tickv/tickv.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! The TicKV implementation.
use crate::crc32;
use crate::error_codes::ErrorCode;
use crate::flash_controller::FlashController;
use crate::success_codes::SuccessCode;
use core::cell::Cell;
/// The current version of TicKV
pub const VERSION: u8 = 1;
#[derive(Clone, Copy, PartialEq)]
pub(crate) enum InitState {
/// Trying to read the key from a region
GetKeyReadRegion(usize),
/// Trying to erase a region
EraseRegion(usize),
/// Finished erasing regions
EraseComplete,
/// Trying to read a region while appending a key
AppendKeyReadRegion(usize),
}
#[derive(Clone, Copy, PartialEq)]
pub(crate) enum KeyState {
/// Trying to read the key from a region
ReadRegion(usize),
}
#[derive(Clone, Copy, PartialEq)]
pub(crate) enum RubbishState {
ReadRegion(usize, usize),
EraseRegion(usize, usize),
}
#[derive(Clone, Copy, PartialEq)]
/// The current state machine when trying to complete a previous operation.
/// This is used when returning from a complete async `FlashController` call.
pub(crate) enum State {
/// No previous state
None,
/// Init Operation
Init(InitState),
/// Appending a key
AppendKey(KeyState),
/// Getting a key
GetKey(KeyState),
/// Invalidating a key
InvalidateKey(KeyState),
/// Zeroizing a key
ZeroiseKey(KeyState),
/// Running garbage collection
GarbageCollect(RubbishState),
}
/// The struct storing all of the TicKV information.
pub struct TicKV<'a, C: FlashController<S>, const S: usize> {
/// The controller used for flash commands
pub controller: C,
flash_size: usize,
pub(crate) read_buffer: Cell<Option<&'a mut [u8; S]>>,
pub(crate) state: Cell<State>,
}
/// This is the current object header used for TicKV objects
struct ObjectHeader {
version: u8,
// In reality this is a u4.
flags: u8,
// In reality this is a u12.
len: u16,
hashed_key: u64,
}
pub(crate) const FLAGS_VALID: u8 = 8;
impl ObjectHeader {
fn new(hashed_key: u64, len: u16) -> Self {
assert!(len < 0xFFF);
Self {
version: VERSION,
flags: FLAGS_VALID,
len,
hashed_key,
}
}
}
// A list of offsets into the ObjectHeader
pub(crate) const VERSION_OFFSET: usize = 0;
pub(crate) const LEN_OFFSET: usize = 1;
pub(crate) const HASH_OFFSET: usize = 3;
pub(crate) const HEADER_LENGTH: usize = HASH_OFFSET + 8;
pub(crate) const CHECK_SUM_LEN: usize = 4;
/// The main key. A hashed version of this should be passed to
/// `initialise()`.
pub const MAIN_KEY: &[u8; 15] = b"tickv-super-key";
/// This is the main TicKV struct.
impl<'a, C: FlashController<S>, const S: usize> TicKV<'a, C, S> {
/// Create a new struct
///
/// `C`: An implementation of the `FlashController` trait
///
/// `controller`: An new struct implementing `FlashController`
/// `flash_size`: The total size of the flash used for TicKV
pub fn new(controller: C, read_buffer: &'a mut [u8; S], flash_size: usize) -> Self {
Self {
controller,
flash_size,
read_buffer: Cell::new(Some(read_buffer)),
state: Cell::new(State::None),
}
}
/// This function setups the flash region to be used as a key-value store.
/// If the region is already initialised this won't make any changes.
///
/// `hashed_main_key`: The u64 hash of the const string `MAIN_KEY`.
///
/// If the specified region has not already been setup for TicKV
/// the entire region will be erased.
///
/// On success nothing will be returned.
/// On error a `ErrorCode` will be returned.
pub fn initialise(&self, hashed_main_key: u64) -> Result<SuccessCode, ErrorCode> {
let mut buf: [u8; 0] = [0; 0];
let key_ret = match self.state.get() {
State::None => self.get_key(hashed_main_key, &mut buf),
State::Init(state) => match state {
InitState::GetKeyReadRegion(_) => self.get_key(hashed_main_key, &mut buf),
_ => Err(ErrorCode::EraseNotReady(0)),
},
_ => unreachable!(),
};
match key_ret {
Ok((ret, _len)) => Ok(ret),
Err(e) => {
match e {
ErrorCode::ReadNotReady(reg) => {
self.state
.set(State::Init(InitState::GetKeyReadRegion(reg)));
Err(ErrorCode::ReadNotReady(reg))
}
_ => {
match self.state.get() {
State::None
| State::Init(InitState::GetKeyReadRegion(_))
| State::Init(InitState::EraseRegion(_)) => {
// Erase all regions
let mut start = 0;
if let State::Init(InitState::EraseRegion(reg)) = self.state.get() {
// We already erased region reg, so move to the next one
start = reg + 1;
}
if start < (self.flash_size / S) {
for r in start..(self.flash_size / S) {
match self.controller.erase_region(r) {
Ok(()) => {}
Err(e) => {
self.state
.set(State::Init(InitState::EraseRegion(r)));
return Err(e);
}
}
}
}
self.state.set(State::Init(InitState::EraseComplete));
}
_ => {}
}
// Save the main key
match self.append_key(hashed_main_key, &buf) {
Ok(ret) => {
self.state.set(State::None);
Ok(ret)
}
Err(e) => match e {
ErrorCode::ReadNotReady(reg) => {
self.state
.set(State::Init(InitState::AppendKeyReadRegion(reg)));
Err(e)
}
ErrorCode::WriteNotReady(_) => {
self.state.set(State::None);
Ok(SuccessCode::Queued)
}
_ => Err(e),
},
}
}
}
}
}
}
/// Get region number from a hashed key
fn get_region(&self, hash: u64) -> usize {
assert_ne!(hash, 0xFFFF_FFFF_FFFF_FFFF);
assert_ne!(hash, 0);
// Determine the number of regions
let num_region = self.flash_size / S;
// Determine the block where the data should be
(hash as usize & 0xFFFF) % num_region
}
// Determine the new region offset to try.
//
// `region` is the base region. This is the default region
// for the object, this won't change per key.
// `region_offset` is the current region offset are trying to use
// If multiple attempts are required this value will be different
// on each iteration. This should be the previous return value of
// this function, or zero on the first iteration.
//
// This function will return an offset that can be applied to
// region to determine a new flash region
// Returns None if there aren't any more in range.
fn increment_region_offset(&self, region: usize, region_offset: isize) -> Option<isize> {
let mut too_big = false;
let mut too_small = false;
let mut new_offset = region_offset;
// Loop until we find a region we can use
while !too_big || !too_small {
new_offset = match new_offset {
// If this is the first iteration, just try the next region
0 => 1,
// If the offset is positive, return the negative value
new_offset if new_offset > 0 => -new_offset,
// If the offset is negative, convert to positive and increment by 1
new_offset if new_offset < 0 => -new_offset + 1,
_ => unreachable!(),
};
// Make sure our new offset is valid
if (region as isize + new_offset) > ((self.flash_size / S) - 1) as isize {
too_big = true;
continue;
}
if (region as isize + new_offset) < 0 {
too_small = true;
continue;
}
return Some(new_offset);
}
None
}
/// Find a key in some loaded region data.
///
/// On success return the offset in the region_data where the key is and the
/// total length of the key.
/// On failure return a bool indicating if the caller should keep looking in
/// neighboring regions and the error code.
fn find_key_offset(
&self,
hash: u64,
region_data: &[u8],
) -> Result<(usize, u16), (bool, ErrorCode)> {
// Determine the total size of our payload
// Split the hash
let hash = hash.to_ne_bytes();
let mut offset: usize = 0;
let mut empty: bool = true;
loop {
if offset + HEADER_LENGTH >= S {
// We have reached the end of the region
return Err((false, ErrorCode::KeyNotFound));
}
// Check to see if we have data
if *region_data
.get(offset + VERSION_OFFSET)
.ok_or((false, ErrorCode::KeyNotFound))?
!= 0xFF
{
// Mark that this region isn't empty
empty = false;
// We found a version, check that we support it
if *region_data
.get(offset + VERSION_OFFSET)
.ok_or((false, ErrorCode::KeyNotFound))?
!= VERSION
{
return Err((false, ErrorCode::UnsupportedVersion));
}
// Find this entries length
let total_length = ((*region_data
.get(offset + LEN_OFFSET)
.ok_or((false, ErrorCode::CorruptData))?
as u16)
& !0xF0)
<< 8
| *region_data
.get(offset + LEN_OFFSET + 1)
.ok_or((false, ErrorCode::CorruptData))? as u16;
// Check to see if all fields are just 0
if total_length == 0 {
// We found something invalid here
return Err((false, ErrorCode::KeyNotFound));
}
// Check to see if the entry has been deleted
if *region_data
.get(offset + LEN_OFFSET)
.ok_or((false, ErrorCode::CorruptData))?
& 0x80
!= 0x80
{
// Increment our offset by the length and repeat the loop
offset += total_length as usize;
continue;
}
// We have found a valid entry, see if it is ours.
if *region_data
.get(offset + HASH_OFFSET)
.ok_or((false, ErrorCode::CorruptData))?
!= *hash.get(7).ok_or((false, ErrorCode::CorruptData))?
|| *region_data
.get(offset + HASH_OFFSET + 1)
.ok_or((false, ErrorCode::CorruptData))?
!= *hash.get(6).ok_or((false, ErrorCode::CorruptData))?
|| *region_data
.get(offset + HASH_OFFSET + 2)
.ok_or((false, ErrorCode::CorruptData))?
!= *hash.get(5).ok_or((false, ErrorCode::CorruptData))?
|| *region_data
.get(offset + HASH_OFFSET + 3)
.ok_or((false, ErrorCode::CorruptData))?
!= *hash.get(4).ok_or((false, ErrorCode::CorruptData))?
|| *region_data
.get(offset + HASH_OFFSET + 4)
.ok_or((false, ErrorCode::CorruptData))?
!= *hash.get(3).ok_or((false, ErrorCode::CorruptData))?
|| *region_data
.get(offset + HASH_OFFSET + 5)
.ok_or((false, ErrorCode::CorruptData))?
!= *hash.get(2).ok_or((false, ErrorCode::CorruptData))?
|| *region_data
.get(offset + HASH_OFFSET + 6)
.ok_or((false, ErrorCode::CorruptData))?
!= *hash.get(1).ok_or((false, ErrorCode::CorruptData))?
|| *region_data
.get(offset + HASH_OFFSET + 7)
.ok_or((false, ErrorCode::CorruptData))?
!= *hash.first().ok_or((false, ErrorCode::CorruptData))?
{
// Increment our offset by the length and repeat the loop
offset += total_length as usize;
continue;
}
// If we get here we have found out value (assuming no collisions)
return Ok((offset, total_length));
} else {
// We hit the end.
return Err((!empty, ErrorCode::KeyNotFound));
}
}
}
/// Appends the key/value pair to flash storage.
///
/// `hash`: A hashed key. This key will be used in future to retrieve
/// or remove the `value`.
/// `value`: A buffer containing the data to be stored to flash.
///
/// On success nothing will be returned.
/// On error a `ErrorCode` will be returned.
pub fn append_key(&self, hash: u64, value: &[u8]) -> Result<SuccessCode, ErrorCode> {
let region = self.get_region(hash);
let check_sum = crc32::Crc32::new();
// Length not including check sum
let package_length = HEADER_LENGTH + value.len();
let object_length = HEADER_LENGTH + value.len() + CHECK_SUM_LEN;
if object_length > 0xFFF {
return Err(ErrorCode::ObjectTooLarge);
}
// Create the header:
let header = ObjectHeader::new(hash, object_length as u16);
let mut region_offset: isize = 0;
loop {
let new_region = match self.state.get() {
State::None => (region as isize + region_offset) as usize,
State::Init(state) => {
match state {
InitState::AppendKeyReadRegion(reg) => reg,
_ => {
// Get the data from that region
(region as isize + region_offset) as usize
}
}
}
State::AppendKey(key_state) => match key_state {
KeyState::ReadRegion(reg) => reg,
},
_ => unreachable!(),
};
let region_data = self.read_buffer.take().unwrap();
if self.state.get() != State::AppendKey(KeyState::ReadRegion(new_region))
&& self.state.get() != State::Init(InitState::AppendKeyReadRegion(new_region))
{
match self.controller.read_region(new_region, region_data) {
Ok(()) => {}
Err(e) => {
self.read_buffer.replace(Some(region_data));
if let ErrorCode::ReadNotReady(reg) = e {
self.state.set(State::AppendKey(KeyState::ReadRegion(reg)));
}
return Err(e);
}
};
}
if self.find_key_offset(hash, region_data).is_ok() {
// Check to make sure we don't already have this key
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::KeyAlreadyExists);
}
let mut offset: usize = 0;
loop {
if offset + package_length >= S {
// We have reached the end of the region
// We will need to try the next region
// Replace the buffer
self.read_buffer.replace(Some(region_data));
region_offset = new_region as isize - region as isize;
match self.increment_region_offset(region, region_offset) {
Some(o) => {
region_offset = o;
self.state.set(State::None);
}
None => {
return Err(ErrorCode::FlashFull);
}
}
break;
}
// Check to see if we have data
if *region_data
.get(offset + VERSION_OFFSET)
.ok_or(ErrorCode::KeyNotFound)?
!= 0xFF
{
// We found a version, check that we support it
if *region_data
.get(offset + VERSION_OFFSET)
.ok_or(ErrorCode::KeyNotFound)?
!= VERSION
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::UnsupportedVersion);
}
// Find this entries length
let total_length = ((*region_data
.get(offset + LEN_OFFSET)
.ok_or(ErrorCode::CorruptData)?
as u16)
& !0xF0)
<< 8
| *region_data
.get(offset + LEN_OFFSET + 1)
.ok_or(ErrorCode::CorruptData)? as u16;
// Increment our offset by the length and repeat the loop
offset += total_length as usize;
continue;
}
// If we get here we have found an empty spot
// Double check that there is no valid hash
// Check to see if the entire header is 0xFFFF_FFFF_FFFF_FFFF
// To avoid operating on 64-bit values check every 8 bytes at a time
if *region_data
.get(offset + HASH_OFFSET)
.ok_or(ErrorCode::CorruptData)?
!= 0xFF
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::CorruptData);
}
if *region_data
.get(offset + HASH_OFFSET + 1)
.ok_or(ErrorCode::CorruptData)?
!= 0xFF
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::CorruptData);
}
if *region_data
.get(offset + HASH_OFFSET + 2)
.ok_or(ErrorCode::CorruptData)?
!= 0xFF
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::CorruptData);
}
if *region_data
.get(offset + HASH_OFFSET + 3)
.ok_or(ErrorCode::CorruptData)?
!= 0xFF
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::CorruptData);
}
if *region_data
.get(offset + HASH_OFFSET + 4)
.ok_or(ErrorCode::CorruptData)?
!= 0xFF
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::CorruptData);
}
if *region_data
.get(offset + HASH_OFFSET + 5)
.ok_or(ErrorCode::CorruptData)?
!= 0xFF
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::CorruptData);
}
if *region_data
.get(offset + HASH_OFFSET + 6)
.ok_or(ErrorCode::CorruptData)?
!= 0xFF
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::CorruptData);
}
if *region_data
.get(offset + HASH_OFFSET + 7)
.ok_or(ErrorCode::CorruptData)?
!= 0xFF
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::CorruptData);
}
// If we get here we have found an empty spot
// Copy in new header
// This is a little painful, but avoids any unsafe Rust
*region_data
.get_mut(offset + VERSION_OFFSET)
.ok_or(ErrorCode::RegionFull)? = header.version;
*region_data
.get_mut(offset + LEN_OFFSET)
.ok_or(ErrorCode::RegionFull)? =
(header.len >> 8) as u8 & 0x0F | (header.flags << 4) & 0xF0;
*region_data
.get_mut(offset + LEN_OFFSET + 1)
.ok_or(ErrorCode::RegionFull)? = (header.len & 0xFF) as u8;
*region_data
.get_mut(offset + HASH_OFFSET)
.ok_or(ErrorCode::RegionFull)? = (header.hashed_key >> 56) as u8;
*region_data
.get_mut(offset + HASH_OFFSET + 1)
.ok_or(ErrorCode::RegionFull)? = (header.hashed_key >> 48) as u8;
*region_data
.get_mut(offset + HASH_OFFSET + 2)
.ok_or(ErrorCode::RegionFull)? = (header.hashed_key >> 40) as u8;
*region_data
.get_mut(offset + HASH_OFFSET + 3)
.ok_or(ErrorCode::RegionFull)? = (header.hashed_key >> 32) as u8;
*region_data
.get_mut(offset + HASH_OFFSET + 4)
.ok_or(ErrorCode::RegionFull)? = (header.hashed_key >> 24) as u8;
*region_data
.get_mut(offset + HASH_OFFSET + 5)
.ok_or(ErrorCode::RegionFull)? = (header.hashed_key >> 16) as u8;
*region_data
.get_mut(offset + HASH_OFFSET + 6)
.ok_or(ErrorCode::RegionFull)? = (header.hashed_key >> 8) as u8;
*region_data
.get_mut(offset + HASH_OFFSET + 7)
.ok_or(ErrorCode::RegionFull)? = (header.hashed_key) as u8;
// Hash the new header data
check_sum.update(
region_data
.get(offset + VERSION_OFFSET..=offset + HASH_OFFSET + 7)
.ok_or(ErrorCode::CorruptData)?,
);
// Copy the value
let slice = region_data
.get_mut((offset + HEADER_LENGTH)..(offset + package_length))
.ok_or(ErrorCode::ObjectTooLarge)?;
slice.copy_from_slice(value);
// Include the value in the hash
check_sum.update(value);
// Append a Check Hash
let check_sum = check_sum.finalise();
let slice = region_data
.get_mut((offset + package_length)..(offset + package_length + CHECK_SUM_LEN))
.ok_or(ErrorCode::ObjectTooLarge)?;
slice.copy_from_slice(&check_sum.to_ne_bytes());
// Write the data back to the region
if let Err(e) = self.controller.write(
S * new_region + offset,
region_data
.get(offset..(offset + package_length + CHECK_SUM_LEN))
.ok_or(ErrorCode::ObjectTooLarge)?,
) {
self.read_buffer.replace(Some(region_data));
match e {
ErrorCode::WriteNotReady(_) => return Ok(SuccessCode::Queued),
_ => return Err(e),
}
}
self.read_buffer.replace(Some(region_data));
return Ok(SuccessCode::Written);
}
}
}
/// Retrieves the value from flash storage.
///
/// - `hash`: A hashed key.
/// - `buf`: A buffer to store the value to.
///
/// On success a `SuccessCode` will be returned and the length of the value
/// for the corresponding key. On error a `ErrorCode` will be returned.
///
/// If a power loss occurs before success is returned the data is assumed to
/// be lost.
pub fn get_key(&self, hash: u64, buf: &mut [u8]) -> Result<(SuccessCode, usize), ErrorCode> {
let region = self.get_region(hash);
let mut region_offset: isize = 0;
loop {
let check_sum = crc32::Crc32::new();
let new_region = match self.state.get() {
State::None => (region as isize + region_offset) as usize,
State::Init(state) => {
match state {
InitState::GetKeyReadRegion(reg) => reg,
_ => {
// Get the data from that region
(region as isize + region_offset) as usize
}
}
}
State::GetKey(key_state) => match key_state {
KeyState::ReadRegion(reg) => reg,
},
_ => unreachable!(),
};
// Get the data from that region
let region_data = self.read_buffer.take().unwrap();
if self.state.get() != State::GetKey(KeyState::ReadRegion(new_region))
&& self.state.get() != State::Init(InitState::GetKeyReadRegion(new_region))
{
match self.controller.read_region(new_region, region_data) {
Ok(()) => {}
Err(e) => {
self.read_buffer.replace(Some(region_data));
if let ErrorCode::ReadNotReady(reg) = e {
self.state.set(State::GetKey(KeyState::ReadRegion(reg)));
}
return Err(e);
}
};
}
match self.find_key_offset(hash, region_data) {
Ok((offset, total_length)) => {
// Add the header data to the check hash
check_sum.update(
region_data
.get(offset..(HEADER_LENGTH + offset))
.ok_or(ErrorCode::ObjectTooLarge)?,
);
// The size of the stored object's actual data;
let value_length = total_length as usize - HEADER_LENGTH - CHECK_SUM_LEN;
// Make sure if will fit in the buffer
if buf.len() < value_length {
// The entire value is not going to fit,
// Let's still copy in what we can and return an error
for i in 0..buf.len() {
*buf.get_mut(i)
.ok_or(ErrorCode::BufferTooSmall(value_length))? = *region_data
.get(offset + HEADER_LENGTH + i)
.ok_or(ErrorCode::BufferTooSmall(value_length))?;
}
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::BufferTooSmall(value_length));
}
// Copy in the value
for i in 0..value_length {
*buf.get_mut(i)
.ok_or(ErrorCode::BufferTooSmall(value_length))? = *region_data
.get(offset + HEADER_LENGTH + i)
.ok_or(ErrorCode::CorruptData)?;
check_sum.update(&[*buf.get(i).ok_or(ErrorCode::CorruptData)?])
}
// Check the hash
let check_sum = check_sum.finalise();
let check_sum = check_sum.to_ne_bytes();
if *check_sum.get(3).ok_or(ErrorCode::InvalidCheckSum)?
!= *region_data
.get(offset + total_length as usize - 1)
.ok_or(ErrorCode::InvalidCheckSum)?
|| *check_sum.get(2).ok_or(ErrorCode::InvalidCheckSum)?
!= *region_data
.get(offset + total_length as usize - 2)
.ok_or(ErrorCode::InvalidCheckSum)?
|| *check_sum.get(1).ok_or(ErrorCode::InvalidCheckSum)?
!= *region_data
.get(offset + total_length as usize - 3)
.ok_or(ErrorCode::InvalidCheckSum)?
|| *check_sum.first().ok_or(ErrorCode::InvalidCheckSum)?
!= *region_data
.get(offset + total_length as usize - 4)
.ok_or(ErrorCode::InvalidCheckSum)?
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::InvalidCheckSum);
}
self.read_buffer.replace(Some(region_data));
return Ok((SuccessCode::Complete, value_length));
}
Err((cont, e)) => {
self.read_buffer.replace(Some(region_data));
if cont {
region_offset = new_region as isize - region as isize;
match self.increment_region_offset(region, region_offset) {
Some(o) => {
region_offset = o;
self.state.set(State::None);
}
None => {
return Err(e);
}
}
} else {
return Err(e);
}
}
}
}
}
/// Invalidates the key in flash storage
///
/// `hash`: A hashed key.
///
/// On success nothing will be returned.
/// On error a `ErrorCode` will be returned.
///
/// If a power loss occurs before success is returned the data is
/// assumed to be lost.
pub fn invalidate_key(&self, hash: u64) -> Result<SuccessCode, ErrorCode> {
let region = self.get_region(hash);
let mut region_offset: isize = 0;
loop {
// Get the data from that region
let new_region = match self.state.get() {
State::None => (region as isize + region_offset) as usize,
State::InvalidateKey(key_state) => match key_state {
KeyState::ReadRegion(reg) => reg,
},
_ => unreachable!(),
};
// Get the data from that region
let region_data = self.read_buffer.take().unwrap();
if self.state.get() != State::InvalidateKey(KeyState::ReadRegion(new_region)) {
match self.controller.read_region(new_region, region_data) {
Ok(()) => {}
Err(e) => {
self.read_buffer.replace(Some(region_data));
if let ErrorCode::ReadNotReady(reg) = e {
self.state
.set(State::InvalidateKey(KeyState::ReadRegion(reg)));
}
return Err(e);
}
};
}
match self.find_key_offset(hash, region_data) {
Ok((offset, _data_len)) => {
// We found a key, let's delete it
*region_data
.get_mut(offset + LEN_OFFSET)
.ok_or(ErrorCode::CorruptData)? &= !0x80;
if let Err(e) = self.controller.write(
S * new_region + offset + LEN_OFFSET,
region_data
.get(offset + LEN_OFFSET..offset + LEN_OFFSET + 1)
.ok_or(ErrorCode::ObjectTooLarge)?,
) {
self.read_buffer.replace(Some(region_data));
match e {
ErrorCode::WriteNotReady(_) => return Ok(SuccessCode::Queued),
_ => return Err(e),
}
}
self.read_buffer.replace(Some(region_data));
return Ok(SuccessCode::Written);
}
Err((cont, e)) => {
self.read_buffer.replace(Some(region_data));
if cont {
region_offset = new_region as isize - region as isize;
match self.increment_region_offset(region, region_offset) {
Some(o) => {
region_offset = o;
self.state.set(State::None);
}
None => {
return Err(e);
}
}
} else {
return Err(e);
}
}
}
}
}
/// Zeroises the key in flash storage.
///
/// This is similar to the `invalidate_key()` function, but instead will
/// change all `1`s in the value and checksum to `0`s. This does
/// not remove the header, as that is required for garbage collection
/// later on, so the length and hashed key will still be preserved.
///
/// The values will be changed by a single write operation to the flash.
/// The values are not securley overwritten to make restoring data
/// difficult.
///
/// Users will need to check with the hardware specifications to determine
/// if this is cryptographically secure for their use case.
///
/// <https://en.wikipedia.org/wiki/Zeroisation>
///
/// `hash`: A hashed key.
///
/// On success nothing will be returned.
/// On error a `ErrorCode` will be returned.
///
/// If a power loss occurs before success is returned the data is
/// assumed to be lost.
pub fn zeroise_key(&self, hash: u64) -> Result<SuccessCode, ErrorCode> {
let region = self.get_region(hash);
let mut region_offset: isize = 0;
loop {
// Get the data from that region
let new_region = match self.state.get() {
State::None => (region as isize + region_offset) as usize,
State::ZeroiseKey(key_state) => match key_state {
KeyState::ReadRegion(reg) => reg,
},
_ => unreachable!(),
};
// Get the data from that region
let region_data = self.read_buffer.take().unwrap();
if self.state.get() != State::ZeroiseKey(KeyState::ReadRegion(new_region)) {
match self.controller.read_region(new_region, region_data) {
Ok(()) => {}
Err(e) => {
self.read_buffer.replace(Some(region_data));
if let ErrorCode::ReadNotReady(reg) = e {
self.state.set(State::ZeroiseKey(KeyState::ReadRegion(reg)));
}
return Err(e);
}
};
}
match self.find_key_offset(hash, region_data) {
Ok((offset, data_len)) => {
// We found a key, let's delete it
*region_data
.get_mut(offset + LEN_OFFSET)
.ok_or(ErrorCode::CorruptData)? &= !0x80;
// Replace Value with 0s
for i in HEADER_LENGTH..(data_len as usize + HEADER_LENGTH) {
*region_data
.get_mut(offset + i)
.ok_or(ErrorCode::RegionFull)? = 0;
}
let write_len = data_len as usize;
if let Err(e) = self.controller.write(
S * new_region + offset,
region_data
.get(offset..offset + write_len)
.ok_or(ErrorCode::ObjectTooLarge)?,
) {
self.read_buffer.replace(Some(region_data));
match e {
ErrorCode::WriteNotReady(_) => return Ok(SuccessCode::Queued),
_ => return Err(e),
}
}
self.read_buffer.replace(Some(region_data));
return Ok(SuccessCode::Written);
}
Err((cont, e)) => {
self.read_buffer.replace(Some(region_data));
if cont {
region_offset = new_region as isize - region as isize;
match self.increment_region_offset(region, region_offset) {
Some(o) => {
region_offset = o;
self.state.set(State::None);
}
None => {
return Err(e);
}
}
} else {
return Err(e);
}
}
}
}
}
fn garbage_collect_region(
&self,
region: usize,
flash_freed: usize,
) -> Result<usize, ErrorCode> {
// Get the data from that region
let region_data = self.read_buffer.take().unwrap();
if self.state.get() != State::GarbageCollect(RubbishState::ReadRegion(region, flash_freed))
{
match self.controller.read_region(region, region_data) {
Ok(()) => {}
Err(e) => {
self.read_buffer.replace(Some(region_data));
if let ErrorCode::ReadNotReady(reg) = e {
self.state
.set(State::GarbageCollect(RubbishState::ReadRegion(
reg,
flash_freed,
)));
}
return Err(e);
}
};
}
let mut entry_found = false;
let mut offset: usize = 0;
loop {
if offset >= S {
// We have reached the end of the region without finding a
// valid object. All entries must be marked for deletion then.
break;
}
// Check to see if we have data
if *region_data
.get(offset + VERSION_OFFSET)
.ok_or(ErrorCode::KeyNotFound)?
!= 0xFF
{
// We found a version, check that we support it
if *region_data
.get(offset + VERSION_OFFSET)
.ok_or(ErrorCode::KeyNotFound)?
!= VERSION
{
self.read_buffer.replace(Some(region_data));
return Err(ErrorCode::UnsupportedVersion);
}
entry_found = true;
// Find this entries length
let total_length = ((*region_data
.get(offset + LEN_OFFSET)
.ok_or(ErrorCode::CorruptData)? as u16)
& !0xF0)
<< 8
| *region_data
.get(offset + LEN_OFFSET + 1)
.ok_or(ErrorCode::CorruptData)? as u16;
// Check to see if the entry has been deleted
if *region_data
.get(offset + LEN_OFFSET)
.ok_or(ErrorCode::CorruptData)?
& 0x80
!= 0x80
{
// The entry has been deleted, this region might be ready
// for erasure.
// Increment our offset by the length and repeat the loop
offset += total_length as usize;
continue;
}
// We have found a valid entry!
// Don't perform an erase!
self.read_buffer.replace(Some(region_data));
return Ok(0);
} else {
// We hit the end of valid data.
// The possible outcomes:
// * The region is empty, we don't need to do anything
// * The region has entries, all of which are marked for
// deletion
if !entry_found {
// We didn't find anything, don't bother erasing an empty region.
self.read_buffer.replace(Some(region_data));
return Ok(0);
}
break;
}
}
self.read_buffer.replace(Some(region_data));
// If we got down here, the region is ready to be erased.
if let Err(e) = self.controller.erase_region(region) {
if let ErrorCode::EraseNotReady(reg) = e {
self.state
.set(State::GarbageCollect(RubbishState::EraseRegion(
reg,
flash_freed + S,
)));
}
return Err(e);
}
Ok(S)
}
/// Perform a garbage collection on TicKV
///
/// On success the number of bytes freed will be returned.
/// On error a `ErrorCode` will be returned.
pub fn garbage_collect(&self) -> Result<usize, ErrorCode> {
let num_region = self.flash_size / S;
let mut flash_freed = 0;
let start = match self.state.get() {
State::None => 0,
State::GarbageCollect(state) => match state {
RubbishState::ReadRegion(reg, ff) => {
flash_freed += ff;
reg
}
// We already erased region reg, so move to the next one
RubbishState::EraseRegion(reg, ff) => {
flash_freed += ff;
reg + 1
}
},
_ => unreachable!(),
};
for i in start..num_region {
match self.garbage_collect_region(i, flash_freed) {
Ok(freed) => flash_freed += freed,
Err(e) => return Err(e),
}
}
Ok(flash_freed)
}
}