {
self.process_identifier_max.get_and_increment()
}
/// Cause all apps to fault.
///
/// This will call `set_fault_state()` on each app, causing the app to enter
/// the state as if it had crashed (for example with an MPU violation). If
/// the process is configured to be restarted it will be.
///
/// Only callers with the `ProcessManagementCapability` can call this
/// function. This restricts general capsules from being able to call this
/// function, since capsules should not be able to arbitrarily restart all
/// apps.
pub fn hardfault_all_apps<C: capabilities::ProcessManagementCapability>(&self, _c: &C) {
for p in self.processes.iter() {
p.map(|process| {
process.set_fault_state();
});
}
}
/// Perform one iteration of the core Tock kernel loop.
///
/// This function is responsible for three main operations:
///
/// 1. Check if the kernel itself has any work to be done and if the
/// scheduler wants to complete that work now. If so, it allows the
/// kernel to run.
/// 2. Check if any processes have any work to be done, and if so if the
/// scheduler wants to allow any processes to run now, and if so which
/// one.
/// 3. After ensuring the scheduler does not want to complete any kernel or
/// process work (or there is no work to be done), are there are no
/// outstanding interrupts to handle, put the chip to sleep.
///
/// This function has one configuration option: `no_sleep`. If that argument
/// is set to true, the kernel will never attempt to put the chip to sleep,
/// and this function can be called again immediately.
pub fn kernel_loop_operation<KR: KernelResources<C>, C: Chip, const NUM_PROCS: u8>(
&self,
resources: &KR,
chip: &C,
ipc: Option<&ipc::IPC<NUM_PROCS>>,
no_sleep: bool,
_capability: &dyn capabilities::MainLoopCapability,
) {
let scheduler = resources.scheduler();
resources.watchdog().tickle();
unsafe {
// Ask the scheduler if we should do tasks inside of the kernel,
// such as handle interrupts. A scheduler may want to prioritize
// processes instead, or there may be no kernel work to do.
match scheduler.do_kernel_work_now(chip) {
true => {
// Execute kernel work. This includes handling
// interrupts and is how code in the chips/ and capsules
// crates is able to execute.
scheduler.execute_kernel_work(chip);
}
false => {
// No kernel work ready, so ask scheduler for a process.
match scheduler.next() {
SchedulingDecision::RunProcess((processid, timeslice_us)) => {
self.process_map_or((), processid, |process| {
let (reason, time_executed) =
self.do_process(resources, chip, process, ipc, timeslice_us);
scheduler.result(reason, time_executed);
});
}
SchedulingDecision::TrySleep => {
// For testing, it may be helpful to
// disable sleeping the chip in case
// the running test does not generate
// any interrupts.
if !no_sleep {
chip.atomic(|| {
// Cannot sleep if interrupts are pending,
// as on most platforms unhandled interrupts
// will wake the device. Also, if the only
// pending interrupt occurred after the
// scheduler decided to put the chip to
// sleep, but before this atomic section
// starts, the interrupt will not be
// serviced and the chip will never wake
// from sleep.
if !chip.has_pending_interrupts() && !DeferredCall::has_tasks()
{
resources.watchdog().suspend();
chip.sleep();
resources.watchdog().resume();
}
});
}
}
}
}
}
}
}
/// Main loop of the OS.
///
/// Most of the behavior of this loop is controlled by the [`Scheduler`]
/// implementation in use.
pub fn kernel_loop<KR: KernelResources<C>, C: Chip, const NUM_PROCS: u8>(
&self,
resources: &KR,
chip: &C,
ipc: Option<&ipc::IPC<NUM_PROCS>>,
capability: &dyn capabilities::MainLoopCapability,
) -> ! {
resources.watchdog().setup();
// Before we begin, verify that deferred calls were soundly setup.
DeferredCall::verify_setup();
loop {
self.kernel_loop_operation(resources, chip, ipc, false, capability);
}
}
/// Transfer control from the kernel to a userspace process.
///
/// This function is called by the main kernel loop to run userspace code.
/// Notably, system calls from processes are handled in the kernel, *by the
/// kernel thread* in this function, and the syscall return value is set for
/// the process immediately. Normally, a process is allowed to continue
/// running after calling a syscall. However, the scheduler is given an out,
/// as `do_process()` will check with the scheduler before re-executing the
/// process to allow it to return from the syscall. If a process yields with
/// no upcalls pending, exits, exceeds its timeslice, or is interrupted,
/// then `do_process()` will return.
///
/// Depending on the particular scheduler in use, this function may act in a
/// few different ways. `scheduler.continue_process()` allows the scheduler
/// to tell the Kernel whether to continue executing the process, or to
/// return control to the scheduler as soon as a kernel task becomes ready
/// (either a bottom half interrupt handler or dynamic deferred call), or to
/// continue executing the userspace process until it reaches one of the
/// aforementioned stopping conditions. Some schedulers may not require a
/// scheduler timer; passing `None` for the timeslice will use a null
/// scheduler timer even if the chip provides a real scheduler timer.
/// Schedulers can pass a timeslice (in us) of their choice, though if the
/// passed timeslice is smaller than `MIN_QUANTA_THRESHOLD_US` the process
/// will not execute, and this function will return immediately.
///
/// This function returns a tuple indicating the reason the reason this
/// function has returned to the scheduler, and the amount of time the
/// process spent executing (or `None` if the process was run
/// cooperatively). Notably, time spent in this function by the kernel,
/// executing system calls or merely setting up the switch to/from
/// userspace, is charged to the process.
fn do_process<KR: KernelResources<C>, C: Chip, const NUM_PROCS: u8>(
&self,
resources: &KR,
chip: &C,
process: &dyn process::Process,
ipc: Option<&crate::ipc::IPC<NUM_PROCS>>,
timeslice_us: Option<NonZeroU32>,
) -> (process::StoppedExecutingReason, Option<u32>) {
// We must use a dummy scheduler timer if the process should be executed
// without any timeslice restrictions. Note, a chip may not provide a
// real scheduler timer implementation even if a timeslice is requested.
let scheduler_timer: &dyn SchedulerTimer = if timeslice_us.is_none() {
&() // dummy timer, no preemption
} else {
resources.scheduler_timer()
};
// Clear the scheduler timer and then start the counter. This starts the
// process's timeslice. Since the kernel is still executing at this
// point, the scheduler timer need not have an interrupt enabled after
// `start()`.
scheduler_timer.reset();
if let Some(timeslice) = timeslice_us {
scheduler_timer.start(timeslice)
}
// Need to track why the process is no longer executing so that we can
// inform the scheduler.
let mut return_reason = process::StoppedExecutingReason::NoWorkLeft;
// Since the timeslice counts both the process's execution time and the
// time spent in the kernel on behalf of the process (setting it up and
// handling its syscalls), we intend to keep running the process until
// it has no more work to do. We break out of this loop if the scheduler
// no longer wants to execute this process or if it exceeds its
// timeslice.
loop {
let stop_running = match scheduler_timer.get_remaining_us() {
Some(us) => us.get() <= MIN_QUANTA_THRESHOLD_US,
None => true,
};
if stop_running {
// Process ran out of time while the kernel was executing.
process.debug_timeslice_expired();
return_reason = process::StoppedExecutingReason::TimesliceExpired;
break;
}
// Check if the scheduler wishes to continue running this process.
let continue_process = unsafe {
resources
.scheduler()
.continue_process(process.processid(), chip)
};
if !continue_process {
return_reason = process::StoppedExecutingReason::KernelPreemption;
break;
}
// Check if this process is actually ready to run. If not, we don't
// try to run it. This case can happen if a process faults and is
// stopped, for example.
if !process.ready() {
return_reason = process::StoppedExecutingReason::NoWorkLeft;
break;
}
match process.get_state() {
process::State::Running => {
// Running means that this process expects to be running, so
// go ahead and set things up and switch to executing the
// process. Arming the scheduler timer instructs it to
// generate an interrupt when the timeslice has expired. The
// underlying timer is not affected.
resources
.context_switch_callback()
.context_switch_hook(process);
process.setup_mpu();
chip.mpu().enable_app_mpu();
scheduler_timer.arm();
let context_switch_reason = process.switch_to();
scheduler_timer.disarm();
chip.mpu().disable_app_mpu();
// Now the process has returned back to the kernel. Check
// why and handle the process as appropriate.
match context_switch_reason {
Some(ContextSwitchReason::Fault) => {
// The app faulted, check if the chip wants to
// handle the fault.
if resources
.process_fault()
.process_fault_hook(process)
.is_err()
{
// Let process deal with it as appropriate.
process.set_fault_state();
}
}
Some(ContextSwitchReason::SyscallFired { syscall }) => {
self.handle_syscall(resources, process, syscall);
}
Some(ContextSwitchReason::Interrupted) => {
if scheduler_timer.get_remaining_us().is_none() {
// This interrupt was a timeslice expiration.
process.debug_timeslice_expired();
return_reason = process::StoppedExecutingReason::TimesliceExpired;
break;
}
// Go to the beginning of loop to determine whether
// to break to handle the interrupt, continue
// executing this process, or switch to another
// process.
continue;
}
None => {
// Something went wrong when switching to this
// process. Indicate this by putting it in a fault
// state.
process.set_fault_state();
}
}
}
process::State::Yielded => {
// If the process is yielded or hasn't been started it is
// waiting for a upcall. If there is a task scheduled for
// this process go ahead and set the process to execute it.
match process.dequeue_task() {
None => break,
Some(cb) => match cb {
Task::ReturnValue(_) => {
// Per TRD104, Yield-Wait does not wake the
// process for events that generate Null
// Upcalls.
break;
}
Task::FunctionCall(ccb) => {
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] function_call @{:#x}({:#x}, {:#x}, {:#x}, {:#x})",
process.processid(),
ccb.pc,
ccb.argument0,
ccb.argument1,
ccb.argument2,
ccb.argument3,
);
}
process.set_process_function(ccb);
}
Task::IPC((otherapp, ipc_type)) => {
ipc.map_or_else(
|| {
panic!("Kernel consistency error: IPC Task with no IPC");
},
|ipc| {
// TODO(alevy): this could error for a variety of reasons.
// Should we communicate the error somehow?
// https://github.com/tock/tock/issues/1993
unsafe {
let _ = ipc.schedule_upcall(
process.processid(),
otherapp,
ipc_type,
);
}
},
);
}
},
}
}
process::State::YieldedFor(upcall_id) => {
// If this process is waiting for a specific upcall, see if
// it is ready. If so, dequeue it and return its values to
// the process without scheduling the callback.
match process.remove_upcall(upcall_id) {
None => break,
Some(task) => {
let (a0, a1, a2) = match task {
// There is no callback function registered, we
// just return the values provided by the driver
Task::ReturnValue(rv) => {
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] Yield-WaitFor: [NU] ({:#x}, {:#x}, {:#x})",
process.processid(),
rv.argument0,
rv.argument1,
rv.argument2,
);
}
(rv.argument0, rv.argument1, rv.argument2)
}
// There is a registered callback function, but
// since the process used `Yield-WaitFor`, we do
// not execute it, we just return its arguments
// values to the application.
Task::FunctionCall(ccb) => {
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] Yield-WaitFor [Suppressed function_call @{:#x}] ({:#x}, {:#x}, {:#x}, {:#x})",
process.processid(),
ccb.pc,
ccb.argument0,
ccb.argument1,
ccb.argument2,
ccb.argument3,
);
}
(ccb.argument0, ccb.argument1, ccb.argument2)
}
Task::IPC(_) => todo!(),
};
process
.set_syscall_return_value(SyscallReturn::YieldWaitFor(a0, a1, a2));
}
}
}
process::State::Faulted | process::State::Terminated => {
// We should never be scheduling an unrunnable process.
// This is a potential security flaw: panic.
panic!("Attempted to schedule an unrunnable process");
}
process::State::Stopped(_) => {
return_reason = process::StoppedExecutingReason::Stopped;
break;
}
}
}
// Check how much time the process used while it was executing, and
// return the value so we can provide it to the scheduler.
let time_executed_us = timeslice_us.map(|timeslice| {
// Note, we cannot call `.get_remaining_us()` again if it has
// previously returned `None`, so we _must_ check the return reason
// first.
if return_reason == process::StoppedExecutingReason::TimesliceExpired {
// used the whole timeslice
timeslice.get()
} else {
match scheduler_timer.get_remaining_us() {
Some(remaining) => timeslice.get() - remaining.get(),
None => timeslice.get(), // used whole timeslice
}
}
});
// Reset the scheduler timer in case it unconditionally triggers
// interrupts upon expiration. We do not want it to expire while the
// chip is sleeping, for example.
scheduler_timer.reset();
(return_reason, time_executed_us)
}
/// Method to invoke a system call on a particular process. Applies the
/// kernel system call filtering policy (if any). Handles `Yield` and
/// `Exit`, dispatches `Memop` to `memop::memop`, and dispatches peripheral
/// driver system calls to peripheral driver capsules through the platforms
/// `with_driver` method.
#[inline]
fn handle_syscall<KR: KernelResources<C>, C: Chip>(
&self,
resources: &KR,
process: &dyn process::Process,
syscall: Syscall,
) {
// Hook for process debugging.
process.debug_syscall_called(syscall);
// Enforce platform-specific syscall filtering here.
//
// Before continuing to handle non-yield syscalls the kernel first
// checks if the platform wants to block that syscall for the process,
// and if it does, sets a return value which is returned to the calling
// process.
//
// Filtering a syscall (i.e. blocking the syscall from running) does not
// cause the process to lose its timeslice. The error will be returned
// immediately (assuming the process has not already exhausted its
// timeslice) allowing the process to decide how to handle the error.
match syscall {
Syscall::Yield {
which: _,
param_a: _,
param_b: _,
} => {} // Yield is not filterable.
Syscall::Exit {
which: _,
completion_code: _,
} => {} // Exit is not filterable.
Syscall::Memop {
operand: _,
arg0: _,
} => {} // Memop is not filterable.
_ => {
// Check all other syscalls for filtering.
if let Err(response) = resources.syscall_filter().filter_syscall(process, &syscall)
{
process.set_syscall_return_value(SyscallReturn::Failure(response));
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] Filtered: {:?} was rejected with {:?}",
process.processid(),
syscall,
response
);
}
return;
}
}
}
// Handle each of the syscalls.
match syscall {
Syscall::Memop { operand, arg0 } => {
let rval = memop::memop(process, operand, arg0);
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] memop({}, {:#x}) = {:?}",
process.processid(),
operand,
arg0,
rval
);
}
process.set_syscall_return_value(rval);
}
Syscall::Yield {
which,
param_a,
param_b,
} => {
if config::CONFIG.trace_syscalls {
debug!("[{:?}] yield. which: {}", process.processid(), which);
}
match which.try_into() {
Ok(YieldCall::NoWait) => {
// If this is a `Yield-WaitFor` AND there are no pending
// tasks, then return immediately. Otherwise, go into
// the yielded state and execute tasks now or when they
// arrive.
let has_tasks = process.has_tasks();
// Set the "did I trigger upcalls" flag.
// If address is invalid does nothing.
//
// # Safety
//
// This is fine as long as no references to the
// process's memory exist. We do not have a reference,
// so we can safely call `set_byte()`.
unsafe {
let address = param_a as *mut u8;
process.set_byte(address, has_tasks as u8);
}
if has_tasks {
process.set_yielded_state();
}
}
Ok(YieldCall::Wait) => {
process.set_yielded_state();
}
Ok(YieldCall::WaitFor) => {
let upcall_id = UpcallId {
driver_num: param_a,
subscribe_num: param_b,
};
process.set_yielded_for_state(upcall_id);
}
_ => {
// Only 0, 1, and 2 are valid, so this is not a valid
// yield system call, Yield does not have a return value
// because it can push a function call onto the stack;
// just return control to the process.
}
}
}
Syscall::Subscribe { driver_number, .. }
| Syscall::Command { driver_number, .. }
| Syscall::ReadWriteAllow { driver_number, .. }
| Syscall::UserspaceReadableAllow { driver_number, .. }
| Syscall::ReadOnlyAllow { driver_number, .. } => {
resources
.syscall_driver_lookup()
.with_driver(driver_number, |driver| match syscall {
Syscall::Subscribe {
driver_number,
subdriver_number,
upcall_ptr,
appdata,
} => {
// A upcall is identified as a tuple of the driver
// number and the subdriver number.
let upcall_id = UpcallId {
driver_num: driver_number,
subscribe_num: subdriver_number,
};
// TODO: when the compiler supports capability types
// bring this back as a NonNull
// type. https://github.com/tock/tock/issues/4134.
//
// Previously, we had a NonNull type (that had a niche)
// here, and could wrap that in Option to fill the niche
// and handle the Null case. CapabilityPtr is filling
// the gap left by * const(), which does not have the
// niche and allows NULL internally. Having a CHERI
// capability type with a niche is (maybe?) predicated
// on having better compiler support.
// Option<NonNull<()>> is preferable here, and it should
// go back to it just as soon as we can express "non
// null capability". For now, checking for the null case
// is handled internally in each `map_or` call.
//
//First check if `upcall_ptr` is null. A null
//`upcall_ptr` will result in `None` here and
//represents the special "unsubscribe" operation.
//let ptr = NonNull::new(upcall_ptr);
// For convenience create an `Upcall` type now. This is
// just a data structure and doesn't do any checking or
// conversion.
let upcall = Upcall::new(process.processid(), upcall_id, appdata, upcall_ptr);
// If `ptr` is not null, we must first verify that the
// upcall function pointer is within process accessible
// memory. Per TRD104:
//
// > If the passed upcall is not valid (is outside
// > process executable memory...), the kernel...MUST
// > immediately return a failure with a error code of
// > `INVALID`.
let rval1 = upcall_ptr.map_or(None, |upcall_ptr_nonnull| {
if !process.is_valid_upcall_function_pointer(upcall_ptr_nonnull.as_ptr()) {
Some(ErrorCode::INVAL)
} else {
None
}
});
// If the upcall is either null or valid, then we
// continue handling the upcall.
let rval = match rval1 {
Some(err) => upcall.into_subscribe_failure(err),
None => {
match driver {
Some(driver) => {
// At this point we must save the new
// upcall and return the old. The
// upcalls are stored by the core kernel
// in the grant region so we can
// guarantee a correct upcall swap.
// However, we do need help with
// initially allocating the grant if
// this driver has never been used
// before.
//
// To avoid the overhead with checking
// for process liveness and grant
// allocation, we assume the grant is
// initially allocated. If it turns out
// it isn't we ask the capsule to
// allocate the grant.
match crate::grant::subscribe(process, upcall) {
Ok(upcall) => upcall.into_subscribe_success(),
Err((upcall, err @ ErrorCode::NOMEM)) => {
// If we get a memory error, we
// always try to allocate the
// grant since this could be the
// first time the grant is
// getting accessed.
match try_allocate_grant(driver, process) {
AllocResult::NewAllocation => {
// Now we try again. It
// is possible that the
// capsule did not
// actually allocate the
// grant, at which point
// this will fail again
// and we return an
// error to userspace.
match crate::grant::subscribe(
process, upcall,
) {
// An Ok() returns
// the previous
// upcall, while
// Err() returns the
// one that was just
// passed.
Ok(upcall) => {
upcall.into_subscribe_success()
}
Err((upcall, err)) => {
upcall.into_subscribe_failure(err)
}
}
}
alloc_failure => {
// We didn't actually
// create a new alloc,
// so just error.
match (
config::CONFIG.trace_syscalls,
alloc_failure,
) {
(true, AllocResult::NoAllocation) => {
debug!("[{:?}] WARN driver #{:x} did not allocate grant",
process.processid(), driver_number);
}
(true, AllocResult::SameAllocation) => {
debug!("[{:?}] ERROR driver #{:x} allocated wrong grant counts",
process.processid(), driver_number);
}
_ => {}
}
upcall.into_subscribe_failure(err)
}
}
}
Err((upcall, err)) => {
upcall.into_subscribe_failure(err)
}
}
}
None => upcall.into_subscribe_failure(ErrorCode::NODEVICE),
}
}
};
// Per TRD104, we only clear upcalls if the subscribe
// will return success. At this point we know the result
// and clear if necessary.
if rval.is_success() {
// Only one upcall should exist per tuple. To ensure
// that there are no pending upcalls with the same
// identifier but with the old function pointer, we
// clear them now.
let _ =process.remove_pending_upcalls(upcall_id);
}
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] subscribe({:#x}, {}, @{:#x}, {:#x}) = {:?}",
process.processid(),
driver_number,
subdriver_number,
upcall_ptr,
appdata,
rval
);
}
process.set_syscall_return_value(rval);
}
Syscall::Command {
driver_number,
subdriver_number,
arg0,
arg1,
} => {
let cres = match driver {
Some(d) => d.command(subdriver_number, arg0, arg1, process.processid()),
None => CommandReturn::failure(ErrorCode::NODEVICE),
};
let res = SyscallReturn::from_command_return(cres);
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] cmd({:#x}, {}, {:#x}, {:#x}) = {:?}",
process.processid(),
driver_number,
subdriver_number,
arg0,
arg1,
res,
);
}
process.set_syscall_return_value(res);
}
Syscall::ReadWriteAllow {
driver_number,
subdriver_number,
allow_address,
allow_size,
} => {
let res = match driver {
Some(driver) => {
// Try to create an appropriate
// [`ReadWriteProcessBuffer`]. This method will
// ensure that the memory in question is located
// in the process-accessible memory space.
match process
.build_readwrite_process_buffer(allow_address, allow_size)
{
Ok(rw_pbuf) => {
// Creating the
// [`ReadWriteProcessBuffer`] worked,
// try to set in grant.
match crate::grant::allow_rw(
process,
driver_number,
subdriver_number,
rw_pbuf,
) {
Ok(rw_pbuf) => {
let (ptr, len) = rw_pbuf.consume();
SyscallReturn::AllowReadWriteSuccess(ptr, len)
}
Err((rw_pbuf, err @ ErrorCode::NOMEM)) => {
// If we get a memory error, we
// always try to allocate the
// grant since this could be the
// first time the grant is
// getting accessed.
match try_allocate_grant(driver, process) {
AllocResult::NewAllocation => {
// If we actually
// allocated a new
// grant, try again and
// honor the result.
match crate::grant::allow_rw(
process,
driver_number,
subdriver_number,
rw_pbuf,
) {
Ok(rw_pbuf) => {
let (ptr, len) = rw_pbuf.consume();
SyscallReturn::AllowReadWriteSuccess(
ptr, len,
)
}
Err((rw_pbuf, err)) => {
let (ptr, len) = rw_pbuf.consume();
SyscallReturn::AllowReadWriteFailure(
err, ptr, len,
)
}
}
}
alloc_failure => {
// We didn't actually
// create a new alloc,
// so just error.
match (
config::CONFIG.trace_syscalls,
alloc_failure,
) {
(true, AllocResult::NoAllocation) => {
debug!("[{:?}] WARN driver #{:x} did not allocate grant",
process.processid(), driver_number);
}
(true, AllocResult::SameAllocation) => {
debug!("[{:?}] ERROR driver #{:x} allocated wrong grant counts",
process.processid(), driver_number);
}
_ => {}
}
let (ptr, len) = rw_pbuf.consume();
SyscallReturn::AllowReadWriteFailure(
err, ptr, len,
)
}
}
}
Err((rw_pbuf, err)) => {
let (ptr, len) = rw_pbuf.consume();
SyscallReturn::AllowReadWriteFailure(err, ptr, len)
}
}
}
Err(allow_error) => {
// There was an error creating the
// [`ReadWriteProcessBuffer`]. Report
// back to the process with the original
// parameters.
SyscallReturn::AllowReadWriteFailure(
allow_error,
allow_address,
allow_size,
)
}
}
}
None => SyscallReturn::AllowReadWriteFailure(
ErrorCode::NODEVICE,
allow_address,
allow_size,
),
};
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] read-write allow({:#x}, {}, @{:#x}, {}) = {:?}",
process.processid(),
driver_number,
subdriver_number,
allow_address as usize,
allow_size,
res
);
}
process.set_syscall_return_value(res);
}
Syscall::UserspaceReadableAllow {
driver_number,
subdriver_number,
allow_address,
allow_size,
} => {
let res = match driver {
Some(d) => {
// Try to create an appropriate
// [`UserspaceReadableProcessBuffer`]. This
// method will ensure that the memory in
// question is located in the process-accessible
// memory space.
match process
.build_readwrite_process_buffer(allow_address, allow_size)
{
Ok(rw_pbuf) => {
// Creating the
// [`UserspaceReadableProcessBuffer`]
// worked, provide it to the capsule.
match d.allow_userspace_readable(
process.processid(),
subdriver_number,
rw_pbuf,
) {
Ok(returned_pbuf) => {
// The capsule has accepted the
// allow operation. Pass the
// previous buffer information
// back to the process.
let (ptr, len) = returned_pbuf.consume();
SyscallReturn::UserspaceReadableAllowSuccess(
ptr, len,
)
}
Err((rejected_pbuf, err)) => {
// The capsule has rejected the
// allow operation. Pass the new
// buffer information back to
// the process.
let (ptr, len) = rejected_pbuf.consume();
SyscallReturn::UserspaceReadableAllowFailure(
err, ptr, len,
)
}
}
}
Err(allow_error) => {
// There was an error creating the
// [`UserspaceReadableProcessBuffer`].
// Report back to the process.
SyscallReturn::UserspaceReadableAllowFailure(
allow_error,
allow_address,
allow_size,
)
}
}
}
None => SyscallReturn::UserspaceReadableAllowFailure(
ErrorCode::NODEVICE,
allow_address,
allow_size,
),
};
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] userspace readable allow({:#x}, {}, @{:#x}, {}) = {:?}",
process.processid(),
driver_number,
subdriver_number,
allow_address as usize,
allow_size,
res
);
}
process.set_syscall_return_value(res);
}
Syscall::ReadOnlyAllow {
driver_number,
subdriver_number,
allow_address,
allow_size,
} => {
let res = match driver {
Some(driver) => {
// Try to create an appropriate
// [`ReadOnlyProcessBuffer`]. This method will
// ensure that the memory in question is located
// in the process-accessible memory space.
match process
.build_readonly_process_buffer(allow_address, allow_size)
{
Ok(ro_pbuf) => {
// Creating the
// [`ReadOnlyProcessBuffer`] worked, try
// to set in grant.
match crate::grant::allow_ro(
process,
driver_number,
subdriver_number,
ro_pbuf,
) {
Ok(ro_pbuf) => {
let (ptr, len) = ro_pbuf.consume();
SyscallReturn::AllowReadOnlySuccess(ptr, len)
}
Err((ro_pbuf, err @ ErrorCode::NOMEM)) => {
// If we get a memory error, we
// always try to allocate the
// grant since this could be the
// first time the grant is
// getting accessed.
match try_allocate_grant(driver, process) {
AllocResult::NewAllocation => {
// If we actually
// allocated a new
// grant, try again and
// honor the result.
match crate::grant::allow_ro(
process,
driver_number,
subdriver_number,
ro_pbuf,
) {
Ok(ro_pbuf) => {
let (ptr, len) = ro_pbuf.consume();
SyscallReturn::AllowReadOnlySuccess(
ptr, len,
)
}
Err((ro_pbuf, err)) => {
let (ptr, len) = ro_pbuf.consume();
SyscallReturn::AllowReadOnlyFailure(
err, ptr, len,
)
}
}
}
alloc_failure => {
// We didn't actually
// create a new alloc,
// so just error.
match (
config::CONFIG.trace_syscalls,
alloc_failure,
) {
(true, AllocResult::NoAllocation) => {
debug!("[{:?}] WARN driver #{:x} did not allocate grant",
process.processid(), driver_number);
}
(true, AllocResult::SameAllocation) => {
debug!("[{:?}] ERROR driver #{:x} allocated wrong grant counts",
process.processid(), driver_number);
}
_ => {}
}
let (ptr, len) = ro_pbuf.consume();
SyscallReturn::AllowReadOnlyFailure(
err, ptr, len,
)
}
}
}
Err((ro_pbuf, err)) => {
let (ptr, len) = ro_pbuf.consume();
SyscallReturn::AllowReadOnlyFailure(err, ptr, len)
}
}
}
Err(allow_error) => {
// There was an error creating the
// [`ReadOnlyProcessBuffer`]. Report
// back to the process with the original
// parameters.
SyscallReturn::AllowReadOnlyFailure(
allow_error,
allow_address,
allow_size,
)
}
}
}
None => SyscallReturn::AllowReadOnlyFailure(
ErrorCode::NODEVICE,
allow_address,
allow_size,
),
};
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] read-only allow({:#x}, {}, @{:#x}, {}) = {:?}",
process.processid(),
driver_number,
subdriver_number,
allow_address as usize,
allow_size,
res
);
}
process.set_syscall_return_value(res);
}
Syscall::Yield { .. }
| Syscall::Exit { .. }
| Syscall::Memop { .. } => {
// These variants must not be reachable due to the outer
// match statement:
debug_assert!(false, "Kernel system call handling invariant violated!");
},
})
}
Syscall::Exit {
which,
completion_code,
} => {
// exit try restart modifies the ID of the process.
let old_process_id = process.processid();
let optional_return_value = match which {
// The process called the `exit-terminate` system call.
0 => {
process.terminate(Some(completion_code as u32));
None
}
// The process called the `exit-restart` system call.
1 => {
process.try_restart(Some(completion_code as u32));
None
}
// The process called an invalid variant of the Exit
// system call class.
_ => {
let return_value = SyscallReturn::Failure(ErrorCode::NOSUPPORT);
process.set_syscall_return_value(return_value);
Some(return_value)
}
};
if config::CONFIG.trace_syscalls {
debug!(
"[{:?}] exit(which: {}, completion_code: {}) = {:?}",
old_process_id, which, completion_code, optional_return_value,
);
}
}
}
}
}