kernel/hil/
time.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Hardware agnostic interfaces for time and timers within the Tock
//! kernel.
//!
//! These traits are designed to be able encompass the wide
//! variety of hardware counters in a general yet efficient way. They
//! abstract the frequency of a counter through the `Frequency` trait
//! and the width of a time value through the `Ticks`
//! trait. Higher-level software abstractions should generally rely on
//! standard and common implementations of these traits (e.g.. `u32`
//! ticks and 16MHz frequency).  Hardware counter implementations and
//! peripherals can represent the actual hardware units an translate
//! into these more general ones.

use crate::ErrorCode;
use core::cmp::Ordering;
use core::fmt;

/// An integer type defining the width of a time value, which allows
/// clients to know when wraparound will occur.

pub trait Ticks: Clone + Copy + From<u32> + fmt::Debug + Ord + PartialOrd + Eq {
    /// Width of the actual underlying timer in bits.
    ///
    /// The maximum value that *will* be attained by this timer should
    /// be `(2 ** width) - 1`. In other words, the timer will wrap at
    /// exactly `width` bits, and then continue counting at `0`.
    ///
    /// The return value is a `u32`, in accordance with the bit widths
    /// specified using the BITS associated const on Rust integer
    /// types.
    fn width() -> u32;

    /// Converts the type into a `usize`, stripping the higher bits
    /// it if it is larger than `usize` and filling the higher bits
    /// with 0 if it is smaller than `usize`.
    fn into_usize(self) -> usize;

    /// The amount of bits required to left-justify this ticks value
    /// range (filling the lower bits with `0`) for it wrap at `(2 **
    /// usize::BITS) - 1` bits. For timers with a `width` larger than
    /// usize, this value will be `0` (i.e., they can simply be
    /// truncated to usize::BITS bits).
    fn usize_padding() -> u32 {
        usize::BITS.saturating_sub(Self::width())
    }

    /// Converts the type into a `usize`, left-justified and
    /// right-padded with `0` such that it is guaranteed to wrap at
    /// `(2 ** usize::BITS) - 1`. If it is larger than usize::BITS
    /// bits, any higher bits are stripped.
    ///
    /// The resulting tick rate will possibly be higher (multiplied by
    /// `2 ** usize_padding()`). Use `usize_left_justified_scale_freq`
    /// to convert the underlying timer's frequency into the padded
    /// ticks frequency in Hertz.
    fn into_usize_left_justified(self) -> usize {
        self.into_usize() << Self::usize_padding()
    }

    /// Convert the generic [`Frequency`] argument into a frequency
    /// (Hertz) describing a left-justified ticks value as returned by
    /// [`Ticks::into_usize_left_justified`].
    fn usize_left_justified_scale_freq<F: Frequency>() -> u32 {
        F::frequency() << Self::usize_padding()
    }

    /// Converts the type into a `u32`, stripping the higher bits
    /// it if it is larger than `u32` and filling the higher bits
    /// with 0 if it is smaller than `u32`. Included as a simple
    /// helper since Tock uses `u32` pervasively and most platforms
    /// are 32 bits.
    fn into_u32(self) -> u32;

    /// The amount of bits required to left-justify this ticks value
    /// range (filling the lower bits with `0`) for it wrap at `(2 **
    /// 32) - 1` bits. For timers with a `width` larger than 32, this
    /// value will be `0` (i.e., they can simply be truncated to
    /// 32-bits).
    ///
    /// The return value is a `u32`, in accordance with the bit widths
    /// specified using the BITS associated const on Rust integer
    /// types.
    fn u32_padding() -> u32 {
        u32::BITS.saturating_sub(Self::width())
    }

    /// Converts the type into a `u32`, left-justified and
    /// right-padded with `0` such that it is guaranteed to wrap at
    /// `(2 ** 32) - 1`. If it is larger than 32-bits, any higher bits
    /// are stripped.
    ///
    /// The resulting tick rate will possibly be higher (multiplied by
    /// `2 ** u32_padding()`). Use `u32_left_justified_scale_freq` to
    /// convert the underlying timer's frequency into the padded ticks
    /// frequency in Hertz.
    fn into_u32_left_justified(self) -> u32 {
        self.into_u32() << Self::u32_padding()
    }

    /// Convert the generic [`Frequency`] argument into a frequency
    /// (Hertz) describing a left-justified ticks value as returned by
    /// [`Ticks::into_u32_left_justified`].
    fn u32_left_justified_scale_freq<F: Frequency>() -> u32 {
        F::frequency() << Self::u32_padding()
    }

    /// Add two values, wrapping around on overflow using standard
    /// unsigned arithmetic.
    fn wrapping_add(self, other: Self) -> Self;
    /// Subtract two values, wrapping around on underflow using standard
    /// unsigned arithmetic.
    fn wrapping_sub(self, other: Self) -> Self;

    /// Returns whether the value is in the range of [`start, `end`) using
    /// unsigned arithmetic and considering wraparound. It returns `true`
    /// if, incrementing from `start`, the value will be reached before `end`.
    /// Put another way, it returns `(self - start) < (end - start)` in
    /// unsigned arithmetic.
    fn within_range(self, start: Self, end: Self) -> bool;

    /// Returns the maximum value of this type, which should be (2^width)-1.
    fn max_value() -> Self;

    /// Returns the half the maximum value of this type, which should be (2^width-1).
    fn half_max_value() -> Self;

    /// Converts the specified val into this type if it fits otherwise the
    /// `max_value()` is returned
    fn from_or_max(val: u64) -> Self;

    /// Scales the ticks by the specified numerator and denominator. If the resulting value would
    /// be greater than u32,`u32::MAX` is returned instead
    fn saturating_scale(self, numerator: u32, denominator: u32) -> u32;
}

/// Represents a clock's frequency in Hz, allowing code to transform
/// between computer time units and wall clock time. It is typically
/// an associated type for an implementation of the `Time` trait.
pub trait Frequency {
    /// Returns frequency in Hz.
    fn frequency() -> u32;
}

/// Represents a moment in time, obtained by calling `now`.
pub trait Time {
    /// The number of ticks per second
    type Frequency: Frequency;
    /// The width of a time value
    type Ticks: Ticks;

    /// Returns a timestamp. Depending on the implementation of
    /// Time, this could represent either a static timestamp or
    /// a sample of a counter; if an implementation relies on
    /// it being constant or changing it should use `Timestamp`
    /// or `Counter`.
    fn now(&self) -> Self::Ticks;
}

pub trait ConvertTicks<T: Ticks> {
    /// Returns the number of ticks in the provided number of seconds,
    /// rounding down any fractions. If the value overflows Ticks it
    /// returns `Ticks::max_value()`.
    fn ticks_from_seconds(&self, s: u32) -> T;

    /// Returns the number of ticks in the provided number of milliseconds,
    /// rounding down any fractions. If the value overflows Ticks it
    /// returns `Ticks::max_value()`.

    fn ticks_from_ms(&self, ms: u32) -> T;

    /// Returns the number of ticks in the provided number of microseconds,
    /// rounding down any fractions. If the value overflows Ticks it
    /// returns `Ticks::max_value()`.
    fn ticks_from_us(&self, us: u32) -> T;

    /// Returns the number of seconds in the provided number of ticks,
    /// rounding down any fractions. If the value overflows u32, `u32::MAX`
    /// is returned,
    fn ticks_to_seconds(&self, tick: T) -> u32;

    /// Returns the number of milliseconds in the provided number of ticks,
    /// rounding down any fractions. If the value overflows u32, `u32::MAX`
    /// is returned,
    fn ticks_to_ms(&self, tick: T) -> u32;

    /// Returns the number of microseconds in the provided number of ticks,
    /// rounding down any fractions. If the value overflows u32, `u32::MAX`
    /// is returned,
    fn ticks_to_us(&self, tick: T) -> u32;
}

impl<T: Time + ?Sized> ConvertTicks<<T as Time>::Ticks> for T {
    #[inline]
    fn ticks_from_seconds(&self, s: u32) -> <T as Time>::Ticks {
        let val = <T as Time>::Frequency::frequency() as u64 * s as u64;
        <T as Time>::Ticks::from_or_max(val)
    }
    #[inline]
    fn ticks_from_ms(&self, ms: u32) -> <T as Time>::Ticks {
        let val = <T as Time>::Frequency::frequency() as u64 * ms as u64;
        <T as Time>::Ticks::from_or_max(val / 1_000)
    }
    #[inline]
    fn ticks_from_us(&self, us: u32) -> <T as Time>::Ticks {
        let val = <T as Time>::Frequency::frequency() as u64 * us as u64;
        <T as Time>::Ticks::from_or_max(val / 1_000_000)
    }

    #[inline]
    fn ticks_to_seconds(&self, tick: <T as Time>::Ticks) -> u32 {
        tick.saturating_scale(1, <T as Time>::Frequency::frequency())
    }
    #[inline]
    fn ticks_to_ms(&self, tick: <T as Time>::Ticks) -> u32 {
        tick.saturating_scale(1_000, <T as Time>::Frequency::frequency())
    }
    #[inline]
    fn ticks_to_us(&self, tick: <T as Time>::Ticks) -> u32 {
        tick.saturating_scale(1_000_000, <T as Time>::Frequency::frequency())
    }
}

/// Represents a static moment in time, that does not change over
/// repeated calls to `Time::now`.
pub trait Timestamp: Time {}

/// Callback handler for when a counter has overflowed past its maximum
/// value and returned to 0.
pub trait OverflowClient {
    fn overflow(&self);
}

/// Represents a free-running hardware counter that can be started and stopped.
pub trait Counter<'a>: Time {
    /// Specify the callback for when the counter overflows its maximum
    /// value (defined by `Ticks`). If there was a previously registered
    /// callback this call replaces it.
    fn set_overflow_client(&self, client: &'a dyn OverflowClient);

    /// Starts the free-running hardware counter. Valid `Result<(), ErrorCode>` values are:
    ///   - `Ok(())`: the counter is now running
    ///   - `Err(ErrorCode::OFF)`: underlying clocks or other hardware resources
    ///   are not on, such that the counter cannot start.
    ///   - `Err(ErrorCode::FAIL)`: unidentified failure, counter is not running.
    /// After a successful call to `start`, `is_running` MUST return true.
    fn start(&self) -> Result<(), ErrorCode>;

    /// Stops the free-running hardware counter. Valid `Result<(), ErrorCode>` values are:
    ///   - `Ok(())`: the counter is now stopped. No further
    ///   overflow callbacks will be invoked.
    ///   - `Err(ErrorCode::BUSY)`: the counter is in use in a way that means it
    ///   cannot be stopped and is busy.
    ///   - `Err(ErrorCode::FAIL)`: unidentified failure, counter is running.
    /// After a successful call to `stop`, `is_running` MUST return false.
    fn stop(&self) -> Result<(), ErrorCode>;

    /// Resets the counter to 0. This may introduce jitter on the counter.
    /// Resetting the counter has no effect on any pending overflow callbacks.
    /// If a client needs to reset and clear pending callbacks it should
    /// call `stop` before `reset`.
    /// Valid `Result<(), ErrorCode>` values are:
    ///    - `Ok(())`: the counter was reset to 0.
    ///    - `Err(ErrorCode::FAIL)`: the counter was not reset to 0.
    fn reset(&self) -> Result<(), ErrorCode>;

    /// Returns whether the counter is currently running.
    fn is_running(&self) -> bool;
}

/// Callback handler for when an Alarm fires (a `Counter` reaches a specific
/// value).
pub trait AlarmClient {
    /// Callback indicating the alarm time has been reached. The alarm
    /// MUST be disabled when this is called. If a new alarm is needed,
    /// the client can call `Alarm::set_alarm`.
    fn alarm(&self);
}

/// Interface for receiving notification when a particular time
/// (`Counter` value) is reached.
///
/// Clients use the [`AlarmClient`](trait.AlarmClient.html) trait to
/// signal when the counter has reached a pre-specified value set in
/// [`set_alarm`](#tymethod.set_alarm). Alarms are intended for
/// low-level time needs that require precision (i.e., firing on a
/// precise clock tick). Software that needs more functionality but
/// can tolerate some jitter should use the `Timer` trait instead.
pub trait Alarm<'a>: Time {
    /// Specify the callback for when the counter reaches the alarm
    /// value. If there was a previously installed callback this call
    /// replaces it.
    fn set_alarm_client(&self, client: &'a dyn AlarmClient);

    /// Specify when the callback should be called and enable it. The
    /// callback will be enqueued when `Time::now() == reference + dt`. The
    /// callback itself may not run exactly at this time, due to delays.
    /// However, it it assured to execute *after* `reference + dt`: it can
    /// be delayed but will never fire early. The method takes `reference`
    /// and `dt` rather than a single value denoting the counter value so it
    /// can distinguish between alarms which have very recently already
    /// passed and those in the far far future (see #1651).
    fn set_alarm(&self, reference: Self::Ticks, dt: Self::Ticks);

    /// Return the current alarm value. This is undefined at boot and
    /// otherwise returns `now + dt` from the last call to `set_alarm`.
    fn get_alarm(&self) -> Self::Ticks;

    /// Disable the alarm and stop it from firing in the future.
    /// Valid `Result<(), ErrorCode>` codes are:
    ///   - `Ok(())` the alarm has been disarmed and will not invoke
    ///   the callback in the future
    ///   - `Err(ErrorCode::FAIL)` the alarm could not be disarmed and will invoke
    ///   the callback in the future
    fn disarm(&self) -> Result<(), ErrorCode>;

    /// Returns whether the alarm is currently armed. Note that this
    /// does not reliably indicate whether there will be a future
    /// callback: it is possible that the alarm has triggered (and
    /// disarmed) and a callback is pending and has not been called yet.
    /// In this case it possible for `is_armed` to return false yet to
    /// receive a callback.
    fn is_armed(&self) -> bool;

    /// Return the minimum dt value that is supported. Any dt smaller than
    /// this will automatically be increased to this minimum value.
    fn minimum_dt(&self) -> Self::Ticks;
}

/// Callback handler for when a timer fires.
pub trait TimerClient {
    fn timer(&self);
}

/// Interface for controlling callbacks when an interval has passed.
///
/// This interface is intended for software that requires repeated
/// and/or one-shot timers and is willing to experience some jitter or
/// imprecision in return for a simpler API that doesn't require
/// actual calculation of counter values. Software that requires more
/// precisely timed callbacks should use the `Alarm` trait instead.
pub trait Timer<'a>: Time {
    /// Specify the callback to invoke when the timer interval expires.
    /// If there was a previously installed callback this call replaces it.
    fn set_timer_client(&self, client: &'a dyn TimerClient);

    /// Start a one-shot timer that will invoke the callback at least
    /// `interval` ticks in the future. If there is a timer currently pending,
    /// calling this cancels that previous timer. After a callback is invoked
    /// for a one shot timer, the timer MUST NOT invoke the callback again
    /// unless a new timer is started (either with repeating or one shot).
    /// Returns the actual interval for the timer that was registered.
    /// This MUST NOT be smaller than `interval` but MAY be larger.
    fn oneshot(&self, interval: Self::Ticks) -> Self::Ticks;

    /// Start a repeating timer that will invoke the callback every
    /// `interval` ticks in the future. If there is a timer currently
    /// pending, calling this cancels that previous timer.
    /// Returns the actual interval for the timer that was registered.
    /// This MUST NOT be smaller than `interval` but MAY be larger.
    fn repeating(&self, interval: Self::Ticks) -> Self::Ticks;

    /// Return the interval of the last requested timer.
    fn interval(&self) -> Option<Self::Ticks>;

    /// Return if the last requested timer is a one-shot timer.
    fn is_oneshot(&self) -> bool;

    /// Return if the last requested timer is a repeating timer.
    fn is_repeating(&self) -> bool;

    /// Return how many ticks are remaining until the next callback,
    /// or None if the timer is disabled.  This call is useful because
    /// there may be non-negligible delays between when a timer was
    /// requested and it was actually scheduled. Therefore, since a
    /// timer's start might be delayed slightly, the time remaining
    /// might be slightly higher than one would expect if one
    /// calculated it right before the call to start the timer.
    fn time_remaining(&self) -> Option<Self::Ticks>;

    /// Returns whether there is currently a timer enabled and so a callback
    /// will be expected in the future. If `is_enabled` returns false then
    /// the implementation MUST NOT invoke a callback until a call to `oneshot`
    /// or `repeating` restarts the timer.
    fn is_enabled(&self) -> bool;

    /// Cancel the current timer, if any. Value `Result<(), ErrorCode>` values are:
    ///  - `Ok(())`: no callback will be invoked in the future.
    ///  - `Err(ErrorCode::FAIL)`: the timer could not be cancelled and a callback
    ///  will be invoked in the future.
    fn cancel(&self) -> Result<(), ErrorCode>;
}

// The following "frequencies" are represented as variant-less enums. Because
// they can never be constructed, it forces them to be used purely as
// type-markers which are guaranteed to be elided at runtime.

/// 100MHz `Frequency`
#[derive(Debug)]
pub enum Freq100MHz {}
impl Frequency for Freq100MHz {
    fn frequency() -> u32 {
        100_000_000
    }
}

/// 16MHz `Frequency`
#[derive(Debug)]
pub enum Freq16MHz {}
impl Frequency for Freq16MHz {
    fn frequency() -> u32 {
        16_000_000
    }
}

/// 10MHz `Frequency`
pub enum Freq10MHz {}
impl Frequency for Freq10MHz {
    fn frequency() -> u32 {
        10_000_000
    }
}

/// 1MHz `Frequency`
#[derive(Debug)]
pub enum Freq1MHz {}
impl Frequency for Freq1MHz {
    fn frequency() -> u32 {
        1_000_000
    }
}

/// 32.768KHz `Frequency`
#[derive(Debug)]
pub enum Freq32KHz {}
impl Frequency for Freq32KHz {
    fn frequency() -> u32 {
        32_768
    }
}

/// 16KHz `Frequency`
#[derive(Debug)]
pub enum Freq16KHz {}
impl Frequency for Freq16KHz {
    fn frequency() -> u32 {
        16_000
    }
}

/// 1KHz `Frequency`
#[derive(Debug)]
pub enum Freq1KHz {}
impl Frequency for Freq1KHz {
    fn frequency() -> u32 {
        1_000
    }
}

/// u32 `Ticks`
#[derive(Clone, Copy, Debug)]
pub struct Ticks32(u32);

impl From<u32> for Ticks32 {
    fn from(val: u32) -> Self {
        Ticks32(val)
    }
}

impl Ticks for Ticks32 {
    fn width() -> u32 {
        32
    }

    fn into_usize(self) -> usize {
        self.0 as usize
    }

    fn into_u32(self) -> u32 {
        self.0
    }

    fn wrapping_add(self, other: Self) -> Self {
        Ticks32(self.0.wrapping_add(other.0))
    }

    fn wrapping_sub(self, other: Self) -> Self {
        Ticks32(self.0.wrapping_sub(other.0))
    }

    fn within_range(self, start: Self, end: Self) -> bool {
        self.wrapping_sub(start).0 < end.wrapping_sub(start).0
    }

    /// Returns the maximum value of this type, which should be (2^width)-1.
    fn max_value() -> Self {
        Ticks32(0xFFFFFFFF)
    }

    /// Returns the half the maximum value of this type, which should be (2^width-1).
    fn half_max_value() -> Self {
        Self(1 + (Self::max_value().0 / 2))
    }

    #[inline]
    fn from_or_max(val: u64) -> Self {
        if val < Self::max_value().0 as u64 {
            Self::from(val as u32)
        } else {
            Self::max_value()
        }
    }

    #[inline]
    fn saturating_scale(self, numerator: u32, denominator: u32) -> u32 {
        let scaled = self.0 as u64 * numerator as u64 / denominator as u64;
        if scaled < u32::MAX as u64 {
            scaled as u32
        } else {
            u32::MAX
        }
    }
}

impl PartialOrd for Ticks32 {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Ticks32 {
    fn cmp(&self, other: &Self) -> Ordering {
        self.0.cmp(&other.0)
    }
}

impl PartialEq for Ticks32 {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl Eq for Ticks32 {}

/// 24-bit `Ticks`
#[derive(Clone, Copy, Debug)]
pub struct Ticks24(u32);

impl Ticks24 {
    pub const MASK: u32 = 0x00FFFFFF;
}

impl From<u32> for Ticks24 {
    fn from(val: u32) -> Self {
        Ticks24(val & Self::MASK)
    }
}

impl Ticks for Ticks24 {
    fn width() -> u32 {
        24
    }

    fn into_usize(self) -> usize {
        self.0 as usize
    }

    fn into_u32(self) -> u32 {
        self.0
    }

    fn wrapping_add(self, other: Self) -> Self {
        Ticks24(self.0.wrapping_add(other.0) & Self::MASK)
    }

    fn wrapping_sub(self, other: Self) -> Self {
        Ticks24(self.0.wrapping_sub(other.0) & Self::MASK)
    }

    fn within_range(self, start: Self, end: Self) -> bool {
        self.wrapping_sub(start).0 < end.wrapping_sub(start).0
    }

    /// Returns the maximum value of this type, which should be (2^width)-1.
    fn max_value() -> Self {
        Ticks24(Self::MASK)
    }

    /// Returns the half the maximum value of this type, which should be (2^width-1).
    fn half_max_value() -> Self {
        Self(1 + (Self::max_value().0 / 2))
    }

    #[inline]
    fn from_or_max(val: u64) -> Self {
        if val < Self::max_value().0 as u64 {
            Self::from(val as u32)
        } else {
            Self::max_value()
        }
    }

    #[inline]
    fn saturating_scale(self, numerator: u32, denominator: u32) -> u32 {
        let scaled = self.0 as u64 * numerator as u64 / denominator as u64;
        if scaled < u32::MAX as u64 {
            scaled as u32
        } else {
            u32::MAX
        }
    }
}

impl PartialOrd for Ticks24 {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Ticks24 {
    fn cmp(&self, other: &Self) -> Ordering {
        self.0.cmp(&other.0)
    }
}

impl PartialEq for Ticks24 {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl Eq for Ticks24 {}

/// 16-bit `Ticks`
#[derive(Clone, Copy, Debug)]
pub struct Ticks16(u16);

impl From<u16> for Ticks16 {
    fn from(val: u16) -> Self {
        Ticks16(val)
    }
}

impl From<u32> for Ticks16 {
    fn from(val: u32) -> Self {
        Ticks16((val & 0xffff) as u16)
    }
}

impl Ticks16 {
    pub fn into_u16(self) -> u16 {
        self.0
    }
}

impl Ticks for Ticks16 {
    fn width() -> u32 {
        16
    }

    fn into_usize(self) -> usize {
        self.0 as usize
    }

    fn into_u32(self) -> u32 {
        self.0 as u32
    }

    fn wrapping_add(self, other: Self) -> Self {
        Ticks16(self.0.wrapping_add(other.0))
    }

    fn wrapping_sub(self, other: Self) -> Self {
        Ticks16(self.0.wrapping_sub(other.0))
    }

    fn within_range(self, start: Self, end: Self) -> bool {
        self.wrapping_sub(start).0 < end.wrapping_sub(start).0
    }

    /// Returns the maximum value of this type, which should be (2^width)-1.
    fn max_value() -> Self {
        Ticks16(0xFFFF)
    }

    /// Returns the half the maximum value of this type, which should be (2^width-1).
    fn half_max_value() -> Self {
        Self(1 + (Self::max_value().0 / 2))
    }

    #[inline]
    fn from_or_max(val: u64) -> Self {
        if val < Self::max_value().0 as u64 {
            Self::from(val as u32)
        } else {
            Self::max_value()
        }
    }

    #[inline]
    fn saturating_scale(self, numerator: u32, denominator: u32) -> u32 {
        let scaled = self.0 as u64 * numerator as u64 / denominator as u64;
        if scaled < u32::MAX as u64 {
            scaled as u32
        } else {
            u32::MAX
        }
    }
}

impl PartialOrd for Ticks16 {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Ticks16 {
    fn cmp(&self, other: &Self) -> Ordering {
        self.0.cmp(&other.0)
    }
}

impl PartialEq for Ticks16 {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl Eq for Ticks16 {}

/// 64-bit `Ticks`
#[derive(Clone, Copy, Debug)]
pub struct Ticks64(u64);

impl Ticks64 {
    pub fn into_u64(self) -> u64 {
        self.0
    }
}

impl From<u32> for Ticks64 {
    fn from(val: u32) -> Self {
        Ticks64(val as u64)
    }
}

impl From<u64> for Ticks64 {
    fn from(val: u64) -> Self {
        Ticks64(val)
    }
}

impl Ticks for Ticks64 {
    fn width() -> u32 {
        64
    }

    fn into_usize(self) -> usize {
        self.0 as usize
    }

    fn into_u32(self) -> u32 {
        self.0 as u32
    }

    fn wrapping_add(self, other: Self) -> Self {
        Ticks64(self.0.wrapping_add(other.0))
    }

    fn wrapping_sub(self, other: Self) -> Self {
        Ticks64(self.0.wrapping_sub(other.0))
    }

    fn within_range(self, start: Self, end: Self) -> bool {
        self.wrapping_sub(start).0 < end.wrapping_sub(start).0
    }

    /// Returns the maximum value of this type, which should be (2^width)-1.
    fn max_value() -> Self {
        Ticks64(!0u64)
    }

    /// Returns the half the maximum value of this type, which should be (2^width-1).
    fn half_max_value() -> Self {
        Self(1 + (Self::max_value().0 / 2))
    }

    #[inline]
    fn from_or_max(val: u64) -> Self {
        Self(val)
    }

    #[inline]
    fn saturating_scale(self, num: u32, den: u32) -> u32 {
        let scaled = self.0.saturating_mul(num as u64) / den as u64;
        if scaled < u32::MAX as u64 {
            scaled as u32
        } else {
            u32::MAX
        }
    }
}

impl PartialOrd for Ticks64 {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Ticks64 {
    fn cmp(&self, other: &Self) -> Ordering {
        self.0.cmp(&other.0)
    }
}

impl PartialEq for Ticks64 {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl Eq for Ticks64 {}

#[cfg(test)]
mod tests {
    use super::*;

    struct Test1MHz64();
    impl Time for Test1MHz64 {
        type Frequency = Freq1MHz;
        type Ticks = Ticks64;

        fn now(&self) -> Self::Ticks {
            0u32.into()
        }
    }

    #[test]
    fn test_from_ticks64() {
        let s = Test1MHz64().ticks_to_seconds(1_000_000u32.into());
        assert_eq!(s, 1);

        let ms = Test1MHz64().ticks_to_ms(1_000_000u32.into());
        assert_eq!(ms, 1_000);

        let us = Test1MHz64().ticks_to_us(1_000_000u32.into());
        assert_eq!(us, 1_000_000);

        let s = Test1MHz64().ticks_to_seconds((1_000_000u64 << 31).into());
        assert_eq!(s, 1 << 31);

        let ms = Test1MHz64().ticks_to_ms((1_000_000u64 << 31).into());
        assert_eq!(ms, !0u32);

        let us = Test1MHz64().ticks_to_us((1_000_000u64 << 31).into());
        assert_eq!(us, !0u32);
    }

    #[test]
    fn test_to_ticks64() {
        let t = Test1MHz64().ticks_from_seconds(1);
        assert_eq!(t.into_u32(), 1_000_000);

        let t = Test1MHz64().ticks_from_ms(1);
        assert_eq!(t.into_u32(), 1_000);

        let t = Test1MHz64().ticks_from_us(1);
        assert_eq!(t.into_u32(), 1);

        let t = Test1MHz64().ticks_from_seconds(1 << 31);
        assert_eq!(t.into_u64(), 1_000_000u64 << 31);
    }

    struct Test1KHz16();
    impl Time for Test1KHz16 {
        type Frequency = Freq1KHz;
        type Ticks = Ticks16;

        fn now(&self) -> Self::Ticks {
            0u32.into()
        }
    }

    #[test]
    fn test_from_ticks16() {
        let s = Test1KHz16().ticks_to_seconds(1_000u32.into());
        assert_eq!(s, 1);

        let ms = Test1KHz16().ticks_to_ms(1_000u32.into());
        assert_eq!(ms, 1_000);

        let us = Test1KHz16().ticks_to_us(1_000u32.into());
        assert_eq!(us, 1_000_000);
    }

    #[test]
    fn test_to_ticks16() {
        let t = Test1KHz16().ticks_from_seconds(1);
        assert_eq!(t.into_u32(), 1_000);

        let t = Test1KHz16().ticks_from_seconds(u32::MAX);
        assert_eq!(t.into_u32(), u16::MAX as u32);

        let t = Test1KHz16().ticks_from_seconds(66);
        assert_eq!(t.into_u32(), u16::MAX as u32);

        let t = Test1KHz16().ticks_from_seconds(65);
        assert_eq!(t.into_u32(), 65_000);

        let t = Test1KHz16().ticks_from_ms(1);
        assert_eq!(t.into_u32(), 1);

        let t = Test1KHz16().ticks_from_us(1);
        assert_eq!(t.into_u32(), 0);
    }

    struct Test1KHz24();
    impl Time for Test1KHz24 {
        type Frequency = Freq1KHz;
        type Ticks = Ticks24;

        fn now(&self) -> Self::Ticks {
            0u32.into()
        }
    }

    #[test]
    fn test_ticks24() {
        let s = Test1KHz24().ticks_to_seconds(5_000_000u32.into());
        assert_eq!(s, 5_000);

        let ms = Test1KHz24().ticks_to_ms(5_000_000u32.into());
        assert_eq!(ms, 5_000_000);

        let us = Test1KHz24().ticks_to_us(5_000_000u32.into());
        assert_eq!(us, u32::MAX);
    }

    #[test]
    fn test_dyn_object() {
        let time: &dyn Time<Frequency = Freq1KHz, Ticks = Ticks24> = &Test1KHz24();

        let s = time.ticks_to_seconds(5_000_000u32.into());
        assert_eq!(s, 5_000);

        let ms = time.ticks_to_ms(5_000_000u32.into());
        assert_eq!(ms, 5_000_000);

        let us = time.ticks_to_us(5_000_000u32.into());
        assert_eq!(us, u32::MAX);
    }
}