sam4l/pm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Implementation of the power manager (PM) peripheral.
use crate::bpm;
use crate::bscif;
use crate::flashcalw;
use crate::gpio;
use crate::scif;
use core::cell::Cell;
use core::sync::atomic::Ordering;
use kernel::platform::chip::ClockInterface;
use kernel::utilities::registers::interfaces::{Readable, Writeable};
use kernel::utilities::registers::{
register_bitfields, FieldValue, ReadOnly, ReadWrite, WriteOnly,
};
use kernel::utilities::StaticRef;
/// ยง10.7 PM::UserInterface from SAM4L Datasheet.
#[repr(C)]
struct PmRegisters {
mcctrl: ReadWrite<u32, MainClockControl::Register>,
cpusel: ReadWrite<u32, CpuClockSelect::Register>,
_reserved1: u32,
pbasel: ReadWrite<u32, PeripheralBusXClockSelect::Register>,
pbbsel: ReadWrite<u32, PeripheralBusXClockSelect::Register>,
pbcsel: ReadWrite<u32, PeripheralBusXClockSelect::Register>,
pbdsel: ReadWrite<u32, PeripheralBusXClockSelect::Register>,
_reserved2: u32,
cpumask: ReadWrite<u32, ClockMaskCpu::Register>, // 0x020
hsbmask: ReadWrite<u32, ClockMaskHsb::Register>,
pbamask: ReadWrite<u32, ClockMaskPba::Register>,
pbbmask: ReadWrite<u32, ClockMaskPbb::Register>,
pbcmask: ReadWrite<u32, ClockMaskPbc::Register>,
pbdmask: ReadWrite<u32, ClockMaskPbd::Register>,
_reserved3: [u32; 2],
pbadivmask: ReadWrite<u32, DividedClockMask::Register>, // 0x040
_reserved4: [u32; 4],
cfdctrl: ReadWrite<u32, ClockFailureDetectorControl::Register>,
unlock: WriteOnly<u32, PmUnlock::Register>,
_reserved5: [u32; 25], // 0x60
ier: WriteOnly<u32, InterruptOrStatus::Register>, // 0xC0
idr: WriteOnly<u32, InterruptOrStatus::Register>,
imr: ReadOnly<u32, InterruptOrStatus::Register>,
isr: ReadOnly<u32, InterruptOrStatus::Register>,
icr: WriteOnly<u32, InterruptOrStatus::Register>,
sr: ReadOnly<u32, InterruptOrStatus::Register>,
_reserved6: [u32; 34], // 0x100
ppcr: ReadWrite<u32, PeripheralPowerControl::Register>, // 0x160
_reserved7: [u32; 7],
rcause: ReadOnly<u32, ResetCause::Register>, // 0x180
wcause: ReadOnly<u32, WakeCause::Register>,
awen: ReadWrite<u32, AsynchronousWakeUpEnable::Register>,
_protctrl: u32, // This register is named, but undocumented in the datasheet
_reserved8: u32,
fastsleep: ReadWrite<u32, FastSleep::Register>,
_reserved9: [u32; 152],
config: ReadOnly<u32, Configuration::Register>, // 0x200
version: ReadOnly<u32, Version::Register>,
}
register_bitfields![u32,
MainClockControl [
/// Main Clock Selection:
///
/// 0: RCSYS
/// 1: OSC0
/// 2: PLL
/// 3: DFLL
/// 4: RC80M (requires dividing down before use!)
/// 5: RCFAST
/// 6: RC1M
/// 7: Reserved
MCSEL OFFSET(0) NUMBITS(3) []
],
/// Note: Writing this register clears SR.CKRDY. Must not write again until SR.CKRDY high.
CpuClockSelect [
/// CPU Division: Set to 1 to divide main clock by 2^(CPUSEL+1).
CPUDIV OFFSET(7) NUMBITS(1) [],
/// Exponent for CPU clock divider. Must be 0 if CPUDIV is 0.
CPUSEL OFFSET(0) NUMBITS(3) []
],
/// Note: Writing this register clears SR.CKRDY. Must not write again until SR.CKRDY high.
PeripheralBusXClockSelect [
/// APBx Divisor: Set to 1 to divide APBx clock by 2^(PBSEL+1).
PBDIV OFFSET(7) NUMBITS(1) [],
/// Exponent for APBx clock divider. Must be 0 if PBDIV is 0.
PBSEL OFFSET(0) NUMBITS(3) []
],
/// If bit n is cleared, the clock for module n is stopped. If bit n is set
/// the clock for module n is enabled according to the current / power mode.
///
/// Reset Default: 0x1, OCD enabled.
ClockMaskCpu [
OCD 0
],
/// If bit n is cleared, the clock for module n is stopped. If bit n is set
/// the clock for module n is enabled according to the current / power mode.
///
/// Reset Default: 0x1e2, FLASHCALW, APB[A-D] bridge enabled.
ClockMaskHsb [
PDCA 0,
FLASHCALW 1,
FLASHCALW_PICOCACHE 2,
USBC 3,
CRCCU 4,
APBA_BRIDGE 5,
APBB_BRIDGE 6,
APBC_BRIDGE 7,
APBD_BRIDGE 8,
AESA 9
],
/// If bit n is cleared, the clock for module n is stopped. If bit n is set
/// the clock for module n is enabled according to the current / power mode.
///
/// Reset Default: 0x0, all disabled.
ClockMaskPba [
IISC 0,
SPI 1,
TC0 2,
TC1 3,
TWIM0 4,
TWIS0 5,
TWIM1 6,
TWIS1 7,
USART0 8,
USART1 9,
USART2 10,
USART3 11,
ADCIFE 12,
DACC 13,
ACIFC 14,
GLOC 15,
ABDACB 16,
TRNG 17,
PARC 18,
CATB 19,
TWIM2 21,
TWIM3 22,
LCDCA 23
],
/// If bit n is cleared, the clock for module n is stopped. If bit n is set
/// the clock for module n is enabled according to the current / power mode.
///
/// Reset Default: 0x1, FLASHCALW enabled.
ClockMaskPbb [
FLASHCALW 0,
HRAMC1 1,
HMATRIX 2,
PDCA 3,
CRCCU 4,
USBC 5,
PEVC 6
],
/// If bit n is cleared, the clock for module n is stopped. If bit n is set
/// the clock for module n is enabled according to the current / power mode.
///
/// Reset Default: 0x1f, PM, CHIPID, SCIF, FREQM, and GPIO enabled.
ClockMaskPbc [
PM 0,
CHIPID 1,
SCIF 2,
FREQM 3,
GPIO 4
],
/// If bit n is cleared, the clock for module n is stopped. If bit n is set
/// the clock for module n is enabled according to the current / power mode.
///
/// Reset Default: 0x3f, BPM, BSCIF, AST, WDT, EIC, PICOUART enabled.
ClockMaskPbd [
BPM 0,
BSCIF 1,
AST 2,
WDT 3,
EIC 4,
PICOUART 5
],
/// If bit n is written to zero, the clock divided by 2^(n+1) is stopped.
/// If bit n is written to one, the clock divided by 2^(n+1) is enabled
/// according to the current power mode.
///
/// Reset Default: 0x7f, all enabled.
DividedClockMask [
MASK OFFSET(0) NUMBITS(7) [
/// TC0 and TC1
TIMER_CLOCK2 = 1 << 0,
/// TC0 and TC1, and USART0-3
TIMER_CLOCK3 = 1 << 2,
/// TC0 and TC1
TIMER_CLOCK4 = 1 << 4,
/// TC0 and TC1
TIMER_CLOCK5 = 1 << 6
]
],
ClockFailureDetectorControl [
/// Store final value. If set to 1, register becomes read-only.
SFV 31,
/// Clock failure detector enable
CFDEN 0
],
PmUnlock [
/// Write 0xAA to enable unlock
KEY OFFSET(24) NUMBITS(8) [],
/// Register address to unlock. Next APB access must write register specified here.
ADDR OFFSET(0) NUMBITS(10) []
],
InterruptOrStatus [
/// Access Error: (1) Write to a protect register without an unlock
AE 31,
/// Wakeup Event Occurred: (1) Check WCAUSE register for wakeup source
WAKE 8,
/// Clock Ready: Synchronous clocks (0) written but not settled, (1) are ready
CKRDY 5,
/// Clock Failure Detected: (0) running correctly, (1) failure detected, reverting to RCSYS
CFD 0
],
/// Reset Value: 0x1fe
PeripheralPowerControl [
/// On powerup, (0) flash waits for BOD18 to be ready, (1) does not wait
FWBOD18 10,
/// When waking up, (0) flash waits for bandgap to be ready, (1) does not wait
FWBGREF 9,
/// VREG Request Clock Mask, (0) disabled, (1) enabled
VREGRCMASK 8,
/// ADCIFE Request Clock Mask, (0) disabled, (1) enabled
ADCIFERCMASK 7,
/// PEVC Request Clock Mask, (0) disabled, (1) enabled
PEVCRCMASK 6,
/// TWIS1 Request Clock Mask, (0) disabled, (1) enabled
TWIS1RCMASK 5,
/// TWIS0 Request Clock Mask, (0) disabled, (1) enabled
TWIS0RCMASK 4,
/// AST Request Clock Mask, (0) disabled, (1) enabled
ASTRCMASK 3,
/// ACIFC Request Clock Mask, (0) disabled, (1) enabled
ACIFCRCMASK 2,
/// CAT Request Clock Mask, (0) disabled, (1) enabled
CATBRCMASK 1,
/// Reset Pullup, pullup on external reset pin is (0) disabled, (1) enabled
RSTPUN 0
],
ResetCause [
/// Brown-out 3.3V reset (supply voltage too low)
BOD33 13,
/// Power-on reset (I/O voltage too low)
POR33 10,
/// OCD Reset (the SYSRESETREQ bit in AIRCR of the CPU was written to 1)
OCDRST 8,
/// Backup reset
BKUP 6,
/// Watchdog reset
WDT 3,
/// External reset pin (RESET_N was pulled low)
EXT 2,
/// Brown-out reset (core voltage below brown-out threshold)
BOD 1,
/// Power-on reset (core voltage below power-on threshold)
POR 0
],
WakeCause [
AST 17,
EIC 16,
LCDCA 7,
PICOUART 6,
BOD33_IRQ 5,
BOD18_IRQ 4,
PSOK 3,
USBC 2,
TWIS1 1,
TWIS0 0
],
/// For each bit, if set, the wakeup is enabled
AsynchronousWakeUpEnable [
LCDCA 7,
PICOUART 6,
BOD33_IRQ 5,
BOD18_IRQ 4,
PSOK 3,
USBC 2,
TWIS1 1,
TWIS0 0
],
/// Each bit in this register corresponds to a clock source set as the main
/// clock just before entering power save mode and just after wake-up to
/// make the wakeup time faster.
///
/// 0: The corresponding clock source is not set as the main clock after wake-up.
/// 1: The corresponding clock source is set as the main clock after wake-up.
FastSleep [
DFLL 24,
RC1M 18,
RCFAST 17,
RC80 16,
PLL 8,
OSC 0
],
Configuration [
/// HSB PEVC clock implemented
HSBPEVC 7,
/// APBD implemented
PBD 3,
/// APBC implemented
PBC 2,
/// APBB implemented
PBB 1,
/// APBA implemented
PBA 0
],
Version [
/// Reserved. No functionality associated.
VARIANT OFFSET(16) NUMBITS(4) [],
VERSION OFFSET(0) NUMBITS(12) []
]
];
pub enum MainClock {
RCSYS,
OSC0,
PLL,
DFLL,
RC80M,
RCFAST,
RC1M,
}
#[derive(Copy, Clone, Debug)]
pub enum Clock {
HSB(HSBClock),
PBA(PBAClock),
PBB(PBBClock),
PBC(PBCClock),
PBD(PBDClock),
}
#[derive(Copy, Clone, Debug)]
pub enum HSBClock {
PDCA,
FLASHCALW,
FLASHCALWP,
USBC,
CRCCU,
APBA,
APBB,
APBC,
APBD,
AESA,
}
#[derive(Copy, Clone, Debug)]
pub enum PBAClock {
IISC,
SPI,
TC0,
TC1,
TWIM0,
TWIS0,
TWIM1,
TWIS1,
USART0,
USART1,
USART2,
USART3,
ADCIFE,
DACC,
ACIFC,
GLOC,
ABSACB,
TRNG,
PARC,
CATB,
NULL,
TWIM2,
TWIM3,
LCDCA,
}
#[derive(Copy, Clone, Debug)]
pub enum PBBClock {
FLASHCALW,
HRAMC1,
HMATRIX,
PDCA,
CRCCU,
USBC,
PEVC,
}
#[derive(Copy, Clone, Debug)]
pub enum PBCClock {
PM,
CHIPID,
SCIF,
FREQM,
GPIO,
}
#[derive(Copy, Clone, Debug)]
pub enum PBDClock {
BPM,
BSCIF,
AST,
WDT,
EIC,
PICOUART,
}
/// Frequency of the external oscillator.
///
/// For the SAM4L, different configurations are needed for different
/// ranges of oscillator frequency, so based on the input frequency,
/// various configurations may need to change. When additional
/// oscillator frequencies are needed, they should be added here and
/// the `setup_system_clock` function should be modified to support
/// it.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum OscillatorFrequency {
/// 16 MHz external oscillator
Frequency16MHz,
}
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum RcfastFrequency {
Frequency4MHz,
Frequency8MHz,
Frequency12MHz,
}
/// Configuration for the startup time of the external oscillator.
///
/// In practice we have found that some boards work with a short
/// startup time, while others need a slow start in order to properly
/// wake from sleep. In general, we find that for systems that do not
/// work, at fast speed, they will hang or panic after several entries
/// into WAIT mode.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum OscillatorStartup {
/// Use a fast startup. ~0.5 ms in practice.
FastStart,
/// Use a slow startup. ~8.9 ms in practice.
SlowStart,
}
/// Which source the system clock should be generated from.
///
/// These are specified as system clock source appended with the clock
/// that it is sourced from appended with the final frequency of the
/// system. So for example, one option is to use the DFLL sourced from
/// the RC32K with a final frequency of 48 MHz.
///
/// When new options (either sources or final frequencies) are needed, they
/// should be added to this list, and then the `setup_system_clock` function
/// can be modified to support it. This is necessary because configurations
/// must be changed not just with the input source but also based on the
/// desired final frequency.
///
/// For options utilizing an external oscillator, the configurations for that
/// oscillator must also be provided.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum SystemClockSource {
/// Use the RCSYS clock (which the system starts up on anyways). Final
/// system frequency will be 115 kHz. Note that while this is the default,
/// Tock is NOT guaranteed to work on this setting and will likely fail.
RcsysAt115kHz,
RC1M,
RCFAST {
frequency: RcfastFrequency,
},
/// Use an external crystal oscillator as the direct source for the
/// system clock. The final system frequency will match the frequency of
/// the external oscillator.
ExternalOscillator {
frequency: OscillatorFrequency,
startup_mode: OscillatorStartup,
},
/// Use an external crystal oscillator as the input to the internal phase
/// locked loop (PLL) for the system clock. This results in a final
/// frequency of 48 MHz.
PllExternalOscillatorAt48MHz {
frequency: OscillatorFrequency,
startup_mode: OscillatorStartup,
},
/// Use the internal digital frequency locked loop (DFLL) sourced from
/// the internal RC32K clock. Note this typically requires calibration
/// of the RC32K to have a consistent clock. Final frequency of 48 MHz.
DfllRc32kAt48MHz,
RC80M,
}
pub enum ClockMask {
RCSYS = 0x01,
RC1M = 0x02,
RCFAST = 0x04,
OSC0 = 0x08,
DFLL = 0x10,
PLL = 0x20,
RC80M = 0x40,
}
const HSB_MASK_OFFSET: u32 = 0x24;
const PBA_MASK_OFFSET: u32 = 0x28;
const PBB_MASK_OFFSET: u32 = 0x2C;
const PBC_MASK_OFFSET: u32 = 0x30;
const PBD_MASK_OFFSET: u32 = 0x34;
const PM_BASE: usize = 0x400E0000;
const PM_REGS: StaticRef<PmRegisters> = unsafe { StaticRef::new(PM_BASE as *const PmRegisters) };
/// Contains state for the power management peripheral. This includes the
/// configurations for various system clocks and the final frequency that the
/// system is running at.
pub struct PowerManager {
/// Clock source configuration
system_clock_source: Cell<SystemClockSource>,
/// Mask of clocks that are on
system_on_clocks: Cell<u32>,
/// Has setup_system_clock been called once
system_initial_configs: Cell<bool>,
}
impl PowerManager {
pub const fn new() -> Self {
Self {
// Set to the RCSYS by default.
system_clock_source: Cell::new(SystemClockSource::RcsysAt115kHz),
system_on_clocks: Cell::new(ClockMask::RCSYS as u32),
system_initial_configs: Cell::new(false),
}
}
}
impl PowerManager {
/// Sets up the system clock. This should be called as one of the first
/// lines in the `main()` function within the platform's `main.rs`.
pub unsafe fn setup_system_clock(
&self,
clock_source: SystemClockSource,
flash_controller: &flashcalw::FLASHCALW,
) {
if !self.system_initial_configs.get() {
// For now, always go to PS2 as it enables all core speeds
// These features are not available in PS1: USB, DFLL, Flash programming/erasing
bpm::set_power_scaling(bpm::PowerScaling::PS2);
// Need the 32k RC oscillator for BPM, AST, and DFLL
bscif::enable_rc32k();
// Enable HCACHE
flash_controller.enable_cache();
// Enable flash high speed mode, only for PS2
flash_controller.enable_high_speed_flash();
self.system_initial_configs.set(true);
}
match clock_source {
SystemClockSource::RcsysAt115kHz => {
// No configurations necessary, RCSYS is always on in run mode
// Set Flash wait state to 0 for <= 24MHz in PS2
flash_controller.set_wait_state(0);
// Change the system clock to RCSYS
select_main_clock(MainClock::RCSYS);
}
SystemClockSource::DfllRc32kAt48MHz => {
// Configure and turn on DFLL at 48MHz
self.configure_48mhz_dfll();
// Set Flash wait state to 1 for > 24MHz in PS2
flash_controller.set_wait_state(1);
// Change the system clock to DFLL
select_main_clock(MainClock::DFLL);
}
SystemClockSource::ExternalOscillator {
frequency,
startup_mode,
} => {
// Configure and turn on OSC0
self.configure_external_oscillator(frequency, startup_mode);
// Set Flash wait state to 0 for <= 24MHz in PS2
flash_controller.set_wait_state(0);
// Change the system clock to OSC0
select_main_clock(MainClock::OSC0);
}
SystemClockSource::PllExternalOscillatorAt48MHz {
frequency,
startup_mode,
} => {
// Configure and turn on PLL at 48MHz
self.configure_external_oscillator_pll(frequency, startup_mode);
// Set Flash wait state to 1 for > 24MHz in PS2
flash_controller.set_wait_state(1);
// Change the system clock to PLL
select_main_clock(MainClock::PLL);
}
SystemClockSource::RC80M => {
// Configure and turn on RC80M
self.configure_80mhz_rc();
// If the 80MHz RC is used as the main clock source, it must be divided by
// at least 2 before being used as CPU's clock source
let cpusel = PM_REGS.cpusel.extract();
unlock(0x00000004);
PM_REGS.cpusel.modify_no_read(
cpusel,
CpuClockSelect::CPUDIV::SET + CpuClockSelect::CPUSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
// Set Flash wait state to 1 for > 24MHz in PS2
flash_controller.set_wait_state(1);
// Change the system clock to RC80M
select_main_clock(MainClock::RC80M);
}
SystemClockSource::RCFAST { frequency } => {
// Check if RCFAST is already on, in which case temporarily switch the system to RCSYS
// since RCFAST has to be disabled before its configurations can be changed
if (self.system_on_clocks.get() & (ClockMask::RCFAST as u32)) != 0 {
select_main_clock(MainClock::RCSYS);
scif::disable_rcfast();
}
// Configure and turn on RCFAST at specified frequency
self.configure_rcfast(frequency);
// Set Flash wait state to 0 for <= 24MHz in PS2
flash_controller.set_wait_state(0);
// Change the system clock to RCFAST
select_main_clock(MainClock::RCFAST);
}
SystemClockSource::RC1M => {
// Configure and turn on RC1M
self.configure_1mhz_rc();
// Set Flash wait state to 0 for <= 24MHz in PS2
flash_controller.set_wait_state(0);
// Change the system clock to RC1M
select_main_clock(MainClock::RC1M);
}
}
self.system_clock_source.set(clock_source);
}
// Disables the clock passed in as clock_source
pub unsafe fn disable_system_clock(&self, clock_source: SystemClockSource) {
// Disable previous clock
match clock_source {
SystemClockSource::RcsysAt115kHz => {
//Rcsys is always on except in sleep modes
}
SystemClockSource::ExternalOscillator { .. } => {
// Only turn off OSC0 if PLL is not using it as a reference clock
if self.system_on_clocks.get() & (ClockMask::PLL as u32) == 0 {
scif::disable_osc_16mhz();
}
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask & !(ClockMask::OSC0 as u32));
}
SystemClockSource::PllExternalOscillatorAt48MHz { .. } => {
// Disable PLL
scif::disable_pll();
// don't turn off reference clock OSC0 if OSC0 is on
if self.system_on_clocks.get() & (ClockMask::OSC0 as u32) == 0 {
scif::disable_osc_16mhz();
}
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask & !(ClockMask::PLL as u32));
}
SystemClockSource::DfllRc32kAt48MHz => {
// Disable DFLL
scif::disable_dfll_rc32k();
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask & !(ClockMask::DFLL as u32));
}
SystemClockSource::RC80M => {
// Disable RC80M
scif::disable_rc_80mhz();
// Stop dividing the main clock
let cpusel = PM_REGS.cpusel.extract();
unlock(0x00000004);
PM_REGS.cpusel.modify_no_read(
cpusel,
CpuClockSelect::CPUDIV::CLEAR + CpuClockSelect::CPUSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
// Stop dividing peripheral clocks
let pbasel = PM_REGS.pbasel.extract();
unlock(0x0000000C);
PM_REGS.pbasel.modify_no_read(
pbasel,
PeripheralBusXClockSelect::PBDIV::CLEAR
+ PeripheralBusXClockSelect::PBSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
let pbbsel = PM_REGS.pbbsel.extract();
unlock(0x00000010);
PM_REGS.pbbsel.modify_no_read(
pbbsel,
PeripheralBusXClockSelect::PBDIV::CLEAR
+ PeripheralBusXClockSelect::PBSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
let pbcsel = PM_REGS.pbcsel.extract();
unlock(0x00000014);
PM_REGS.pbcsel.modify_no_read(
pbcsel,
PeripheralBusXClockSelect::PBDIV::CLEAR
+ PeripheralBusXClockSelect::PBSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
let pbdsel = PM_REGS.pbdsel.extract();
unlock(0x00000018);
PM_REGS.pbdsel.modify_no_read(
pbdsel,
PeripheralBusXClockSelect::PBDIV::CLEAR
+ PeripheralBusXClockSelect::PBSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask & !(ClockMask::RC80M as u32));
}
SystemClockSource::RCFAST { .. } => {
// Disable RCFAST
scif::disable_rcfast();
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask & !(ClockMask::RCFAST as u32));
}
SystemClockSource::RC1M => {
// Disable RC1M
bscif::disable_rc_1mhz();
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask & !(ClockMask::RC1M as u32));
}
}
}
// Changes the system clock to the clock passed in as clock_source and disables
// the previous system clock
pub unsafe fn change_system_clock(
&self,
clock_source: SystemClockSource,
flash_controller: &flashcalw::FLASHCALW,
) {
// If the clock you want to switch to is the current system clock, do nothing
let prev_clock_source = self.system_clock_source.get();
if prev_clock_source == clock_source {
return;
}
// Turn on and switch to the new system clock
self.setup_system_clock(clock_source, flash_controller);
// Don't disable RCFAST if the current clock is still RCFAST, just at
// a different frequency
match clock_source {
SystemClockSource::RCFAST { .. } => match prev_clock_source {
SystemClockSource::RCFAST { .. } => {
return;
}
_ => {}
},
_ => {}
}
// Disable the previous system clock
self.disable_system_clock(prev_clock_source);
}
/// Configure the system clock to use the DFLL with the RC32K as the source.
/// Run at 48 MHz.
unsafe fn configure_48mhz_dfll(&self) {
// Start the DFLL
scif::setup_dfll_rc32k_48mhz();
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask | ClockMask::DFLL as u32);
}
/// Configure the system clock to use the 16 MHz external crystal directly
unsafe fn configure_external_oscillator(
&self,
frequency: OscillatorFrequency,
startup_mode: OscillatorStartup,
) {
// Start the OSC0 if it isn't already in use by the PLL
if (self.system_on_clocks.get() & ClockMask::PLL as u32) == 0 {
match frequency {
OscillatorFrequency::Frequency16MHz => {
match startup_mode {
OscillatorStartup::FastStart => scif::setup_osc_16mhz_fast_startup(),
OscillatorStartup::SlowStart => scif::setup_osc_16mhz_slow_startup(),
};
}
}
}
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask | ClockMask::OSC0 as u32);
}
/// Configure the system clock to use the PLL with the 16 MHz external crystal
unsafe fn configure_external_oscillator_pll(
&self,
frequency: OscillatorFrequency,
startup_mode: OscillatorStartup,
) {
// Start the OSC0 if it isn't already on
if (self.system_on_clocks.get() & ClockMask::OSC0 as u32) == 0 {
match frequency {
OscillatorFrequency::Frequency16MHz => {
match startup_mode {
OscillatorStartup::FastStart => scif::setup_osc_16mhz_fast_startup(),
OscillatorStartup::SlowStart => scif::setup_osc_16mhz_slow_startup(),
};
}
}
}
// Start the PLL
scif::setup_pll_osc_48mhz();
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask | ClockMask::PLL as u32);
}
unsafe fn configure_80mhz_rc(&self) {
// Start the 80mhz RC oscillator
scif::setup_rc_80mhz();
// Divide peripheral clocks so that fCPU >= fAPBx
let pbasel = PM_REGS.pbasel.extract();
unlock(0x0000000C);
PM_REGS.pbasel.modify_no_read(
pbasel,
PeripheralBusXClockSelect::PBDIV::SET + PeripheralBusXClockSelect::PBSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
let pbbsel = PM_REGS.pbbsel.extract();
unlock(0x00000010);
PM_REGS.pbbsel.modify_no_read(
pbbsel,
PeripheralBusXClockSelect::PBDIV::SET + PeripheralBusXClockSelect::PBSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
let pbcsel = PM_REGS.pbcsel.extract();
unlock(0x00000014);
PM_REGS.pbcsel.modify_no_read(
pbcsel,
PeripheralBusXClockSelect::PBDIV::SET + PeripheralBusXClockSelect::PBSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
let pbdsel = PM_REGS.pbdsel.extract();
unlock(0x00000018);
PM_REGS.pbdsel.modify_no_read(
pbdsel,
PeripheralBusXClockSelect::PBDIV::SET + PeripheralBusXClockSelect::PBSEL::CLEAR,
);
while PM_REGS.sr.matches_all(InterruptOrStatus::CKRDY::CLEAR) {}
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask | ClockMask::RC80M as u32);
}
unsafe fn configure_rcfast(&self, frequency: RcfastFrequency) {
// Start the RCFAST at the specified frequency
match frequency {
RcfastFrequency::Frequency4MHz => {
scif::setup_rcfast_4mhz();
}
RcfastFrequency::Frequency8MHz => {
scif::setup_rcfast_8mhz();
}
RcfastFrequency::Frequency12MHz => {
scif::setup_rcfast_12mhz();
}
}
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask | ClockMask::RCFAST as u32);
}
unsafe fn configure_1mhz_rc(&self) {
// Start the RC1M
bscif::setup_rc_1mhz();
let clock_mask = self.system_on_clocks.get();
self.system_on_clocks
.set(clock_mask | ClockMask::RC1M as u32);
}
pub fn get_system_frequency(&self) -> u32 {
// Return the current system frequency
match self.system_clock_source.get() {
SystemClockSource::RcsysAt115kHz => 115200,
SystemClockSource::DfllRc32kAt48MHz => 48000000,
SystemClockSource::ExternalOscillator { .. } => 16000000,
SystemClockSource::PllExternalOscillatorAt48MHz { .. } => 48000000,
SystemClockSource::RC80M => 40000000,
SystemClockSource::RCFAST { frequency } => match frequency {
RcfastFrequency::Frequency4MHz => 4300000,
RcfastFrequency::Frequency8MHz => 8200000,
RcfastFrequency::Frequency12MHz => 12000000,
},
SystemClockSource::RC1M => 1000000,
}
}
}
fn unlock(register_offset: u32) {
PM_REGS.unlock.set(0xAA000000 | register_offset);
}
fn select_main_clock(clock: MainClock) {
unlock(0);
PM_REGS.mcctrl.set(clock as u32);
}
/// Utility macro to modify clock mask registers
///
/// It takes one of two forms:
///
/// ```rust,ignore
/// mask_clock!(CLOCK_MASK_OFFSET_MASK_OFFSET: pm_register | value)
/// ```
///
/// which performs a logical-or on the existing register value, or
///
/// ```rust,ignore
/// mask_clock!(CLOCK_MASK_OFFSET_MASK_OFFSET: pm_register & value)
/// ```
///
/// which performs a logical-and.
///
/// CLOCK is one of HSB, PBA, PBB, PBC or PBD
///
/// pm_register is one of hsbmask, pbamask, pbbmask, pbcmask or pbdmask.
///
macro_rules! mask_clock {
($mask_offset:ident : $field:ident | $mask:expr) => {{
unlock($mask_offset);
let val = PM_REGS.$field.get() | ($mask);
PM_REGS.$field.set(val);
}};
($mask_offset:ident : $field:ident & $mask:expr) => {{
unlock($mask_offset);
let val = PM_REGS.$field.get() & ($mask);
PM_REGS.$field.set(val);
}};
}
/// Utility macro to get value of clock register. Used to check if a specific
/// clock is enabled or not. See above description of `make_clock!`.
macro_rules! get_clock {
($mask_offset:ident : $field:ident & $mask:expr) => {{
unlock($mask_offset);
(PM_REGS.$field.get() & ($mask)) != 0
}};
}
/// Determines if the chip can safely go into deep sleep without preventing
/// currently active peripherals from operating.
///
/// We look at the PM's clock mask registers and compare them against a set of
/// known masks that include no peripherals that can't operate in deep
/// sleep (or that have no function during sleep). Specifically:
///
/// * HSB may only have clocks for the flash (and PicoCache), APBx bridges, and PDCA on.
///
/// * PBA may only have I2C Slaves on as they can self-wake.
///
/// * PBB may only have clocks for the flash, HRAMC1 (also flash related), and PDCA on.
///
/// * PBC and PBD may have any clocks on.
///
/// This means it is the responsibility of each peripheral to disable it's clock
/// mask whenever it is idle.
///
/// A special note here regarding the PDCA (Peripheral DMA Controller) clock.
/// If the core deep sleeps while a DMA operation is active, it is transparently paused
/// and resumed when the core wakes again. If a peripheral needs a DMA operation to complete
/// before sleeping, the peripheral should inhibit sleep. The rationale here is to allow deep
/// sleep for an I2C Slave peripheral configured to use DMA.
///
/// We also special case GPIO (which is in PBCMASK), and just see if any interrupts are pending
/// through the INTERRUPT_COUNT variable.
pub fn deep_sleep_ready() -> bool {
// HSB clocks that can be enabled and the core is permitted to enter deep sleep.
// added by us: ClockMaskHsb::PDCA::SET
// default: ClockMaskHsb::FLASHCALW::SET
// added by us: ClockMaskHsb::FLASHCALW_PICOCACHE::SET
// default: ClockMaskHsb::APBA_BRIDGE::SET
// default: ClockMaskHsb::APBB_BRIDGE::SET
// default: ClockMaskHsb::APBC_BRIDGE::SET
// default: ClockMaskHsb::APBD_BRIDGE::SET
let deep_sleep_hsbmask: FieldValue<u32, ClockMaskHsb::Register> = ClockMaskHsb::PDCA::SET
+ ClockMaskHsb::FLASHCALW::SET
+ ClockMaskHsb::FLASHCALW_PICOCACHE::SET
+ ClockMaskHsb::APBA_BRIDGE::SET
+ ClockMaskHsb::APBB_BRIDGE::SET
+ ClockMaskHsb::APBC_BRIDGE::SET
+ ClockMaskHsb::APBD_BRIDGE::SET;
// PBA clocks that can be enabled and the core is permitted to enter deep sleep.
// added by us: ClockMaskPba::TWIS0::SET
// added by us: ClockMaskPba::TWIS1::SET
let deep_sleep_pbamask: FieldValue<u32, ClockMaskPba::Register> =
ClockMaskPba::TWIS0::SET + ClockMaskPba::TWIS1::SET;
// PBB clocks that can be enabled and the core is permitted to enter deep sleep.
// default: ClockMaskPbb::FLASHCALW::SET
// added by us: ClockMaskPbb::HRAMC1::SET
// added by us: ClockMaskPbb::PDCA::SET
let deep_sleep_pbbmask: FieldValue<u32, ClockMaskPbb::Register> =
ClockMaskPbb::FLASHCALW::SET + ClockMaskPbb::HRAMC1::SET + ClockMaskPbb::PDCA::SET;
let hsb = PM_REGS.hsbmask.get() & !deep_sleep_hsbmask.mask() == 0;
let pba = PM_REGS.pbamask.get() & !deep_sleep_pbamask.mask() == 0;
let pbb = PM_REGS.pbbmask.get() & !deep_sleep_pbbmask.mask() == 0;
let gpio = gpio::INTERRUPT_COUNT.load(Ordering::Relaxed) == 0;
hsb && pba && pbb && gpio
}
impl ClockInterface for Clock {
fn is_enabled(&self) -> bool {
match *self {
Clock::HSB(v) => get_clock!(HSB_MASK_OFFSET: hsbmask & (1 << (v as u32))),
Clock::PBA(v) => get_clock!(PBA_MASK_OFFSET: pbamask & (1 << (v as u32))),
Clock::PBB(v) => get_clock!(PBB_MASK_OFFSET: pbbmask & (1 << (v as u32))),
Clock::PBC(v) => get_clock!(PBC_MASK_OFFSET: pbcmask & (1 << (v as u32))),
Clock::PBD(v) => get_clock!(PBD_MASK_OFFSET: pbdmask & (1 << (v as u32))),
}
}
fn enable(&self) {
match *self {
Clock::HSB(v) => mask_clock!(HSB_MASK_OFFSET: hsbmask | 1 << (v as u32)),
Clock::PBA(v) => mask_clock!(PBA_MASK_OFFSET: pbamask | 1 << (v as u32)),
Clock::PBB(v) => mask_clock!(PBB_MASK_OFFSET: pbbmask | 1 << (v as u32)),
Clock::PBC(v) => mask_clock!(PBC_MASK_OFFSET: pbcmask | 1 << (v as u32)),
Clock::PBD(v) => mask_clock!(PBD_MASK_OFFSET: pbdmask | 1 << (v as u32)),
}
}
fn disable(&self) {
match *self {
Clock::HSB(v) => mask_clock!(HSB_MASK_OFFSET: hsbmask & !(1 << (v as u32))),
Clock::PBA(v) => mask_clock!(PBA_MASK_OFFSET: pbamask & !(1 << (v as u32))),
Clock::PBB(v) => mask_clock!(PBB_MASK_OFFSET: pbbmask & !(1 << (v as u32))),
Clock::PBC(v) => mask_clock!(PBC_MASK_OFFSET: pbcmask & !(1 << (v as u32))),
Clock::PBD(v) => mask_clock!(PBD_MASK_OFFSET: pbdmask & !(1 << (v as u32))),
}
}
}
pub fn enable_clock(clock: Clock) {
match clock {
Clock::HSB(v) => mask_clock!(HSB_MASK_OFFSET: hsbmask | 1 << (v as u32)),
Clock::PBA(v) => mask_clock!(PBA_MASK_OFFSET: pbamask | 1 << (v as u32)),
Clock::PBB(v) => mask_clock!(PBB_MASK_OFFSET: pbbmask | 1 << (v as u32)),
Clock::PBC(v) => mask_clock!(PBC_MASK_OFFSET: pbcmask | 1 << (v as u32)),
Clock::PBD(v) => mask_clock!(PBD_MASK_OFFSET: pbdmask | 1 << (v as u32)),
}
}
pub fn disable_clock(clock: Clock) {
match clock {
Clock::HSB(v) => mask_clock!(HSB_MASK_OFFSET: hsbmask & !(1 << (v as u32))),
Clock::PBA(v) => mask_clock!(PBA_MASK_OFFSET: pbamask & !(1 << (v as u32))),
Clock::PBB(v) => mask_clock!(PBB_MASK_OFFSET: pbbmask & !(1 << (v as u32))),
Clock::PBC(v) => mask_clock!(PBC_MASK_OFFSET: pbcmask & !(1 << (v as u32))),
Clock::PBD(v) => mask_clock!(PBD_MASK_OFFSET: pbdmask & !(1 << (v as u32))),
}
}
pub fn is_clock_enabled(clock: Clock) -> bool {
match clock {
Clock::HSB(v) => get_clock!(HSB_MASK_OFFSET: hsbmask & (1 << (v as u32))),
Clock::PBA(v) => get_clock!(PBA_MASK_OFFSET: pbamask & (1 << (v as u32))),
Clock::PBB(v) => get_clock!(PBB_MASK_OFFSET: pbbmask & (1 << (v as u32))),
Clock::PBC(v) => get_clock!(PBC_MASK_OFFSET: pbcmask & (1 << (v as u32))),
Clock::PBD(v) => get_clock!(PBD_MASK_OFFSET: pbdmask & (1 << (v as u32))),
}
}