capsules_extra/nonvolatile_storage_driver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! This provides kernel and userspace access to nonvolatile memory.
//!
//! This is an initial implementation that does not provide safety for
//! individual userland applications. Each application has full access to
//! the entire memory space that has been provided to userland. Future revisions
//! should update this to limit applications to only their allocated regions.
//!
//! However, the kernel accessible memory does not have to be the same range
//! as the userspace accessible address space. The kernel memory can overlap
//! if desired, or can be a completely separate range.
//!
//! Here is a diagram of the expected stack with this capsule:
//! Boxes are components and between the boxes are the traits that are the
//! interfaces between components. This capsule provides both a kernel and
//! userspace interface.
//!
//! ```text
//! +--------------------------------------------+ +--------------+
//! | | | |
//! | kernel | | userspace |
//! | | | |
//! +--------------------------------------------+ +--------------+
//! hil::nonvolatile_storage::NonvolatileStorage kernel::Driver
//! +-----------------------------------------------------------------+
//! | |
//! | capsules::nonvolatile_storage_driver::NonvolatileStorage (this) |
//! | |
//! +-----------------------------------------------------------------+
//! hil::nonvolatile_storage::NonvolatileStorage
//! +-----------------------------------------------------------------+
//! | |
//! | Physical nonvolatile storage driver |
//! | |
//! +-----------------------------------------------------------------+
//! ```
//!
//! Example instantiation:
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! let nonvolatile_storage = static_init!(
//! capsules::nonvolatile_storage_driver::NonvolatileStorage<'static>,
//! capsules::nonvolatile_storage_driver::NonvolatileStorage::new(
//! fm25cl, // The underlying storage driver.
//! board_kernel.create_grant(&grant_cap), // Storage for app-specific state.
//! 3000, // The byte start address for the userspace
//! // accessible memory region.
//! 2000, // The length of the userspace region.
//! 0, // The byte start address of the region
//! // that is accessible by the kernel.
//! 3000, // The length of the kernel region.
//! &mut capsules::nonvolatile_storage_driver::BUFFER));
//! hil::nonvolatile_storage::NonvolatileStorage::set_client(fm25cl, nonvolatile_storage);
//! ```
use core::cell::Cell;
use core::cmp;
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil;
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::NvmStorage as usize;
/// IDs for subscribed upcalls.
mod upcall {
/// Read done callback.
pub const READ_DONE: usize = 0;
/// Write done callback.
pub const WRITE_DONE: usize = 1;
/// Number of upcalls.
pub const COUNT: u8 = 2;
}
/// Ids for read-only allow buffers
mod ro_allow {
/// Setup a buffer to write bytes to the nonvolatile storage.
pub const WRITE: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Ids for read-write allow buffers
mod rw_allow {
/// Setup a buffer to read from the nonvolatile storage into.
pub const READ: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
pub const BUF_LEN: usize = 512;
#[derive(Clone, Copy, PartialEq)]
pub enum NonvolatileCommand {
UserspaceRead,
UserspaceWrite,
KernelRead,
KernelWrite,
}
#[derive(Clone, Copy)]
pub enum NonvolatileUser {
App { processid: ProcessId },
Kernel,
}
pub struct App {
pending_command: bool,
command: NonvolatileCommand,
offset: usize,
length: usize,
}
impl Default for App {
fn default() -> App {
App {
pending_command: false,
command: NonvolatileCommand::UserspaceRead,
offset: 0,
length: 0,
}
}
}
pub struct NonvolatileStorage<'a> {
// The underlying physical storage device.
driver: &'a dyn hil::nonvolatile_storage::NonvolatileStorage<'a>,
// Per-app state.
apps: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
// Internal buffer for copying appslices into.
buffer: TakeCell<'static, [u8]>,
// What issued the currently executing call. This can be an app or the kernel.
current_user: OptionalCell<NonvolatileUser>,
// The first byte that is accessible from userspace.
userspace_start_address: usize,
// How many bytes allocated to userspace.
userspace_length: usize,
// The first byte that is accessible from the kernel.
kernel_start_address: usize,
// How many bytes allocated to kernel.
kernel_length: usize,
// Optional client for the kernel. Only needed if the kernel intends to use
// this nonvolatile storage.
kernel_client: OptionalCell<&'a dyn hil::nonvolatile_storage::NonvolatileStorageClient>,
// Whether the kernel is waiting for a read/write.
kernel_pending_command: Cell<bool>,
// Whether the kernel wanted a read/write.
kernel_command: Cell<NonvolatileCommand>,
// Holder for the buffer passed from the kernel in case we need to wait.
kernel_buffer: TakeCell<'static, [u8]>,
// How many bytes to read/write from the kernel buffer.
kernel_readwrite_length: Cell<usize>,
// Where to read/write from the kernel request.
kernel_readwrite_address: Cell<usize>,
}
impl<'a> NonvolatileStorage<'a> {
pub fn new(
driver: &'a dyn hil::nonvolatile_storage::NonvolatileStorage<'a>,
grant: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
userspace_start_address: usize,
userspace_length: usize,
kernel_start_address: usize,
kernel_length: usize,
buffer: &'static mut [u8],
) -> NonvolatileStorage<'a> {
NonvolatileStorage {
driver,
apps: grant,
buffer: TakeCell::new(buffer),
current_user: OptionalCell::empty(),
userspace_start_address,
userspace_length,
kernel_start_address,
kernel_length,
kernel_client: OptionalCell::empty(),
kernel_pending_command: Cell::new(false),
kernel_command: Cell::new(NonvolatileCommand::KernelRead),
kernel_buffer: TakeCell::empty(),
kernel_readwrite_length: Cell::new(0),
kernel_readwrite_address: Cell::new(0),
}
}
// Check so see if we are doing something. If not, go ahead and do this
// command. If so, this is queued and will be run when the pending
// command completes.
fn enqueue_command(
&self,
command: NonvolatileCommand,
offset: usize,
length: usize,
processid: Option<ProcessId>,
) -> Result<(), ErrorCode> {
// Do bounds check.
match command {
NonvolatileCommand::UserspaceRead | NonvolatileCommand::UserspaceWrite => {
// Userspace sees memory that starts at address 0 even if it
// is offset in the physical memory.
if offset >= self.userspace_length
|| length > self.userspace_length
|| offset + length > self.userspace_length
{
return Err(ErrorCode::INVAL);
}
}
NonvolatileCommand::KernelRead | NonvolatileCommand::KernelWrite => {
// Because the kernel uses the NonvolatileStorage interface,
// its calls are absolute addresses.
if offset < self.kernel_start_address
|| offset >= self.kernel_start_address + self.kernel_length
|| length > self.kernel_length
|| offset + length > self.kernel_start_address + self.kernel_length
{
return Err(ErrorCode::INVAL);
}
}
}
// Do very different actions if this is a call from userspace
// or from the kernel.
match command {
NonvolatileCommand::UserspaceRead | NonvolatileCommand::UserspaceWrite => {
processid.map_or(Err(ErrorCode::FAIL), |processid| {
self.apps
.enter(processid, |app, kernel_data| {
// Get the length of the correct allowed buffer.
let allow_buf_len = match command {
NonvolatileCommand::UserspaceRead => kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.map_or(0, |read| read.len()),
NonvolatileCommand::UserspaceWrite => kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.map_or(0, |read| read.len()),
_ => 0,
};
// Check that it exists.
if allow_buf_len == 0 || self.buffer.is_none() {
return Err(ErrorCode::RESERVE);
}
// Shorten the length if the application gave us nowhere to
// put it.
let active_len = cmp::min(length, allow_buf_len);
// First need to determine if we can execute this or must
// queue it.
if self.current_user.is_none() {
// No app is currently using the underlying storage.
// Mark this app as active, and then execute the command.
self.current_user.set(NonvolatileUser::App { processid });
// Need to copy bytes if this is a write!
if command == NonvolatileCommand::UserspaceWrite {
let _ = kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.and_then(|write| {
write.enter(|app_buffer| {
self.buffer.map(|kernel_buffer| {
// Check that the internal buffer and the buffer that was
// allowed are long enough.
let write_len =
cmp::min(active_len, kernel_buffer.len());
let d = &app_buffer[0..write_len];
for (i, c) in kernel_buffer[0..write_len]
.iter_mut()
.enumerate()
{
*c = d[i].get();
}
});
})
});
}
self.userspace_call_driver(command, offset, active_len)
} else {
// Some app is using the storage, we must wait.
if app.pending_command {
// No more room in the queue, nowhere to store this
// request.
Err(ErrorCode::NOMEM)
} else {
// We can store this, so lets do it.
app.pending_command = true;
app.command = command;
app.offset = offset;
app.length = active_len;
Ok(())
}
}
})
.unwrap_or_else(|err| Err(err.into()))
})
}
NonvolatileCommand::KernelRead | NonvolatileCommand::KernelWrite => {
self.kernel_buffer
.take()
.map_or(Err(ErrorCode::NOMEM), |kernel_buffer| {
let active_len = cmp::min(length, kernel_buffer.len());
// Check if there is something going on.
if self.current_user.is_none() {
// Nothing is using this, lets go!
self.current_user.set(NonvolatileUser::Kernel);
match command {
NonvolatileCommand::KernelRead => {
self.driver.read(kernel_buffer, offset, active_len)
}
NonvolatileCommand::KernelWrite => {
self.driver.write(kernel_buffer, offset, active_len)
}
_ => Err(ErrorCode::FAIL),
}
} else {
if self.kernel_pending_command.get() {
Err(ErrorCode::NOMEM)
} else {
self.kernel_pending_command.set(true);
self.kernel_command.set(command);
self.kernel_readwrite_length.set(active_len);
self.kernel_readwrite_address.set(offset);
self.kernel_buffer.replace(kernel_buffer);
Ok(())
}
}
})
}
}
}
fn userspace_call_driver(
&self,
command: NonvolatileCommand,
offset: usize,
length: usize,
) -> Result<(), ErrorCode> {
// Calculate where we want to actually read from in the physical
// storage.
let physical_address = offset + self.userspace_start_address;
self.buffer
.take()
.map_or(Err(ErrorCode::RESERVE), |buffer| {
// Check that the internal buffer and the buffer that was
// allowed are long enough.
let active_len = cmp::min(length, buffer.len());
// self.current_app.set(Some(processid));
match command {
NonvolatileCommand::UserspaceRead => {
self.driver.read(buffer, physical_address, active_len)
}
NonvolatileCommand::UserspaceWrite => {
self.driver.write(buffer, physical_address, active_len)
}
_ => Err(ErrorCode::FAIL),
}
})
}
fn check_queue(&self) {
// Check if there are any pending events.
if self.kernel_pending_command.get() {
self.kernel_buffer.take().map(|kernel_buffer| {
self.kernel_pending_command.set(false);
self.current_user.set(NonvolatileUser::Kernel);
match self.kernel_command.get() {
NonvolatileCommand::KernelRead => self.driver.read(
kernel_buffer,
self.kernel_readwrite_address.get(),
self.kernel_readwrite_length.get(),
),
NonvolatileCommand::KernelWrite => self.driver.write(
kernel_buffer,
self.kernel_readwrite_address.get(),
self.kernel_readwrite_length.get(),
),
_ => Err(ErrorCode::FAIL),
}
});
} else {
// If the kernel is not requesting anything, check all of the apps.
for cntr in self.apps.iter() {
let processid = cntr.processid();
let started_command = cntr.enter(|app, _| {
if app.pending_command {
app.pending_command = false;
self.current_user.set(NonvolatileUser::App { processid });
if let Ok(()) =
self.userspace_call_driver(app.command, app.offset, app.length)
{
true
} else {
false
}
} else {
false
}
});
if started_command {
break;
}
}
}
}
}
/// This is the callback client for the underlying physical storage driver.
impl hil::nonvolatile_storage::NonvolatileStorageClient for NonvolatileStorage<'_> {
fn read_done(&self, buffer: &'static mut [u8], length: usize) {
// Switch on which user of this capsule generated this callback.
self.current_user.take().map(|user| {
match user {
NonvolatileUser::Kernel => {
self.kernel_client.map(move |client| {
client.read_done(buffer, length);
});
}
NonvolatileUser::App { processid } => {
let _ = self.apps.enter(processid, move |_, kernel_data| {
// Need to copy in the contents of the buffer
let _ = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.and_then(|read| {
read.mut_enter(|app_buffer| {
let read_len = cmp::min(app_buffer.len(), length);
let d = &app_buffer[0..read_len];
for (i, c) in buffer[0..read_len].iter().enumerate() {
d[i].set(*c);
}
})
});
// Replace the buffer we used to do this read.
self.buffer.replace(buffer);
// And then signal the app.
kernel_data
.schedule_upcall(upcall::READ_DONE, (length, 0, 0))
.ok();
});
}
}
});
self.check_queue();
}
fn write_done(&self, buffer: &'static mut [u8], length: usize) {
// Switch on which user of this capsule generated this callback.
self.current_user.take().map(|user| {
match user {
NonvolatileUser::Kernel => {
self.kernel_client.map(move |client| {
client.write_done(buffer, length);
});
}
NonvolatileUser::App { processid } => {
let _ = self.apps.enter(processid, move |_app, kernel_data| {
// Replace the buffer we used to do this write.
self.buffer.replace(buffer);
// And then signal the app.
kernel_data
.schedule_upcall(upcall::WRITE_DONE, (length, 0, 0))
.ok();
});
}
}
});
self.check_queue();
}
}
/// Provide an interface for the kernel.
impl<'a> hil::nonvolatile_storage::NonvolatileStorage<'a> for NonvolatileStorage<'a> {
fn set_client(&self, client: &'a dyn hil::nonvolatile_storage::NonvolatileStorageClient) {
self.kernel_client.set(client);
}
fn read(
&self,
buffer: &'static mut [u8],
address: usize,
length: usize,
) -> Result<(), ErrorCode> {
self.kernel_buffer.replace(buffer);
self.enqueue_command(NonvolatileCommand::KernelRead, address, length, None)
}
fn write(
&self,
buffer: &'static mut [u8],
address: usize,
length: usize,
) -> Result<(), ErrorCode> {
self.kernel_buffer.replace(buffer);
self.enqueue_command(NonvolatileCommand::KernelWrite, address, length, None)
}
}
/// Provide an interface for userland.
impl SyscallDriver for NonvolatileStorage<'_> {
/// Command interface.
///
/// Commands are selected by the lowest 8 bits of the first argument.
///
/// ### `command_num`
///
/// - `0`: Return Ok(()) if this driver is included on the platform.
/// - `1`: Return the number of bytes available to userspace.
/// - `2`: Start a read from the nonvolatile storage.
/// - `3`: Start a write to the nonvolatile_storage.
fn command(
&self,
command_num: usize,
offset: usize,
length: usize,
processid: ProcessId,
) -> CommandReturn {
match command_num {
0 => CommandReturn::success(),
1 => {
// How many bytes are accessible from userspace
// TODO: Would break on 64-bit platforms
CommandReturn::success_u32(self.userspace_length as u32)
}
2 => {
// Issue a read command
let res = self.enqueue_command(
NonvolatileCommand::UserspaceRead,
offset,
length,
Some(processid),
);
match res {
Ok(()) => CommandReturn::success(),
Err(e) => CommandReturn::failure(e),
}
}
3 => {
// Issue a write command
let res = self.enqueue_command(
NonvolatileCommand::UserspaceWrite,
offset,
length,
Some(processid),
);
match res {
Ok(()) => CommandReturn::success(),
Err(e) => CommandReturn::failure(e),
}
}
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.apps.enter(processid, |_, _| {})
}
}