subtle/
lib.rs

1// -*- mode: rust; -*-
2//
3// This file is part of subtle, part of the dalek cryptography project.
4// Copyright (c) 2016-2018 isis lovecruft, Henry de Valence
5// See LICENSE for licensing information.
6//
7// Authors:
8// - isis agora lovecruft <isis@patternsinthevoid.net>
9// - Henry de Valence <hdevalence@hdevalence.ca>
10
11#![no_std]
12#![deny(missing_docs)]
13#![doc(html_logo_url = "https://doc.dalek.rs/assets/dalek-logo-clear.png")]
14#![doc(html_root_url = "https://docs.rs/subtle/2.4.1")]
15
16//! # subtle [![](https://img.shields.io/crates/v/subtle.svg)](https://crates.io/crates/subtle) [![](https://img.shields.io/badge/dynamic/json.svg?label=docs&uri=https%3A%2F%2Fcrates.io%2Fapi%2Fv1%2Fcrates%2Fsubtle%2Fversions&query=%24.versions%5B0%5D.num&colorB=4F74A6)](https://doc.dalek.rs/subtle) [![](https://travis-ci.org/dalek-cryptography/subtle.svg?branch=master)](https://travis-ci.org/dalek-cryptography/subtle)
17//!
18//! **Pure-Rust traits and utilities for constant-time cryptographic implementations.**
19//!
20//! It consists of a `Choice` type, and a collection of traits using `Choice`
21//! instead of `bool` which are intended to execute in constant-time.  The `Choice`
22//! type is a wrapper around a `u8` that holds a `0` or `1`.
23//!
24//! ```toml
25//! subtle = "2.4"
26//! ```
27//!
28//! This crate represents a “best-effort” attempt, since side-channels
29//! are ultimately a property of a deployed cryptographic system
30//! including the hardware it runs on, not just of software.
31//!
32//! The traits are implemented using bitwise operations, and should execute in
33//! constant time provided that a) the bitwise operations are constant-time and
34//! b) the bitwise operations are not recognized as a conditional assignment and
35//! optimized back into a branch.
36//!
37//! For a compiler to recognize that bitwise operations represent a conditional
38//! assignment, it needs to know that the value used to generate the bitmasks is
39//! really a boolean `i1` rather than an `i8` byte value. In an attempt to
40//! prevent this refinement, the crate tries to hide the value of a `Choice`'s
41//! inner `u8` by passing it through a volatile read. For more information, see
42//! the _About_ section below.
43//!
44//! Versions prior to `2.2` recommended use of the `nightly` feature to enable an
45//! optimization barrier; this is not required in versions `2.2` and above.
46//!
47//! Note: the `subtle` crate contains `debug_assert`s to check invariants during
48//! debug builds. These invariant checks involve secret-dependent branches, and
49//! are not present when compiled in release mode. This crate is intended to be
50//! used in release mode.
51//!
52//! ## Documentation
53//!
54//! Documentation is available [here][docs].
55//!
56//! ## Minimum Supported Rust Version
57//!
58//! Rust **1.41** or higher.
59//!
60//! Minimum supported Rust version can be changed in the future, but it will be done with a minor version bump.
61//!
62//! ## About
63//!
64//! This library aims to be the Rust equivalent of Go’s `crypto/subtle` module.
65//!
66//! The optimization barrier in `impl From<u8> for Choice` was based on Tim
67//! Maclean's [work on `rust-timing-shield`][rust-timing-shield], which attempts to
68//! provide a more comprehensive approach for preventing software side-channels in
69//! Rust code.
70//!
71//! `subtle` is authored by isis agora lovecruft and Henry de Valence.
72//!
73//! ## Warning
74//!
75//! This code is a low-level library, intended for specific use-cases implementing
76//! cryptographic protocols.  It represents a best-effort attempt to protect
77//! against some software side-channels.  Because side-channel resistance is not a
78//! property of software alone, but of software together with hardware, any such
79//! effort is fundamentally limited.
80//!
81//! **USE AT YOUR OWN RISK**
82//!
83//! [docs]: https://docs.rs/subtle
84//! [rust-timing-shield]: https://www.chosenplaintext.ca/open-source/rust-timing-shield/security
85
86#[cfg(feature = "std")]
87#[macro_use]
88extern crate std;
89
90use core::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Neg, Not};
91use core::option::Option;
92
93/// The `Choice` struct represents a choice for use in conditional assignment.
94///
95/// It is a wrapper around a `u8`, which should have the value either `1` (true)
96/// or `0` (false).
97///
98/// The conversion from `u8` to `Choice` passes the value through an optimization
99/// barrier, as a best-effort attempt to prevent the compiler from inferring that
100/// the `Choice` value is a boolean. This strategy is based on Tim Maclean's
101/// [work on `rust-timing-shield`][rust-timing-shield], which attempts to provide
102/// a more comprehensive approach for preventing software side-channels in Rust
103/// code.
104///
105/// The `Choice` struct implements operators for AND, OR, XOR, and NOT, to allow
106/// combining `Choice` values. These operations do not short-circuit.
107///
108/// [rust-timing-shield]:
109/// https://www.chosenplaintext.ca/open-source/rust-timing-shield/security
110#[derive(Copy, Clone, Debug)]
111pub struct Choice(u8);
112
113impl Choice {
114    /// Unwrap the `Choice` wrapper to reveal the underlying `u8`.
115    ///
116    /// # Note
117    ///
118    /// This function only exists as an **escape hatch** for the rare case
119    /// where it's not possible to use one of the `subtle`-provided
120    /// trait impls.
121    ///
122    /// **To convert a `Choice` to a `bool`, use the `From` implementation instead.**
123    #[inline]
124    pub fn unwrap_u8(&self) -> u8 {
125        self.0
126    }
127}
128
129impl From<Choice> for bool {
130    /// Convert the `Choice` wrapper into a `bool`, depending on whether
131    /// the underlying `u8` was a `0` or a `1`.
132    ///
133    /// # Note
134    ///
135    /// This function exists to avoid having higher-level cryptographic protocol
136    /// implementations duplicating this pattern.
137    ///
138    /// The intended use case for this conversion is at the _end_ of a
139    /// higher-level primitive implementation: for example, in checking a keyed
140    /// MAC, where the verification should happen in constant-time (and thus use
141    /// a `Choice`) but it is safe to return a `bool` at the end of the
142    /// verification.
143    #[inline]
144    fn from(source: Choice) -> bool {
145        debug_assert!((source.0 == 0u8) | (source.0 == 1u8));
146        source.0 != 0
147    }
148}
149
150impl BitAnd for Choice {
151    type Output = Choice;
152    #[inline]
153    fn bitand(self, rhs: Choice) -> Choice {
154        (self.0 & rhs.0).into()
155    }
156}
157
158impl BitAndAssign for Choice {
159    #[inline]
160    fn bitand_assign(&mut self, rhs: Choice) {
161        *self = *self & rhs;
162    }
163}
164
165impl BitOr for Choice {
166    type Output = Choice;
167    #[inline]
168    fn bitor(self, rhs: Choice) -> Choice {
169        (self.0 | rhs.0).into()
170    }
171}
172
173impl BitOrAssign for Choice {
174    #[inline]
175    fn bitor_assign(&mut self, rhs: Choice) {
176        *self = *self | rhs;
177    }
178}
179
180impl BitXor for Choice {
181    type Output = Choice;
182    #[inline]
183    fn bitxor(self, rhs: Choice) -> Choice {
184        (self.0 ^ rhs.0).into()
185    }
186}
187
188impl BitXorAssign for Choice {
189    #[inline]
190    fn bitxor_assign(&mut self, rhs: Choice) {
191        *self = *self ^ rhs;
192    }
193}
194
195impl Not for Choice {
196    type Output = Choice;
197    #[inline]
198    fn not(self) -> Choice {
199        (1u8 & (!self.0)).into()
200    }
201}
202
203/// This function is a best-effort attempt to prevent the compiler from knowing
204/// anything about the value of the returned `u8`, other than its type.
205///
206/// Because we want to support stable Rust, we don't have access to inline
207/// assembly or test::black_box, so we use the fact that volatile values will
208/// never be elided to register values.
209///
210/// Note: Rust's notion of "volatile" is subject to change over time. While this
211/// code may break in a non-destructive way in the future, “constant-time” code
212/// is a continually moving target, and this is better than doing nothing.
213#[inline(never)]
214fn black_box(input: u8) -> u8 {
215    debug_assert!((input == 0u8) | (input == 1u8));
216
217    unsafe {
218        // Optimization barrier
219        //
220        // Unsafe is ok, because:
221        //   - &input is not NULL;
222        //   - size of input is not zero;
223        //   - u8 is neither Sync, nor Send;
224        //   - u8 is Copy, so input is always live;
225        //   - u8 type is always properly aligned.
226        core::ptr::read_volatile(&input as *const u8)
227    }
228}
229
230impl From<u8> for Choice {
231    #[inline]
232    fn from(input: u8) -> Choice {
233        // Our goal is to prevent the compiler from inferring that the value held inside the
234        // resulting `Choice` struct is really an `i1` instead of an `i8`.
235        Choice(black_box(input))
236    }
237}
238
239/// An `Eq`-like trait that produces a `Choice` instead of a `bool`.
240///
241/// # Example
242///
243/// ```
244/// use subtle::ConstantTimeEq;
245/// let x: u8 = 5;
246/// let y: u8 = 13;
247///
248/// assert_eq!(x.ct_eq(&y).unwrap_u8(), 0);
249/// assert_eq!(x.ct_eq(&x).unwrap_u8(), 1);
250/// ```
251pub trait ConstantTimeEq {
252    /// Determine if two items are equal.
253    ///
254    /// The `ct_eq` function should execute in constant time.
255    ///
256    /// # Returns
257    ///
258    /// * `Choice(1u8)` if `self == other`;
259    /// * `Choice(0u8)` if `self != other`.
260    #[inline]
261    fn ct_eq(&self, other: &Self) -> Choice;
262}
263
264impl<T: ConstantTimeEq> ConstantTimeEq for [T] {
265    /// Check whether two slices of `ConstantTimeEq` types are equal.
266    ///
267    /// # Note
268    ///
269    /// This function short-circuits if the lengths of the input slices
270    /// are different.  Otherwise, it should execute in time independent
271    /// of the slice contents.
272    ///
273    /// Since arrays coerce to slices, this function works with fixed-size arrays:
274    ///
275    /// ```
276    /// # use subtle::ConstantTimeEq;
277    /// #
278    /// let a: [u8; 8] = [0,1,2,3,4,5,6,7];
279    /// let b: [u8; 8] = [0,1,2,3,0,1,2,3];
280    ///
281    /// let a_eq_a = a.ct_eq(&a);
282    /// let a_eq_b = a.ct_eq(&b);
283    ///
284    /// assert_eq!(a_eq_a.unwrap_u8(), 1);
285    /// assert_eq!(a_eq_b.unwrap_u8(), 0);
286    /// ```
287    #[inline]
288    fn ct_eq(&self, _rhs: &[T]) -> Choice {
289        let len = self.len();
290
291        // Short-circuit on the *lengths* of the slices, not their
292        // contents.
293        if len != _rhs.len() {
294            return Choice::from(0);
295        }
296
297        // This loop shouldn't be shortcircuitable, since the compiler
298        // shouldn't be able to reason about the value of the `u8`
299        // unwrapped from the `ct_eq` result.
300        let mut x = 1u8;
301        for (ai, bi) in self.iter().zip(_rhs.iter()) {
302            x &= ai.ct_eq(bi).unwrap_u8();
303        }
304
305        x.into()
306    }
307}
308
309impl ConstantTimeEq for Choice {
310    #[inline]
311    fn ct_eq(&self, rhs: &Choice) -> Choice {
312        !(*self ^ *rhs)
313    }
314}
315
316/// Given the bit-width `$bit_width` and the corresponding primitive
317/// unsigned and signed types `$t_u` and `$t_i` respectively, generate
318/// an `ConstantTimeEq` implementation.
319macro_rules! generate_integer_equal {
320    ($t_u:ty, $t_i:ty, $bit_width:expr) => {
321        impl ConstantTimeEq for $t_u {
322            #[inline]
323            fn ct_eq(&self, other: &$t_u) -> Choice {
324                // x == 0 if and only if self == other
325                let x: $t_u = self ^ other;
326
327                // If x == 0, then x and -x are both equal to zero;
328                // otherwise, one or both will have its high bit set.
329                let y: $t_u = (x | x.wrapping_neg()) >> ($bit_width - 1);
330
331                // Result is the opposite of the high bit (now shifted to low).
332                ((y ^ (1 as $t_u)) as u8).into()
333            }
334        }
335        impl ConstantTimeEq for $t_i {
336            #[inline]
337            fn ct_eq(&self, other: &$t_i) -> Choice {
338                // Bitcast to unsigned and call that implementation.
339                (*self as $t_u).ct_eq(&(*other as $t_u))
340            }
341        }
342    };
343}
344
345generate_integer_equal!(u8, i8, 8);
346generate_integer_equal!(u16, i16, 16);
347generate_integer_equal!(u32, i32, 32);
348generate_integer_equal!(u64, i64, 64);
349#[cfg(feature = "i128")]
350generate_integer_equal!(u128, i128, 128);
351generate_integer_equal!(usize, isize, ::core::mem::size_of::<usize>() * 8);
352
353/// A type which can be conditionally selected in constant time.
354///
355/// This trait also provides generic implementations of conditional
356/// assignment and conditional swaps.
357pub trait ConditionallySelectable: Copy {
358    /// Select `a` or `b` according to `choice`.
359    ///
360    /// # Returns
361    ///
362    /// * `a` if `choice == Choice(0)`;
363    /// * `b` if `choice == Choice(1)`.
364    ///
365    /// This function should execute in constant time.
366    ///
367    /// # Example
368    ///
369    /// ```
370    /// # extern crate subtle;
371    /// use subtle::ConditionallySelectable;
372    /// #
373    /// # fn main() {
374    /// let x: u8 = 13;
375    /// let y: u8 = 42;
376    ///
377    /// let z = u8::conditional_select(&x, &y, 0.into());
378    /// assert_eq!(z, x);
379    /// let z = u8::conditional_select(&x, &y, 1.into());
380    /// assert_eq!(z, y);
381    /// # }
382    /// ```
383    #[inline]
384    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self;
385
386    /// Conditionally assign `other` to `self`, according to `choice`.
387    ///
388    /// This function should execute in constant time.
389    ///
390    /// # Example
391    ///
392    /// ```
393    /// # extern crate subtle;
394    /// use subtle::ConditionallySelectable;
395    /// #
396    /// # fn main() {
397    /// let mut x: u8 = 13;
398    /// let mut y: u8 = 42;
399    ///
400    /// x.conditional_assign(&y, 0.into());
401    /// assert_eq!(x, 13);
402    /// x.conditional_assign(&y, 1.into());
403    /// assert_eq!(x, 42);
404    /// # }
405    /// ```
406    #[inline]
407    fn conditional_assign(&mut self, other: &Self, choice: Choice) {
408        *self = Self::conditional_select(self, other, choice);
409    }
410
411    /// Conditionally swap `self` and `other` if `choice == 1`; otherwise,
412    /// reassign both unto themselves.
413    ///
414    /// This function should execute in constant time.
415    ///
416    /// # Example
417    ///
418    /// ```
419    /// # extern crate subtle;
420    /// use subtle::ConditionallySelectable;
421    /// #
422    /// # fn main() {
423    /// let mut x: u8 = 13;
424    /// let mut y: u8 = 42;
425    ///
426    /// u8::conditional_swap(&mut x, &mut y, 0.into());
427    /// assert_eq!(x, 13);
428    /// assert_eq!(y, 42);
429    /// u8::conditional_swap(&mut x, &mut y, 1.into());
430    /// assert_eq!(x, 42);
431    /// assert_eq!(y, 13);
432    /// # }
433    /// ```
434    #[inline]
435    fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice) {
436        let t: Self = *a;
437        a.conditional_assign(&b, choice);
438        b.conditional_assign(&t, choice);
439    }
440}
441
442macro_rules! to_signed_int {
443    (u8) => {
444        i8
445    };
446    (u16) => {
447        i16
448    };
449    (u32) => {
450        i32
451    };
452    (u64) => {
453        i64
454    };
455    (u128) => {
456        i128
457    };
458    (i8) => {
459        i8
460    };
461    (i16) => {
462        i16
463    };
464    (i32) => {
465        i32
466    };
467    (i64) => {
468        i64
469    };
470    (i128) => {
471        i128
472    };
473}
474
475macro_rules! generate_integer_conditional_select {
476    ($($t:tt)*) => ($(
477        impl ConditionallySelectable for $t {
478            #[inline]
479            fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
480                // if choice = 0, mask = (-0) = 0000...0000
481                // if choice = 1, mask = (-1) = 1111...1111
482                let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
483                a ^ (mask & (a ^ b))
484            }
485
486            #[inline]
487            fn conditional_assign(&mut self, other: &Self, choice: Choice) {
488                // if choice = 0, mask = (-0) = 0000...0000
489                // if choice = 1, mask = (-1) = 1111...1111
490                let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
491                *self ^= mask & (*self ^ *other);
492            }
493
494            #[inline]
495            fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice) {
496                // if choice = 0, mask = (-0) = 0000...0000
497                // if choice = 1, mask = (-1) = 1111...1111
498                let mask = -(choice.unwrap_u8() as to_signed_int!($t)) as $t;
499                let t = mask & (*a ^ *b);
500                *a ^= t;
501                *b ^= t;
502            }
503         }
504    )*)
505}
506
507generate_integer_conditional_select!(  u8   i8);
508generate_integer_conditional_select!( u16  i16);
509generate_integer_conditional_select!( u32  i32);
510generate_integer_conditional_select!( u64  i64);
511#[cfg(feature = "i128")]
512generate_integer_conditional_select!(u128 i128);
513
514impl ConditionallySelectable for Choice {
515    #[inline]
516    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
517        Choice(u8::conditional_select(&a.0, &b.0, choice))
518    }
519}
520
521/// A type which can be conditionally negated in constant time.
522///
523/// # Note
524///
525/// A generic implementation of `ConditionallyNegatable` is provided
526/// for types `T` which are `ConditionallySelectable` and have `Neg`
527/// implemented on `&T`.
528pub trait ConditionallyNegatable {
529    /// Negate `self` if `choice == Choice(1)`; otherwise, leave it
530    /// unchanged.
531    ///
532    /// This function should execute in constant time.
533    #[inline]
534    fn conditional_negate(&mut self, choice: Choice);
535}
536
537impl<T> ConditionallyNegatable for T
538where
539    T: ConditionallySelectable,
540    for<'a> &'a T: Neg<Output = T>,
541{
542    #[inline]
543    fn conditional_negate(&mut self, choice: Choice) {
544        // Need to cast to eliminate mutability
545        let self_neg: T = -(self as &T);
546        self.conditional_assign(&self_neg, choice);
547    }
548}
549
550/// The `CtOption<T>` type represents an optional value similar to the
551/// [`Option<T>`](core::option::Option) type but is intended for
552/// use in constant time APIs.
553///
554/// Any given `CtOption<T>` is either `Some` or `None`, but unlike
555/// `Option<T>` these variants are not exposed. The
556/// [`is_some()`](CtOption::is_some) method is used to determine if
557/// the value is `Some`, and [`unwrap_or()`](CtOption::unwrap_or) and
558/// [`unwrap_or_else()`](CtOption::unwrap_or_else) methods are
559/// provided to access the underlying value. The value can also be
560/// obtained with [`unwrap()`](CtOption::unwrap) but this will panic
561/// if it is `None`.
562///
563/// Functions that are intended to be constant time may not produce
564/// valid results for all inputs, such as square root and inversion
565/// operations in finite field arithmetic. Returning an `Option<T>`
566/// from these functions makes it difficult for the caller to reason
567/// about the result in constant time, and returning an incorrect
568/// value burdens the caller and increases the chance of bugs.
569#[derive(Clone, Copy, Debug)]
570pub struct CtOption<T> {
571    value: T,
572    is_some: Choice,
573}
574
575impl<T> From<CtOption<T>> for Option<T> {
576    /// Convert the `CtOption<T>` wrapper into an `Option<T>`, depending on whether
577    /// the underlying `is_some` `Choice` was a `0` or a `1` once unwrapped.
578    ///
579    /// # Note
580    ///
581    /// This function exists to avoid ending up with ugly, verbose and/or bad handled
582    /// conversions from the `CtOption<T>` wraps to an `Option<T>` or `Result<T, E>`.
583    /// This implementation doesn't intend to be constant-time nor try to protect the
584    /// leakage of the `T` since the `Option<T>` will do it anyways.
585    fn from(source: CtOption<T>) -> Option<T> {
586        if source.is_some().unwrap_u8() == 1u8 {
587            Option::Some(source.value)
588        } else {
589            None
590        }
591    }
592}
593
594impl<T> CtOption<T> {
595    /// This method is used to construct a new `CtOption<T>` and takes
596    /// a value of type `T`, and a `Choice` that determines whether
597    /// the optional value should be `Some` or not. If `is_some` is
598    /// false, the value will still be stored but its value is never
599    /// exposed.
600    #[inline]
601    pub fn new(value: T, is_some: Choice) -> CtOption<T> {
602        CtOption {
603            value: value,
604            is_some: is_some,
605        }
606    }
607
608    /// This returns the underlying value but panics if it
609    /// is not `Some`.
610    #[inline]
611    pub fn unwrap(self) -> T {
612        assert_eq!(self.is_some.unwrap_u8(), 1);
613
614        self.value
615    }
616
617    /// This returns the underlying value if it is `Some`
618    /// or the provided value otherwise.
619    #[inline]
620    pub fn unwrap_or(self, def: T) -> T
621    where
622        T: ConditionallySelectable,
623    {
624        T::conditional_select(&def, &self.value, self.is_some)
625    }
626
627    /// This returns the underlying value if it is `Some`
628    /// or the value produced by the provided closure otherwise.
629    #[inline]
630    pub fn unwrap_or_else<F>(self, f: F) -> T
631    where
632        T: ConditionallySelectable,
633        F: FnOnce() -> T,
634    {
635        T::conditional_select(&f(), &self.value, self.is_some)
636    }
637
638    /// Returns a true `Choice` if this value is `Some`.
639    #[inline]
640    pub fn is_some(&self) -> Choice {
641        self.is_some
642    }
643
644    /// Returns a true `Choice` if this value is `None`.
645    #[inline]
646    pub fn is_none(&self) -> Choice {
647        !self.is_some
648    }
649
650    /// Returns a `None` value if the option is `None`, otherwise
651    /// returns a `CtOption` enclosing the value of the provided closure.
652    /// The closure is given the enclosed value or, if the option is
653    /// `None`, it is provided a dummy value computed using
654    /// `Default::default()`.
655    ///
656    /// This operates in constant time, because the provided closure
657    /// is always called.
658    #[inline]
659    pub fn map<U, F>(self, f: F) -> CtOption<U>
660    where
661        T: Default + ConditionallySelectable,
662        F: FnOnce(T) -> U,
663    {
664        CtOption::new(
665            f(T::conditional_select(
666                &T::default(),
667                &self.value,
668                self.is_some,
669            )),
670            self.is_some,
671        )
672    }
673
674    /// Returns a `None` value if the option is `None`, otherwise
675    /// returns the result of the provided closure. The closure is
676    /// given the enclosed value or, if the option is `None`, it
677    /// is provided a dummy value computed using `Default::default()`.
678    ///
679    /// This operates in constant time, because the provided closure
680    /// is always called.
681    #[inline]
682    pub fn and_then<U, F>(self, f: F) -> CtOption<U>
683    where
684        T: Default + ConditionallySelectable,
685        F: FnOnce(T) -> CtOption<U>,
686    {
687        let mut tmp = f(T::conditional_select(
688            &T::default(),
689            &self.value,
690            self.is_some,
691        ));
692        tmp.is_some &= self.is_some;
693
694        tmp
695    }
696
697    /// Returns `self` if it contains a value, and otherwise returns the result of
698    /// calling `f`. The provided function `f` is always called.
699    #[inline]
700    pub fn or_else<F>(self, f: F) -> CtOption<T>
701    where
702        T: ConditionallySelectable,
703        F: FnOnce() -> CtOption<T>,
704    {
705        let is_none = self.is_none();
706        let f = f();
707
708        Self::conditional_select(&self, &f, is_none)
709    }
710}
711
712impl<T: ConditionallySelectable> ConditionallySelectable for CtOption<T> {
713    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
714        CtOption::new(
715            T::conditional_select(&a.value, &b.value, choice),
716            Choice::conditional_select(&a.is_some, &b.is_some, choice),
717        )
718    }
719}
720
721impl<T: ConstantTimeEq> ConstantTimeEq for CtOption<T> {
722    /// Two `CtOption<T>`s are equal if they are both `Some` and
723    /// their values are equal, or both `None`.
724    #[inline]
725    fn ct_eq(&self, rhs: &CtOption<T>) -> Choice {
726        let a = self.is_some();
727        let b = rhs.is_some();
728
729        (a & b & self.value.ct_eq(&rhs.value)) | (!a & !b)
730    }
731}
732
733/// A type which can be compared in some manner and be determined to be greater
734/// than another of the same type.
735pub trait ConstantTimeGreater {
736    /// Determine whether `self > other`.
737    ///
738    /// The bitwise-NOT of the return value of this function should be usable to
739    /// determine if `self <= other`.
740    ///
741    /// This function should execute in constant time.
742    ///
743    /// # Returns
744    ///
745    /// A `Choice` with a set bit if `self > other`, and with no set bits
746    /// otherwise.
747    ///
748    /// # Example
749    ///
750    /// ```
751    /// # extern crate subtle;
752    /// use subtle::ConstantTimeGreater;
753    ///
754    /// let x: u8 = 13;
755    /// let y: u8 = 42;
756    ///
757    /// let x_gt_y = x.ct_gt(&y);
758    ///
759    /// assert_eq!(x_gt_y.unwrap_u8(), 0);
760    ///
761    /// let y_gt_x = y.ct_gt(&x);
762    ///
763    /// assert_eq!(y_gt_x.unwrap_u8(), 1);
764    ///
765    /// let x_gt_x = x.ct_gt(&x);
766    ///
767    /// assert_eq!(x_gt_x.unwrap_u8(), 0);
768    /// ```
769    fn ct_gt(&self, other: &Self) -> Choice;
770}
771
772macro_rules! generate_unsigned_integer_greater {
773    ($t_u: ty, $bit_width: expr) => {
774        impl ConstantTimeGreater for $t_u {
775            /// Returns Choice::from(1) iff x > y, and Choice::from(0) iff x <= y.
776            ///
777            /// # Note
778            ///
779            /// This algoritm would also work for signed integers if we first
780            /// flip the top bit, e.g. `let x: u8 = x ^ 0x80`, etc.
781            #[inline]
782            fn ct_gt(&self, other: &$t_u) -> Choice {
783                let gtb = self & !other; // All the bits in self that are greater than their corresponding bits in other.
784                let mut ltb = !self & other; // All the bits in self that are less than their corresponding bits in other.
785                let mut pow = 1;
786
787                // Less-than operator is okay here because it's dependent on the bit-width.
788                while pow < $bit_width {
789                    ltb |= ltb >> pow; // Bit-smear the highest set bit to the right.
790                    pow += pow;
791                }
792                let mut bit = gtb & !ltb; // Select the highest set bit.
793                let mut pow = 1;
794
795                while pow < $bit_width {
796                    bit |= bit >> pow; // Shift it to the right until we end up with either 0 or 1.
797                    pow += pow;
798                }
799                // XXX We should possibly do the above flattening to 0 or 1 in the
800                //     Choice constructor rather than making it a debug error?
801                Choice::from((bit & 1) as u8)
802            }
803        }
804    }
805}
806
807generate_unsigned_integer_greater!(u8, 8);
808generate_unsigned_integer_greater!(u16, 16);
809generate_unsigned_integer_greater!(u32, 32);
810generate_unsigned_integer_greater!(u64, 64);
811#[cfg(feature = "i128")]
812generate_unsigned_integer_greater!(u128, 128);
813
814/// A type which can be compared in some manner and be determined to be less
815/// than another of the same type.
816pub trait ConstantTimeLess: ConstantTimeEq + ConstantTimeGreater {
817    /// Determine whether `self < other`.
818    ///
819    /// The bitwise-NOT of the return value of this function should be usable to
820    /// determine if `self >= other`.
821    ///
822    /// A default implementation is provided and implemented for the unsigned
823    /// integer types.
824    ///
825    /// This function should execute in constant time.
826    ///
827    /// # Returns
828    ///
829    /// A `Choice` with a set bit if `self < other`, and with no set bits
830    /// otherwise.
831    ///
832    /// # Example
833    ///
834    /// ```
835    /// # extern crate subtle;
836    /// use subtle::ConstantTimeLess;
837    ///
838    /// let x: u8 = 13;
839    /// let y: u8 = 42;
840    ///
841    /// let x_lt_y = x.ct_lt(&y);
842    ///
843    /// assert_eq!(x_lt_y.unwrap_u8(), 1);
844    ///
845    /// let y_lt_x = y.ct_lt(&x);
846    ///
847    /// assert_eq!(y_lt_x.unwrap_u8(), 0);
848    ///
849    /// let x_lt_x = x.ct_lt(&x);
850    ///
851    /// assert_eq!(x_lt_x.unwrap_u8(), 0);
852    /// ```
853    #[inline]
854    fn ct_lt(&self, other: &Self) -> Choice {
855        !self.ct_gt(other) & !self.ct_eq(other)
856    }
857}
858
859impl ConstantTimeLess for u8 {}
860impl ConstantTimeLess for u16 {}
861impl ConstantTimeLess for u32 {}
862impl ConstantTimeLess for u64 {}
863#[cfg(feature = "i128")]
864impl ConstantTimeLess for u128 {}