capsules_extra/
isl29035.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! SyscallDriver for the ISL29035 digital light sensor.
//!
//! <http://bit.ly/2rA00cH>
//!
//! > The ISL29035 is an integrated ambient and infrared light-to-digital
//! > converter with I2C (SMBus compatible) Interface. Its advanced self-
//! > calibrated photodiode array emulates human eye response with excellent IR
//! > rejection. The on-chip ADC is capable of rejecting 50Hz and 60Hz flicker
//! > caused by artificial light sources. The Lux range select feature allows
//! > users to program the Lux range for optimized counts/Lux.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//! # use capsules::virtual_alarm::VirtualMuxAlarm;
//!
//! let isl29035_i2c = static_init!(I2CDevice, I2CDevice::new(i2c_bus, 0x44));
//! let isl29035_virtual_alarm = static_init!(
//!     VirtualMuxAlarm<'static, sam4l::ast::Ast>,
//!     VirtualMuxAlarm::new(mux_alarm));
//! isl29035_virtual_alarm.setup();
//!
//! let isl29035 = static_init!(
//!     capsules::isl29035::Isl29035<'static, VirtualMuxAlarm<'static, sam4l::ast::Ast>>,
//!     capsules::isl29035::Isl29035::new(isl29035_i2c, isl29035_virtual_alarm,
//!                                       &mut capsules::isl29035::BUF));
//! isl29035_i2c.set_client(isl29035);
//! isl29035_virtual_alarm.set_client(isl29035);
//! ```

use core::cell::Cell;
use kernel::hil::i2c::{Error, I2CClient, I2CDevice};
use kernel::hil::sensors::{AmbientLight, AmbientLightClient};
use kernel::hil::time::{self, ConvertTicks};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;

/// Recommended buffer length.
pub const BUF_LEN: usize = 3;

#[derive(Copy, Clone, PartialEq)]
enum State {
    Disabled,
    Enabling,
    Integrating,
    ReadingLI,
    Disabling(usize),
}

pub struct Isl29035<'a, A: time::Alarm<'a>> {
    i2c: &'a dyn I2CDevice,
    alarm: &'a A,
    state: Cell<State>,
    buffer: TakeCell<'static, [u8]>,
    client: OptionalCell<&'a dyn AmbientLightClient>,
}

impl<'a, A: time::Alarm<'a>> Isl29035<'a, A> {
    pub fn new(i2c: &'a dyn I2CDevice, alarm: &'a A, buffer: &'static mut [u8]) -> Isl29035<'a, A> {
        Isl29035 {
            i2c,
            alarm,
            state: Cell::new(State::Disabled),
            buffer: TakeCell::new(buffer),
            client: OptionalCell::empty(),
        }
    }

    pub fn start_read_lux(&self) -> Result<(), ErrorCode> {
        if self.state.get() == State::Disabled {
            self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buf| {
                self.i2c.enable();
                buf[0] = 0;
                // CMD 1 Register:
                // Interrupt persist for 1 integration cycle (bits 0 & 1)
                // Measure ALS continuously (buts 5,6 & 7)
                // Bit 2 is the interrupt bit
                // Bits 3 & 4 are reserved
                buf[1] = 0b10100000;

                // CMD 2 Register:
                // Range 4000 (bits 0, 1)
                // ADC resolution 8-bit (bits 2,3)
                // Other bits are reserved
                buf[2] = 0b00001001;

                if let Err((error, buf)) = self.i2c.write(buf, 3) {
                    self.buffer.replace(buf);
                    self.i2c.disable();
                    Err(error.into())
                } else {
                    self.state.set(State::Enabling);
                    Ok(())
                }
            })
        } else {
            Err(ErrorCode::BUSY)
        }
    }
}

impl<'a, A: time::Alarm<'a>> AmbientLight<'a> for Isl29035<'a, A> {
    fn set_client(&self, client: &'a dyn AmbientLightClient) {
        self.client.set(client)
    }

    fn read_light_intensity(&self) -> Result<(), ErrorCode> {
        self.start_read_lux()
    }
}

impl<'a, A: time::Alarm<'a>> time::AlarmClient for Isl29035<'a, A> {
    fn alarm(&self) {
        self.buffer.take().map(|buffer| {
            // Turn on i2c to send commands.
            self.i2c.enable();

            buffer[0] = 0x02_u8;
            if let Err((_error, buf)) = self.i2c.write_read(buffer, 1, 2) {
                self.buffer.replace(buf);
                self.i2c.disable();
                self.state.set(State::Disabled);
                self.client.map(|client| client.callback(0));
            } else {
                self.state.set(State::ReadingLI);
            }
        });
    }
}

impl<'a, A: time::Alarm<'a>> I2CClient for Isl29035<'a, A> {
    fn command_complete(&self, buffer: &'static mut [u8], status: Result<(), Error>) {
        if status.is_err() {
            self.state.set(State::Disabled);
            self.buffer.replace(buffer);
            self.client.map(|client| client.callback(0));
            return;
        }
        match self.state.get() {
            State::Enabling => {
                // Set a timer to wait for the conversion to be done.
                // For 8 bits, thats 410 us (per Table 11 in the datasheet).
                let interval = self.alarm.ticks_from_us(410);
                self.alarm.set_alarm(self.alarm.now(), interval);

                // Now wait for timer to expire
                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Integrating);
            }
            State::ReadingLI => {
                // During configuration we set the ADC resolution to 8 bits and
                // the range to 4000.
                //
                // Since it's only 8 bits, we ignore the second byte of output.
                //
                // For a given Range and n (-bits of ADC resolution):
                // Lux = Data * (Range / 2^n)
                let data = buffer[0] as usize; //((buffer[1] as usize) << 8) | buffer[0] as usize;
                let lux = (data * 4000) >> 8;

                buffer[0] = 0;

                if let Err((_error, buffer)) = self.i2c.write(buffer, 2) {
                    self.state.set(State::Disabled);
                    self.buffer.replace(buffer);
                    self.client.map(|client| client.callback(0));
                } else {
                    self.state.set(State::Disabling(lux));
                }
            }
            State::Disabling(lux) => {
                self.i2c.disable();
                self.state.set(State::Disabled);
                self.buffer.replace(buffer);
                self.client.map(|client| client.callback(lux));
            }
            _ => {}
        }
    }
}