msp432/i2c.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
use crate::usci::{self, UsciBRegisters};
use core::cell::Cell;
use kernel::hil::i2c::{self, Error};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::StaticRef;
#[derive(Copy, Clone, PartialEq)]
pub enum Speed {
K100, // 100kHz
K375, // 375kHz
}
#[derive(Copy, Clone, PartialEq)]
enum OperatingMode {
Unconfigured,
Disabled,
Idle,
Write,
Read,
WriteReadWrite,
WriteReadRead,
}
pub struct I2c<'a> {
registers: StaticRef<UsciBRegisters>,
mode: Cell<OperatingMode>,
read_len: Cell<usize>,
write_len: Cell<usize>,
buf_idx: Cell<usize>,
buffer: TakeCell<'static, [u8]>,
master_client: OptionalCell<&'a dyn i2c::I2CHwMasterClient>,
}
impl I2c<'_> {
pub fn new(registers: StaticRef<UsciBRegisters>) -> Self {
Self {
registers,
mode: Cell::new(OperatingMode::Unconfigured),
read_len: Cell::new(0),
write_len: Cell::new(0),
buf_idx: Cell::new(0),
buffer: TakeCell::empty(),
master_client: OptionalCell::empty(),
}
}
fn set_module_to_reset(&self) {
// Set USCI module to reset in order to make a certain configurations possible
self.registers.ctlw0.modify(usci::UCBxCTLW0::UCSWRST::SET);
}
fn clear_module_reset(&self) {
// Set USCI module to reset in order to make a certain configurations possible
self.registers.ctlw0.modify(usci::UCBxCTLW0::UCSWRST::CLEAR);
// Setting the module to reset clears the enabled interrupts -> enable them again
self.enable_interrupts();
}
fn set_slave_address(&self, addr: u8) {
self.registers.i2csa.set(addr as u16);
}
fn generate_start_condition(&self) {
self.registers
.ctlw0
.modify(usci::UCBxCTLW0::UCTXSTT::GenerateSTARTCondition);
}
fn generate_stop_condition(&self) {
self.registers
.ctlw0
.modify(usci::UCBxCTLW0::UCTXSTP::GenerateSTOP);
}
fn set_stop_condition_automatically(&self, val: bool) {
if val {
self.registers
.ctlw1
.modify(usci::UCBxCTLW1::UCASTP::ByteCounterStopCondition)
} else {
self.registers.ctlw1.modify(usci::UCBxCTLW1::UCASTP::Manual);
}
}
fn enable_interrupts(&self) {
// Enable interrupts
//
// Enable NACK interrupt
// Enable RX interrupt
// Enable Stop condition interrupt
// Enable Start condition interrupt
// Enable 'arbitration lost' interrupt
self.registers.ie.modify(
usci::UCBxIE::UCNACKIE::SET
+ usci::UCBxIE::UCRXIE0::SET
+ usci::UCBxIE::UCSTPIE::SET
+ usci::UCBxIE::UCSTTIE::SET
+ usci::UCBxIE::UCALIE::SET,
);
}
fn enable_transmit_mode(&self) {
self.registers
.ctlw0
.modify(usci::UCBxCTLW0::UCTR::Transmitter);
}
fn enable_receive_mode(&self) {
self.registers.ctlw0.modify(usci::UCBxCTLW0::UCTR::Receiver);
}
fn enable_transmit_interrupt(&self) {
self.registers.ie.modify(usci::UCBxIE::UCTXIE0::SET);
}
fn disable_transmit_interrupt(&self) {
self.registers.ie.modify(usci::UCBxIE::UCTXIE0::CLEAR);
}
fn set_byte_counter(&self, val: usize) {
self.registers.tbcnt.set(val as u16);
}
fn invoke_callback(&self, status: Result<(), Error>) {
// Reset buffer index and set mode to Idle in order to start a new transfer properly
self.buf_idx.set(0);
self.mode.set(OperatingMode::Idle);
self.buffer.take().map(|buf| {
self.master_client
.map(move |cl| cl.command_complete(buf, status))
});
}
fn setup(&self) {
self.set_module_to_reset();
// Use 7 bit addresses
// Setup to master mode
// Setup to single master environment
// Configure USCI module to I2C mode
// Enable Synchronous mode
// Set clock source to SMCLK (1.5MHz)
self.registers.ctlw0.modify(
usci::UCBxCTLW0::UCSLA10::AddressSlaveWith7BitAddress
+ usci::UCBxCTLW0::UCMST::MasterMode
+ usci::UCBxCTLW0::UCMM::SingleMasterEnvironment
+ usci::UCBxCTLW0::UCMODE::I2CMode
+ usci::UCBxCTLW0::UCSYNC::SynchronousMode
+ usci::UCBxCTLW0::UCSSEL::SMCLK,
);
// Disable clock low timeout
// Send a NACK before a stop condition
// Generate the ACK bit by hardware
// Set glitch filtering to 50ns (according to I2C standard)
self.registers.ctlw1.modify(
usci::UCBxCTLW1::UCCLTO::CLEAR
+ usci::UCBxCTLW1::UCSTPNACK::NackBeforeStop
+ usci::UCBxCTLW1::UCSWACK::HardwareTriggered
+ usci::UCBxCTLW1::UCGLIT::_50ns,
);
// Don't clear the module reset here since we set the state to Disabled
self.mode.set(OperatingMode::Disabled);
}
pub fn set_speed(&self, speed: Speed) {
self.set_module_to_reset();
// SMCLK is running at 1.5MHz
// In order to achieve a speed of 100kHz or 375kHz, it's necessary to divide the clock
// by either 15 (100kHz) or 4 (375kHz)
if speed == Speed::K100 {
self.registers.brw.set(15);
} else if speed == Speed::K375 {
self.registers.brw.set(4);
}
self.clear_module_reset();
}
pub fn handle_interrupt(&self) {
let ifg = self.registers.ifg.get();
let mode = self.mode.get();
let idx = self.buf_idx.get();
// clear all interrupts
self.registers.ifg.set(0);
if (ifg & (1 << usci::UCBxIFG::UCTXIFG0.shift)) > 0 {
// TX interrupt
if idx < self.write_len.get() {
// Transmit another byte
self.buffer
.map(|buf| self.registers.txbuf.set(buf[idx] as u16));
self.buf_idx.set(idx + 1);
} else {
self.disable_transmit_interrupt();
if mode == OperatingMode::WriteReadWrite {
// Finished write part -> switch to reading
self.mode.set(OperatingMode::WriteReadRead);
self.buf_idx.set(0);
// Switch to receiving and send a restart condition
self.enable_receive_mode();
self.generate_start_condition();
if self.read_len.get() == 1 {
// In this mode the stop condition is set automatically and has to be
// requested 1 byte before the last byte was received. If only one byte will
// be received request the stop condition immediately after the start.
self.generate_stop_condition();
}
}
}
} else if (ifg & (1 << usci::UCBxIFG::UCRXIFG0.shift)) > 0 {
// RX interrupt
if idx < self.read_len.get() {
if idx == (self.read_len.get() - 1) && mode == OperatingMode::WriteReadRead {
// In this mode we don't use the byte counter to generate an automatic stop
// condition, further, the stop condition has to be set before the last byte was
// received
self.generate_stop_condition();
}
// Store received byte in buffer
self.buffer
.map(|buf| buf[idx] = self.registers.rxbuf.get() as u8);
self.buf_idx.set(idx + 1);
} else if mode == OperatingMode::WriteReadRead {
// For some reason generating a stop condition manually in receive mode doesn't
// trigger a stop condition interrupt -> invoke the callback here when all bytes
// were received
self.invoke_callback(Ok(()));
}
} else if (ifg & (1 << usci::UCBxIFG::UCSTTIFG.shift)) > 0 {
// Start condition interrupt
if mode == OperatingMode::Write || mode == OperatingMode::WriteReadWrite {
self.buffer
.map(|buf| self.registers.txbuf.set(buf[idx] as u16));
self.buf_idx.set(idx + 1);
}
} else if (ifg & (1 << usci::UCBxIFG::UCSTPIFG.shift)) > 0 {
// Stop condition interrupt
// This interrupt is the default indicator that a transaction finished, thus raise the
// callback here and prepare for another transfer
self.invoke_callback(Ok(()));
} else if (ifg & (1 << usci::UCBxIFG::UCNACKIFG.shift)) > 0 {
// NACK interrupt
// TODO: use byte counter to detect address NAK
// Cancel i2c transfer
self.generate_stop_condition();
self.invoke_callback(Err(Error::DataNak));
} else if (ifg & (1 << usci::UCBxIFG::UCALIFG.shift)) > 0 {
// Arbitration lost interrupt
// Cancel i2c transfer
self.generate_stop_condition();
self.invoke_callback(Err(Error::Busy));
} else {
panic!("I2C: unhandled interrupt, ifg: {}", ifg);
}
}
}
impl<'a> i2c::I2CMaster<'a> for I2c<'a> {
fn set_master_client(&self, master_client: &'a dyn i2c::I2CHwMasterClient) {
self.master_client.replace(master_client);
}
fn enable(&self) {
if self.mode.get() == OperatingMode::Unconfigured {
self.setup();
}
self.clear_module_reset();
self.mode.set(OperatingMode::Idle);
}
fn disable(&self) {
self.set_module_to_reset();
self.mode.set(OperatingMode::Disabled);
}
fn write(
&self,
addr: u8,
data: &'static mut [u8],
len: usize,
) -> Result<(), (Error, &'static mut [u8])> {
if self.mode.get() != OperatingMode::Idle {
// Module is busy or not activated
return Err((Error::Busy, data));
}
self.buffer.replace(data);
self.write_len.set(len);
// Set module to reset since some of the registers cannot be modified in running state
self.set_module_to_reset();
// Setup the byte counter in order to automatically generate a stop condition after the
// desired number of bytes were transmitted
self.set_byte_counter(len);
// Create stop condition automatically after the number of bytes in the byte counter
// register were transmitted
self.set_stop_condition_automatically(true);
self.clear_module_reset();
self.set_slave_address(addr);
self.enable_transmit_mode();
self.enable_transmit_interrupt();
self.mode.set(OperatingMode::Write);
// Start transfer
self.generate_start_condition();
Ok(())
}
fn read(
&self,
addr: u8,
buffer: &'static mut [u8],
len: usize,
) -> Result<(), (Error, &'static mut [u8])> {
if self.mode.get() != OperatingMode::Idle {
// Module is busy or not activated
return Err((Error::Busy, buffer));
}
self.buffer.replace(buffer);
self.read_len.set(len);
// Set module to reset since some of the registers cannot be modified in running state
self.set_module_to_reset();
// Setup the byte counter in order to automatically generate a stop condition after the
// desired number of bytes were transmitted
self.set_byte_counter(len);
// Generate a stop condition automatically after the number of bytes in the byte counter
// register were transmitted
self.set_stop_condition_automatically(true);
self.clear_module_reset();
self.set_slave_address(addr);
self.enable_receive_mode();
self.mode.set(OperatingMode::Read);
// Start transfer
self.generate_start_condition();
Ok(())
}
fn write_read(
&self,
addr: u8,
data: &'static mut [u8],
write_len: usize,
read_len: usize,
) -> Result<(), (Error, &'static mut [u8])> {
if self.mode.get() != OperatingMode::Idle {
// Module is busy or not activated
return Err((Error::Busy, data));
}
self.buffer.replace(data);
self.write_len.set(write_len);
self.read_len.set(read_len);
// Set module to reset since some of the registers cannot be modified in running state
self.set_module_to_reset();
// Disable generating a stop condition automatically since after the write, a repeated
// start condition will be generated in order to continue reading from the slave
self.set_stop_condition_automatically(false);
self.clear_module_reset();
self.set_slave_address(addr);
self.enable_transmit_mode();
self.enable_transmit_interrupt();
self.mode.set(OperatingMode::WriteReadWrite);
// Start transfer
self.generate_start_condition();
Ok(())
}
}