kernel/hil/time.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Hardware agnostic interfaces for time and timers within the Tock
//! kernel.
//!
//! These traits are designed to be able encompass the wide
//! variety of hardware counters in a general yet efficient way. They
//! abstract the frequency of a counter through the `Frequency` trait
//! and the width of a time value through the `Ticks`
//! trait. Higher-level software abstractions should generally rely on
//! standard and common implementations of these traits (e.g.. `u32`
//! ticks and 16MHz frequency). Hardware counter implementations and
//! peripherals can represent the actual hardware units an translate
//! into these more general ones.
use crate::ErrorCode;
use core::cmp::Ordering;
use core::fmt;
/// An integer type defining the width of a time value, which allows
/// clients to know when wraparound will occur.
pub trait Ticks: Clone + Copy + From<u32> + fmt::Debug + Ord + PartialOrd + Eq {
/// Width of the actual underlying timer in bits.
///
/// The maximum value that *will* be attained by this timer should
/// be `(2 ** width) - 1`. In other words, the timer will wrap at
/// exactly `width` bits, and then continue counting at `0`.
///
/// The return value is a `u32`, in accordance with the bit widths
/// specified using the BITS associated const on Rust integer
/// types.
fn width() -> u32;
/// Converts the type into a `usize`, stripping the higher bits
/// it if it is larger than `usize` and filling the higher bits
/// with 0 if it is smaller than `usize`.
fn into_usize(self) -> usize;
/// The amount of bits required to left-justify this ticks value
/// range (filling the lower bits with `0`) for it wrap at `(2 **
/// usize::BITS) - 1` bits. For timers with a `width` larger than
/// usize, this value will be `0` (i.e., they can simply be
/// truncated to usize::BITS bits).
fn usize_padding() -> u32 {
usize::BITS.saturating_sub(Self::width())
}
/// Converts the type into a `usize`, left-justified and
/// right-padded with `0` such that it is guaranteed to wrap at
/// `(2 ** usize::BITS) - 1`. If it is larger than usize::BITS
/// bits, any higher bits are stripped.
///
/// The resulting tick rate will possibly be higher (multiplied by
/// `2 ** usize_padding()`). Use `usize_left_justified_scale_freq`
/// to convert the underlying timer's frequency into the padded
/// ticks frequency in Hertz.
fn into_usize_left_justified(self) -> usize {
self.into_usize() << Self::usize_padding()
}
/// Convert the generic [`Frequency`] argument into a frequency
/// (Hertz) describing a left-justified ticks value as returned by
/// [`Ticks::into_usize_left_justified`].
fn usize_left_justified_scale_freq<F: Frequency>() -> u32 {
F::frequency() << Self::usize_padding()
}
/// Converts the type into a `u32`, stripping the higher bits
/// it if it is larger than `u32` and filling the higher bits
/// with 0 if it is smaller than `u32`. Included as a simple
/// helper since Tock uses `u32` pervasively and most platforms
/// are 32 bits.
fn into_u32(self) -> u32;
/// The amount of bits required to left-justify this ticks value
/// range (filling the lower bits with `0`) for it wrap at `(2 **
/// 32) - 1` bits. For timers with a `width` larger than 32, this
/// value will be `0` (i.e., they can simply be truncated to
/// 32-bits).
///
/// The return value is a `u32`, in accordance with the bit widths
/// specified using the BITS associated const on Rust integer
/// types.
fn u32_padding() -> u32 {
u32::BITS.saturating_sub(Self::width())
}
/// Converts the type into a `u32`, left-justified and
/// right-padded with `0` such that it is guaranteed to wrap at
/// `(2 ** 32) - 1`. If it is larger than 32-bits, any higher bits
/// are stripped.
///
/// The resulting tick rate will possibly be higher (multiplied by
/// `2 ** u32_padding()`). Use `u32_left_justified_scale_freq` to
/// convert the underlying timer's frequency into the padded ticks
/// frequency in Hertz.
fn into_u32_left_justified(self) -> u32 {
self.into_u32() << Self::u32_padding()
}
/// Convert the generic [`Frequency`] argument into a frequency
/// (Hertz) describing a left-justified ticks value as returned by
/// [`Ticks::into_u32_left_justified`].
fn u32_left_justified_scale_freq<F: Frequency>() -> u32 {
F::frequency() << Self::u32_padding()
}
/// Add two values, wrapping around on overflow using standard
/// unsigned arithmetic.
fn wrapping_add(self, other: Self) -> Self;
/// Subtract two values, wrapping around on underflow using standard
/// unsigned arithmetic.
fn wrapping_sub(self, other: Self) -> Self;
/// Returns whether the value is in the range of [`start, `end`) using
/// unsigned arithmetic and considering wraparound. It returns `true`
/// if, incrementing from `start`, the value will be reached before `end`.
/// Put another way, it returns `(self - start) < (end - start)` in
/// unsigned arithmetic.
fn within_range(self, start: Self, end: Self) -> bool;
/// Returns the maximum value of this type, which should be (2^width)-1.
fn max_value() -> Self;
/// Returns the half the maximum value of this type, which should be (2^width-1).
fn half_max_value() -> Self;
/// Converts the specified val into this type if it fits otherwise the
/// `max_value()` is returned
fn from_or_max(val: u64) -> Self;
/// Scales the ticks by the specified numerator and denominator. If the resulting value would
/// be greater than u32,`u32::MAX` is returned instead
fn saturating_scale(self, numerator: u32, denominator: u32) -> u32;
}
/// Represents a clock's frequency in Hz, allowing code to transform
/// between computer time units and wall clock time. It is typically
/// an associated type for an implementation of the `Time` trait.
pub trait Frequency {
/// Returns frequency in Hz.
fn frequency() -> u32;
}
/// Represents a moment in time, obtained by calling `now`.
pub trait Time {
/// The number of ticks per second
type Frequency: Frequency;
/// The width of a time value
type Ticks: Ticks;
/// Returns a timestamp. Depending on the implementation of
/// Time, this could represent either a static timestamp or
/// a sample of a counter; if an implementation relies on
/// it being constant or changing it should use `Timestamp`
/// or `Counter`.
fn now(&self) -> Self::Ticks;
}
pub trait ConvertTicks<T: Ticks> {
/// Returns the number of ticks in the provided number of seconds,
/// rounding down any fractions. If the value overflows Ticks it
/// returns `Ticks::max_value()`.
fn ticks_from_seconds(&self, s: u32) -> T;
/// Returns the number of ticks in the provided number of milliseconds,
/// rounding down any fractions. If the value overflows Ticks it
/// returns `Ticks::max_value()`.
fn ticks_from_ms(&self, ms: u32) -> T;
/// Returns the number of ticks in the provided number of microseconds,
/// rounding down any fractions. If the value overflows Ticks it
/// returns `Ticks::max_value()`.
fn ticks_from_us(&self, us: u32) -> T;
/// Returns the number of seconds in the provided number of ticks,
/// rounding down any fractions. If the value overflows u32, `u32::MAX`
/// is returned,
fn ticks_to_seconds(&self, tick: T) -> u32;
/// Returns the number of milliseconds in the provided number of ticks,
/// rounding down any fractions. If the value overflows u32, `u32::MAX`
/// is returned,
fn ticks_to_ms(&self, tick: T) -> u32;
/// Returns the number of microseconds in the provided number of ticks,
/// rounding down any fractions. If the value overflows u32, `u32::MAX`
/// is returned,
fn ticks_to_us(&self, tick: T) -> u32;
}
impl<T: Time + ?Sized> ConvertTicks<<T as Time>::Ticks> for T {
#[inline]
fn ticks_from_seconds(&self, s: u32) -> <T as Time>::Ticks {
let val = <T as Time>::Frequency::frequency() as u64 * s as u64;
<T as Time>::Ticks::from_or_max(val)
}
#[inline]
fn ticks_from_ms(&self, ms: u32) -> <T as Time>::Ticks {
let val = <T as Time>::Frequency::frequency() as u64 * ms as u64;
<T as Time>::Ticks::from_or_max(val / 1_000)
}
#[inline]
fn ticks_from_us(&self, us: u32) -> <T as Time>::Ticks {
let val = <T as Time>::Frequency::frequency() as u64 * us as u64;
<T as Time>::Ticks::from_or_max(val / 1_000_000)
}
#[inline]
fn ticks_to_seconds(&self, tick: <T as Time>::Ticks) -> u32 {
tick.saturating_scale(1, <T as Time>::Frequency::frequency())
}
#[inline]
fn ticks_to_ms(&self, tick: <T as Time>::Ticks) -> u32 {
tick.saturating_scale(1_000, <T as Time>::Frequency::frequency())
}
#[inline]
fn ticks_to_us(&self, tick: <T as Time>::Ticks) -> u32 {
tick.saturating_scale(1_000_000, <T as Time>::Frequency::frequency())
}
}
/// Represents a static moment in time, that does not change over
/// repeated calls to `Time::now`.
pub trait Timestamp: Time {}
/// Callback handler for when a counter has overflowed past its maximum
/// value and returned to 0.
pub trait OverflowClient {
fn overflow(&self);
}
/// Represents a free-running hardware counter that can be started and stopped.
pub trait Counter<'a>: Time {
/// Specify the callback for when the counter overflows its maximum
/// value (defined by `Ticks`). If there was a previously registered
/// callback this call replaces it.
fn set_overflow_client(&self, client: &'a dyn OverflowClient);
/// Starts the free-running hardware counter. Valid `Result<(), ErrorCode>` values are:
/// - `Ok(())`: the counter is now running
/// - `Err(ErrorCode::OFF)`: underlying clocks or other hardware resources
/// are not on, such that the counter cannot start.
/// - `Err(ErrorCode::FAIL)`: unidentified failure, counter is not running.
/// After a successful call to `start`, `is_running` MUST return true.
fn start(&self) -> Result<(), ErrorCode>;
/// Stops the free-running hardware counter. Valid `Result<(), ErrorCode>` values are:
/// - `Ok(())`: the counter is now stopped. No further
/// overflow callbacks will be invoked.
/// - `Err(ErrorCode::BUSY)`: the counter is in use in a way that means it
/// cannot be stopped and is busy.
/// - `Err(ErrorCode::FAIL)`: unidentified failure, counter is running.
/// After a successful call to `stop`, `is_running` MUST return false.
fn stop(&self) -> Result<(), ErrorCode>;
/// Resets the counter to 0. This may introduce jitter on the counter.
/// Resetting the counter has no effect on any pending overflow callbacks.
/// If a client needs to reset and clear pending callbacks it should
/// call `stop` before `reset`.
/// Valid `Result<(), ErrorCode>` values are:
/// - `Ok(())`: the counter was reset to 0.
/// - `Err(ErrorCode::FAIL)`: the counter was not reset to 0.
fn reset(&self) -> Result<(), ErrorCode>;
/// Returns whether the counter is currently running.
fn is_running(&self) -> bool;
}
/// Callback handler for when an Alarm fires (a `Counter` reaches a specific
/// value).
pub trait AlarmClient {
/// Callback indicating the alarm time has been reached. The alarm
/// MUST be disabled when this is called. If a new alarm is needed,
/// the client can call `Alarm::set_alarm`.
fn alarm(&self);
}
/// Interface for receiving notification when a particular time
/// (`Counter` value) is reached.
///
/// Clients use the [`AlarmClient`](trait.AlarmClient.html) trait to
/// signal when the counter has reached a pre-specified value set in
/// [`set_alarm`](#tymethod.set_alarm). Alarms are intended for
/// low-level time needs that require precision (i.e., firing on a
/// precise clock tick). Software that needs more functionality but
/// can tolerate some jitter should use the `Timer` trait instead.
pub trait Alarm<'a>: Time {
/// Specify the callback for when the counter reaches the alarm
/// value. If there was a previously installed callback this call
/// replaces it.
fn set_alarm_client(&self, client: &'a dyn AlarmClient);
/// Specify when the callback should be called and enable it. The
/// callback will be enqueued when `Time::now() == reference + dt`. The
/// callback itself may not run exactly at this time, due to delays.
/// However, it it assured to execute *after* `reference + dt`: it can
/// be delayed but will never fire early. The method takes `reference`
/// and `dt` rather than a single value denoting the counter value so it
/// can distinguish between alarms which have very recently already
/// passed and those in the far far future (see #1651).
fn set_alarm(&self, reference: Self::Ticks, dt: Self::Ticks);
/// Return the current alarm value. This is undefined at boot and
/// otherwise returns `now + dt` from the last call to `set_alarm`.
fn get_alarm(&self) -> Self::Ticks;
/// Disable the alarm and stop it from firing in the future.
/// Valid `Result<(), ErrorCode>` codes are:
/// - `Ok(())` the alarm has been disarmed and will not invoke
/// the callback in the future
/// - `Err(ErrorCode::FAIL)` the alarm could not be disarmed and will invoke
/// the callback in the future
fn disarm(&self) -> Result<(), ErrorCode>;
/// Returns whether the alarm is currently armed. Note that this
/// does not reliably indicate whether there will be a future
/// callback: it is possible that the alarm has triggered (and
/// disarmed) and a callback is pending and has not been called yet.
/// In this case it possible for `is_armed` to return false yet to
/// receive a callback.
fn is_armed(&self) -> bool;
/// Return the minimum dt value that is supported. Any dt smaller than
/// this will automatically be increased to this minimum value.
fn minimum_dt(&self) -> Self::Ticks;
}
/// Callback handler for when a timer fires.
pub trait TimerClient {
fn timer(&self);
}
/// Interface for controlling callbacks when an interval has passed.
///
/// This interface is intended for software that requires repeated
/// and/or one-shot timers and is willing to experience some jitter or
/// imprecision in return for a simpler API that doesn't require
/// actual calculation of counter values. Software that requires more
/// precisely timed callbacks should use the `Alarm` trait instead.
pub trait Timer<'a>: Time {
/// Specify the callback to invoke when the timer interval expires.
/// If there was a previously installed callback this call replaces it.
fn set_timer_client(&self, client: &'a dyn TimerClient);
/// Start a one-shot timer that will invoke the callback at least
/// `interval` ticks in the future. If there is a timer currently pending,
/// calling this cancels that previous timer. After a callback is invoked
/// for a one shot timer, the timer MUST NOT invoke the callback again
/// unless a new timer is started (either with repeating or one shot).
/// Returns the actual interval for the timer that was registered.
/// This MUST NOT be smaller than `interval` but MAY be larger.
fn oneshot(&self, interval: Self::Ticks) -> Self::Ticks;
/// Start a repeating timer that will invoke the callback every
/// `interval` ticks in the future. If there is a timer currently
/// pending, calling this cancels that previous timer.
/// Returns the actual interval for the timer that was registered.
/// This MUST NOT be smaller than `interval` but MAY be larger.
fn repeating(&self, interval: Self::Ticks) -> Self::Ticks;
/// Return the interval of the last requested timer.
fn interval(&self) -> Option<Self::Ticks>;
/// Return if the last requested timer is a one-shot timer.
fn is_oneshot(&self) -> bool;
/// Return if the last requested timer is a repeating timer.
fn is_repeating(&self) -> bool;
/// Return how many ticks are remaining until the next callback,
/// or None if the timer is disabled. This call is useful because
/// there may be non-negligible delays between when a timer was
/// requested and it was actually scheduled. Therefore, since a
/// timer's start might be delayed slightly, the time remaining
/// might be slightly higher than one would expect if one
/// calculated it right before the call to start the timer.
fn time_remaining(&self) -> Option<Self::Ticks>;
/// Returns whether there is currently a timer enabled and so a callback
/// will be expected in the future. If `is_enabled` returns false then
/// the implementation MUST NOT invoke a callback until a call to `oneshot`
/// or `repeating` restarts the timer.
fn is_enabled(&self) -> bool;
/// Cancel the current timer, if any. Value `Result<(), ErrorCode>` values are:
/// - `Ok(())`: no callback will be invoked in the future.
/// - `Err(ErrorCode::FAIL)`: the timer could not be cancelled and a callback
/// will be invoked in the future.
fn cancel(&self) -> Result<(), ErrorCode>;
}
// The following "frequencies" are represented as variant-less enums. Because
// they can never be constructed, it forces them to be used purely as
// type-markers which are guaranteed to be elided at runtime.
/// 100MHz `Frequency`
#[derive(Debug)]
pub enum Freq100MHz {}
impl Frequency for Freq100MHz {
fn frequency() -> u32 {
100_000_000
}
}
/// 16MHz `Frequency`
#[derive(Debug)]
pub enum Freq16MHz {}
impl Frequency for Freq16MHz {
fn frequency() -> u32 {
16_000_000
}
}
/// 10MHz `Frequency`
pub enum Freq10MHz {}
impl Frequency for Freq10MHz {
fn frequency() -> u32 {
10_000_000
}
}
/// 1MHz `Frequency`
#[derive(Debug)]
pub enum Freq1MHz {}
impl Frequency for Freq1MHz {
fn frequency() -> u32 {
1_000_000
}
}
/// 32.768KHz `Frequency`
#[derive(Debug)]
pub enum Freq32KHz {}
impl Frequency for Freq32KHz {
fn frequency() -> u32 {
32_768
}
}
/// 16KHz `Frequency`
#[derive(Debug)]
pub enum Freq16KHz {}
impl Frequency for Freq16KHz {
fn frequency() -> u32 {
16_000
}
}
/// 1KHz `Frequency`
#[derive(Debug)]
pub enum Freq1KHz {}
impl Frequency for Freq1KHz {
fn frequency() -> u32 {
1_000
}
}
/// u32 `Ticks`
#[derive(Clone, Copy, Debug)]
pub struct Ticks32(u32);
impl From<u32> for Ticks32 {
fn from(val: u32) -> Self {
Ticks32(val)
}
}
impl Ticks for Ticks32 {
fn width() -> u32 {
32
}
fn into_usize(self) -> usize {
self.0 as usize
}
fn into_u32(self) -> u32 {
self.0
}
fn wrapping_add(self, other: Self) -> Self {
Ticks32(self.0.wrapping_add(other.0))
}
fn wrapping_sub(self, other: Self) -> Self {
Ticks32(self.0.wrapping_sub(other.0))
}
fn within_range(self, start: Self, end: Self) -> bool {
self.wrapping_sub(start).0 < end.wrapping_sub(start).0
}
/// Returns the maximum value of this type, which should be (2^width)-1.
fn max_value() -> Self {
Ticks32(0xFFFFFFFF)
}
/// Returns the half the maximum value of this type, which should be (2^width-1).
fn half_max_value() -> Self {
Self(1 + (Self::max_value().0 / 2))
}
#[inline]
fn from_or_max(val: u64) -> Self {
if val < Self::max_value().0 as u64 {
Self::from(val as u32)
} else {
Self::max_value()
}
}
#[inline]
fn saturating_scale(self, numerator: u32, denominator: u32) -> u32 {
let scaled = self.0 as u64 * numerator as u64 / denominator as u64;
if scaled < u32::MAX as u64 {
scaled as u32
} else {
u32::MAX
}
}
}
impl PartialOrd for Ticks32 {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Ticks32 {
fn cmp(&self, other: &Self) -> Ordering {
self.0.cmp(&other.0)
}
}
impl PartialEq for Ticks32 {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl Eq for Ticks32 {}
/// 24-bit `Ticks`
#[derive(Clone, Copy, Debug)]
pub struct Ticks24(u32);
impl Ticks24 {
pub const MASK: u32 = 0x00FFFFFF;
}
impl From<u32> for Ticks24 {
fn from(val: u32) -> Self {
Ticks24(val & Self::MASK)
}
}
impl Ticks for Ticks24 {
fn width() -> u32 {
24
}
fn into_usize(self) -> usize {
self.0 as usize
}
fn into_u32(self) -> u32 {
self.0
}
fn wrapping_add(self, other: Self) -> Self {
Ticks24(self.0.wrapping_add(other.0) & Self::MASK)
}
fn wrapping_sub(self, other: Self) -> Self {
Ticks24(self.0.wrapping_sub(other.0) & Self::MASK)
}
fn within_range(self, start: Self, end: Self) -> bool {
self.wrapping_sub(start).0 < end.wrapping_sub(start).0
}
/// Returns the maximum value of this type, which should be (2^width)-1.
fn max_value() -> Self {
Ticks24(Self::MASK)
}
/// Returns the half the maximum value of this type, which should be (2^width-1).
fn half_max_value() -> Self {
Self(1 + (Self::max_value().0 / 2))
}
#[inline]
fn from_or_max(val: u64) -> Self {
if val < Self::max_value().0 as u64 {
Self::from(val as u32)
} else {
Self::max_value()
}
}
#[inline]
fn saturating_scale(self, numerator: u32, denominator: u32) -> u32 {
let scaled = self.0 as u64 * numerator as u64 / denominator as u64;
if scaled < u32::MAX as u64 {
scaled as u32
} else {
u32::MAX
}
}
}
impl PartialOrd for Ticks24 {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Ticks24 {
fn cmp(&self, other: &Self) -> Ordering {
self.0.cmp(&other.0)
}
}
impl PartialEq for Ticks24 {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl Eq for Ticks24 {}
/// 16-bit `Ticks`
#[derive(Clone, Copy, Debug)]
pub struct Ticks16(u16);
impl From<u16> for Ticks16 {
fn from(val: u16) -> Self {
Ticks16(val)
}
}
impl From<u32> for Ticks16 {
fn from(val: u32) -> Self {
Ticks16((val & 0xffff) as u16)
}
}
impl Ticks16 {
pub fn into_u16(self) -> u16 {
self.0
}
}
impl Ticks for Ticks16 {
fn width() -> u32 {
16
}
fn into_usize(self) -> usize {
self.0 as usize
}
fn into_u32(self) -> u32 {
self.0 as u32
}
fn wrapping_add(self, other: Self) -> Self {
Ticks16(self.0.wrapping_add(other.0))
}
fn wrapping_sub(self, other: Self) -> Self {
Ticks16(self.0.wrapping_sub(other.0))
}
fn within_range(self, start: Self, end: Self) -> bool {
self.wrapping_sub(start).0 < end.wrapping_sub(start).0
}
/// Returns the maximum value of this type, which should be (2^width)-1.
fn max_value() -> Self {
Ticks16(0xFFFF)
}
/// Returns the half the maximum value of this type, which should be (2^width-1).
fn half_max_value() -> Self {
Self(1 + (Self::max_value().0 / 2))
}
#[inline]
fn from_or_max(val: u64) -> Self {
if val < Self::max_value().0 as u64 {
Self::from(val as u32)
} else {
Self::max_value()
}
}
#[inline]
fn saturating_scale(self, numerator: u32, denominator: u32) -> u32 {
let scaled = self.0 as u64 * numerator as u64 / denominator as u64;
if scaled < u32::MAX as u64 {
scaled as u32
} else {
u32::MAX
}
}
}
impl PartialOrd for Ticks16 {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Ticks16 {
fn cmp(&self, other: &Self) -> Ordering {
self.0.cmp(&other.0)
}
}
impl PartialEq for Ticks16 {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl Eq for Ticks16 {}
/// 64-bit `Ticks`
#[derive(Clone, Copy, Debug)]
pub struct Ticks64(u64);
impl Ticks64 {
pub fn into_u64(self) -> u64 {
self.0
}
}
impl From<u32> for Ticks64 {
fn from(val: u32) -> Self {
Ticks64(val as u64)
}
}
impl From<u64> for Ticks64 {
fn from(val: u64) -> Self {
Ticks64(val)
}
}
impl Ticks for Ticks64 {
fn width() -> u32 {
64
}
fn into_usize(self) -> usize {
self.0 as usize
}
fn into_u32(self) -> u32 {
self.0 as u32
}
fn wrapping_add(self, other: Self) -> Self {
Ticks64(self.0.wrapping_add(other.0))
}
fn wrapping_sub(self, other: Self) -> Self {
Ticks64(self.0.wrapping_sub(other.0))
}
fn within_range(self, start: Self, end: Self) -> bool {
self.wrapping_sub(start).0 < end.wrapping_sub(start).0
}
/// Returns the maximum value of this type, which should be (2^width)-1.
fn max_value() -> Self {
Ticks64(!0u64)
}
/// Returns the half the maximum value of this type, which should be (2^width-1).
fn half_max_value() -> Self {
Self(1 + (Self::max_value().0 / 2))
}
#[inline]
fn from_or_max(val: u64) -> Self {
Self(val)
}
#[inline]
fn saturating_scale(self, num: u32, den: u32) -> u32 {
let scaled = self.0.saturating_mul(num as u64) / den as u64;
if scaled < u32::MAX as u64 {
scaled as u32
} else {
u32::MAX
}
}
}
impl PartialOrd for Ticks64 {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Ticks64 {
fn cmp(&self, other: &Self) -> Ordering {
self.0.cmp(&other.0)
}
}
impl PartialEq for Ticks64 {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl Eq for Ticks64 {}
#[cfg(test)]
mod tests {
use super::*;
struct Test1MHz64();
impl Time for Test1MHz64 {
type Frequency = Freq1MHz;
type Ticks = Ticks64;
fn now(&self) -> Self::Ticks {
0u32.into()
}
}
#[test]
fn test_from_ticks64() {
let s = Test1MHz64().ticks_to_seconds(1_000_000u32.into());
assert_eq!(s, 1);
let ms = Test1MHz64().ticks_to_ms(1_000_000u32.into());
assert_eq!(ms, 1_000);
let us = Test1MHz64().ticks_to_us(1_000_000u32.into());
assert_eq!(us, 1_000_000);
let s = Test1MHz64().ticks_to_seconds((1_000_000u64 << 31).into());
assert_eq!(s, 1 << 31);
let ms = Test1MHz64().ticks_to_ms((1_000_000u64 << 31).into());
assert_eq!(ms, !0u32);
let us = Test1MHz64().ticks_to_us((1_000_000u64 << 31).into());
assert_eq!(us, !0u32);
}
#[test]
fn test_to_ticks64() {
let t = Test1MHz64().ticks_from_seconds(1);
assert_eq!(t.into_u32(), 1_000_000);
let t = Test1MHz64().ticks_from_ms(1);
assert_eq!(t.into_u32(), 1_000);
let t = Test1MHz64().ticks_from_us(1);
assert_eq!(t.into_u32(), 1);
let t = Test1MHz64().ticks_from_seconds(1 << 31);
assert_eq!(t.into_u64(), 1_000_000u64 << 31);
}
struct Test1KHz16();
impl Time for Test1KHz16 {
type Frequency = Freq1KHz;
type Ticks = Ticks16;
fn now(&self) -> Self::Ticks {
0u32.into()
}
}
#[test]
fn test_from_ticks16() {
let s = Test1KHz16().ticks_to_seconds(1_000u32.into());
assert_eq!(s, 1);
let ms = Test1KHz16().ticks_to_ms(1_000u32.into());
assert_eq!(ms, 1_000);
let us = Test1KHz16().ticks_to_us(1_000u32.into());
assert_eq!(us, 1_000_000);
}
#[test]
fn test_to_ticks16() {
let t = Test1KHz16().ticks_from_seconds(1);
assert_eq!(t.into_u32(), 1_000);
let t = Test1KHz16().ticks_from_seconds(u32::MAX);
assert_eq!(t.into_u32(), u16::MAX as u32);
let t = Test1KHz16().ticks_from_seconds(66);
assert_eq!(t.into_u32(), u16::MAX as u32);
let t = Test1KHz16().ticks_from_seconds(65);
assert_eq!(t.into_u32(), 65_000);
let t = Test1KHz16().ticks_from_ms(1);
assert_eq!(t.into_u32(), 1);
let t = Test1KHz16().ticks_from_us(1);
assert_eq!(t.into_u32(), 0);
}
struct Test1KHz24();
impl Time for Test1KHz24 {
type Frequency = Freq1KHz;
type Ticks = Ticks24;
fn now(&self) -> Self::Ticks {
0u32.into()
}
}
#[test]
fn test_ticks24() {
let s = Test1KHz24().ticks_to_seconds(5_000_000u32.into());
assert_eq!(s, 5_000);
let ms = Test1KHz24().ticks_to_ms(5_000_000u32.into());
assert_eq!(ms, 5_000_000);
let us = Test1KHz24().ticks_to_us(5_000_000u32.into());
assert_eq!(us, u32::MAX);
}
#[test]
fn test_dyn_object() {
let time: &dyn Time<Frequency = Freq1KHz, Ticks = Ticks24> = &Test1KHz24();
let s = time.ticks_to_seconds(5_000_000u32.into());
assert_eq!(s, 5_000);
let ms = time.ticks_to_ms(5_000_000u32.into());
assert_eq!(ms, 5_000_000);
let us = time.ticks_to_us(5_000_000u32.into());
assert_eq!(us, u32::MAX);
}
}