kernel/process_loading.rs
1// Licensed under the Apache License, Version 2.0 or the MIT License.
2// SPDX-License-Identifier: Apache-2.0 OR MIT
3// Copyright Tock Contributors 2022.
4
5//! Helper functions and machines for loading process binaries into in-memory
6//! Tock processes.
7//!
8//! Process loaders are responsible for parsing the binary formats of Tock
9//! processes, checking whether they are allowed to be loaded, and if so
10//! initializing a process structure to run it.
11//!
12//! This module provides multiple process loader options depending on which
13//! features a particular board requires.
14
15use core::cell::Cell;
16use core::fmt;
17
18use crate::capabilities::ProcessManagementCapability;
19use crate::config;
20use crate::debug;
21use crate::deferred_call::{DeferredCall, DeferredCallClient};
22use crate::kernel::Kernel;
23use crate::platform::chip::Chip;
24use crate::process::{Process, ShortId};
25use crate::process_binary::{ProcessBinary, ProcessBinaryError};
26use crate::process_checker::AcceptedCredential;
27use crate::process_checker::{AppIdPolicy, ProcessCheckError, ProcessCheckerMachine};
28use crate::process_policies::ProcessFaultPolicy;
29use crate::process_policies::ProcessStandardStoragePermissionsPolicy;
30use crate::process_standard::ProcessStandard;
31use crate::process_standard::{ProcessStandardDebug, ProcessStandardDebugFull};
32use crate::utilities::cells::{MapCell, OptionalCell};
33
34/// Errors that can occur when trying to load and create processes.
35pub enum ProcessLoadError {
36 /// Not enough memory to meet the amount requested by a process. Modify the
37 /// process to request less memory, flash fewer processes, or increase the
38 /// size of the region your board reserves for process memory.
39 NotEnoughMemory,
40
41 /// A process was loaded with a length in flash that the MPU does not
42 /// support. The fix is probably to correct the process size, but this could
43 /// also be caused by a bad MPU implementation.
44 MpuInvalidFlashLength,
45
46 /// The MPU configuration failed for some other, unspecified reason. This
47 /// could be of an internal resource exhaustion, or a mismatch between the
48 /// (current) MPU constraints and process requirements.
49 MpuConfigurationError,
50
51 /// A process specified a fixed memory address that it needs its memory
52 /// range to start at, and the kernel did not or could not give the process
53 /// a memory region starting at that address.
54 MemoryAddressMismatch {
55 actual_address: u32,
56 expected_address: u32,
57 },
58
59 /// There is nowhere in the `PROCESSES` array to store this process.
60 NoProcessSlot,
61
62 /// Process loading failed because parsing the binary failed.
63 BinaryError(ProcessBinaryError),
64
65 /// Process loading failed because checking the process failed.
66 CheckError(ProcessCheckError),
67
68 /// Process loading error due (likely) to a bug in the kernel. If you get
69 /// this error please open a bug report.
70 InternalError,
71}
72
73impl fmt::Debug for ProcessLoadError {
74 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
75 match self {
76 ProcessLoadError::NotEnoughMemory => {
77 write!(f, "Not able to provide RAM requested by app")
78 }
79
80 ProcessLoadError::MpuInvalidFlashLength => {
81 write!(f, "App flash length not supported by MPU")
82 }
83
84 ProcessLoadError::MpuConfigurationError => {
85 write!(f, "Configuring the MPU failed")
86 }
87
88 ProcessLoadError::MemoryAddressMismatch {
89 actual_address,
90 expected_address,
91 } => write!(
92 f,
93 "App memory does not match requested address Actual:{:#x}, Expected:{:#x}",
94 actual_address, expected_address
95 ),
96
97 ProcessLoadError::NoProcessSlot => {
98 write!(f, "Nowhere to store the loaded process")
99 }
100
101 ProcessLoadError::BinaryError(binary_error) => {
102 writeln!(f, "Error parsing process binary")?;
103 write!(f, "{:?}", binary_error)
104 }
105
106 ProcessLoadError::CheckError(check_error) => {
107 writeln!(f, "Error checking process")?;
108 write!(f, "{:?}", check_error)
109 }
110
111 ProcessLoadError::InternalError => write!(f, "Error in kernel. Likely a bug."),
112 }
113 }
114}
115
116////////////////////////////////////////////////////////////////////////////////
117// SYNCHRONOUS PROCESS LOADING
118////////////////////////////////////////////////////////////////////////////////
119
120/// Load processes into runnable process structures.
121///
122/// Load processes (stored as TBF objects in flash) into runnable process
123/// structures stored in the `procs` array and mark all successfully loaded
124/// processes as runnable. This method does not check the cryptographic
125/// credentials of TBF objects. Platforms for which code size is tight and do
126/// not need to check TBF credentials can call this method because it results in
127/// a smaller kernel, as it does not invoke the credential checking state
128/// machine.
129///
130/// This function is made `pub` so that board files can use it, but loading
131/// processes from slices of flash an memory is fundamentally unsafe. Therefore,
132/// we require the `ProcessManagementCapability` to call this function.
133// Mark inline always to reduce code size. Since this is only called in one
134// place (a board's main.rs), by inlining the load_*processes() functions, the
135// compiler can elide many checks which reduces code size appreciably. Note,
136// however, these functions require a rather large stack frame, which may be an
137// issue for boards small kernel stacks.
138#[inline(always)]
139pub fn load_processes<C: Chip>(
140 kernel: &'static Kernel,
141 chip: &'static C,
142 app_flash: &'static [u8],
143 app_memory: &'static mut [u8],
144 fault_policy: &'static dyn ProcessFaultPolicy,
145 _capability_management: &dyn ProcessManagementCapability,
146) -> Result<(), ProcessLoadError> {
147 load_processes_from_flash::<C, ProcessStandardDebugFull>(
148 kernel,
149 chip,
150 app_flash,
151 app_memory,
152 fault_policy,
153 )?;
154
155 if config::CONFIG.debug_process_credentials {
156 debug!("Checking: no checking, load and run all processes");
157 for proc in kernel.get_process_iter() {
158 debug!("Running {}", proc.get_process_name());
159 }
160 }
161 Ok(())
162}
163
164/// Helper function to load processes from flash into an array of active
165/// processes. This is the default template for loading processes, but a board
166/// is able to create its own `load_processes()` function and use that instead.
167///
168/// Processes are found in flash starting from the given address and iterating
169/// through Tock Binary Format (TBF) headers. Processes are given memory out of
170/// the `app_memory` buffer until either the memory is exhausted or the
171/// allocated number of processes are created. This buffer is a non-static slice,
172/// ensuring that this code cannot hold onto the slice past the end of this function
173/// (instead, processes store a pointer and length), which necessary for later
174/// creation of `ProcessBuffer`s in this memory region to be sound.
175/// A reference to each process is stored in the provided `procs` array.
176/// How process faults are handled by the
177/// kernel must be provided and is assigned to every created process.
178///
179/// Returns `Ok(())` if process discovery went as expected. Returns a
180/// `ProcessLoadError` if something goes wrong during TBF parsing or process
181/// creation.
182#[inline(always)]
183fn load_processes_from_flash<C: Chip, D: ProcessStandardDebug + 'static>(
184 kernel: &'static Kernel,
185 chip: &'static C,
186 app_flash: &'static [u8],
187 app_memory: &'static mut [u8],
188 fault_policy: &'static dyn ProcessFaultPolicy,
189) -> Result<(), ProcessLoadError> {
190 if config::CONFIG.debug_load_processes {
191 debug!(
192 "Loading processes from flash={:#010X}-{:#010X} into sram={:#010X}-{:#010X}",
193 app_flash.as_ptr() as usize,
194 app_flash.as_ptr() as usize + app_flash.len() - 1,
195 app_memory.as_ptr() as usize,
196 app_memory.as_ptr() as usize + app_memory.len() - 1
197 );
198 }
199
200 let mut remaining_flash = app_flash;
201 let mut remaining_memory = app_memory;
202
203 loop {
204 match kernel.next_available_process_slot() {
205 Ok((index, slot)) => {
206 let load_binary_result = discover_process_binary(remaining_flash);
207
208 match load_binary_result {
209 Ok((new_flash, process_binary)) => {
210 remaining_flash = new_flash;
211
212 let load_result = load_process::<C, D>(
213 kernel,
214 chip,
215 process_binary,
216 remaining_memory,
217 ShortId::LocallyUnique,
218 index,
219 fault_policy,
220 &(),
221 );
222 match load_result {
223 Ok((new_mem, proc)) => {
224 remaining_memory = new_mem;
225 match proc {
226 Some(p) => {
227 if config::CONFIG.debug_load_processes {
228 debug!("Loaded process {}", p.get_process_name())
229 }
230 slot.set(p);
231 }
232 None => {
233 if config::CONFIG.debug_load_processes {
234 debug!("No process loaded.");
235 }
236 }
237 }
238 }
239 Err((new_mem, err)) => {
240 remaining_memory = new_mem;
241 if config::CONFIG.debug_load_processes {
242 debug!("Processes load error: {:?}.", err);
243 }
244 }
245 }
246 }
247 Err((new_flash, err)) => {
248 remaining_flash = new_flash;
249 match err {
250 ProcessBinaryError::NotEnoughFlash
251 | ProcessBinaryError::TbfHeaderNotFound => {
252 if config::CONFIG.debug_load_processes {
253 debug!("No more processes to load: {:?}.", err);
254 }
255 // No more processes to load.
256 break;
257 }
258
259 ProcessBinaryError::TbfHeaderParseFailure(_)
260 | ProcessBinaryError::IncompatibleKernelVersion { .. }
261 | ProcessBinaryError::IncorrectFlashAddress { .. }
262 | ProcessBinaryError::NotEnabledProcess
263 | ProcessBinaryError::Padding => {
264 if config::CONFIG.debug_load_processes {
265 debug!("Unable to use process binary: {:?}.", err);
266 }
267
268 // Skip this binary and move to the next one.
269 continue;
270 }
271 }
272 }
273 }
274 }
275 Err(()) => {
276 // No slot available.
277 if config::CONFIG.debug_load_processes {
278 debug!("No more process slots to load processes into.");
279 }
280 }
281 }
282 }
283 Ok(())
284}
285
286////////////////////////////////////////////////////////////////////////////////
287// HELPER FUNCTIONS
288////////////////////////////////////////////////////////////////////////////////
289
290/// Find a process binary stored at the beginning of `flash` and create a
291/// `ProcessBinary` object if the process is viable to run on this kernel.
292fn discover_process_binary(
293 flash: &'static [u8],
294) -> Result<(&'static [u8], ProcessBinary), (&'static [u8], ProcessBinaryError)> {
295 if config::CONFIG.debug_load_processes {
296 debug!(
297 "Looking for process binary in flash={:#010X}-{:#010X}",
298 flash.as_ptr() as usize,
299 flash.as_ptr() as usize + flash.len() - 1
300 );
301 }
302
303 // If this fails, not enough remaining flash to check for an app.
304 let test_header_slice = flash
305 .get(0..8)
306 .ok_or((flash, ProcessBinaryError::NotEnoughFlash))?;
307
308 // Pass the first eight bytes to tbfheader to parse out the length of
309 // the tbf header and app. We then use those values to see if we have
310 // enough flash remaining to parse the remainder of the header.
311 //
312 // Start by converting [u8] to [u8; 8].
313 let header = test_header_slice
314 .try_into()
315 .or(Err((flash, ProcessBinaryError::NotEnoughFlash)))?;
316
317 let (version, header_length, app_length) =
318 match tock_tbf::parse::parse_tbf_header_lengths(header) {
319 Ok((v, hl, el)) => (v, hl, el),
320 Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(app_length)) => {
321 // If we could not parse the header, then we want to skip over
322 // this app and look for the next one.
323 (0, 0, app_length)
324 }
325 Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => {
326 // Since Tock apps use a linked list, it is very possible the
327 // header we started to parse is intentionally invalid to signal
328 // the end of apps. This is ok and just means we have finished
329 // loading apps.
330 return Err((flash, ProcessBinaryError::TbfHeaderNotFound));
331 }
332 };
333
334 // Now we can get a slice which only encompasses the length of flash
335 // described by this tbf header. We will either parse this as an actual
336 // app, or skip over this region.
337 let app_flash = flash
338 .get(0..app_length as usize)
339 .ok_or((flash, ProcessBinaryError::NotEnoughFlash))?;
340
341 // Advance the flash slice for process discovery beyond this last entry.
342 // This will be the start of where we look for a new process since Tock
343 // processes are allocated back-to-back in flash.
344 let remaining_flash = flash
345 .get(app_flash.len()..)
346 .ok_or((flash, ProcessBinaryError::NotEnoughFlash))?;
347
348 let pb = ProcessBinary::create(app_flash, header_length as usize, version, true)
349 .map_err(|e| (remaining_flash, e))?;
350
351 Ok((remaining_flash, pb))
352}
353
354/// Load a process stored as a TBF process binary with `app_memory` as the RAM
355/// pool that its RAM should be allocated from. Returns `Ok` if the process
356/// object was created, `Err` with a relevant error if the process object could
357/// not be created.
358fn load_process<C: Chip, D: ProcessStandardDebug>(
359 kernel: &'static Kernel,
360 chip: &'static C,
361 process_binary: ProcessBinary,
362 app_memory: &'static mut [u8],
363 app_id: ShortId,
364 index: usize,
365 fault_policy: &'static dyn ProcessFaultPolicy,
366 storage_policy: &'static dyn ProcessStandardStoragePermissionsPolicy<C, D>,
367) -> Result<(&'static mut [u8], Option<&'static dyn Process>), (&'static mut [u8], ProcessLoadError)>
368{
369 if config::CONFIG.debug_load_processes {
370 debug!(
371 "Loading: process flash={:#010X}-{:#010X} ram={:#010X}-{:#010X}",
372 process_binary.flash.as_ptr() as usize,
373 process_binary.flash.as_ptr() as usize + process_binary.flash.len() - 1,
374 app_memory.as_ptr() as usize,
375 app_memory.as_ptr() as usize + app_memory.len() - 1
376 );
377 }
378
379 // Need to reassign remaining_memory in every iteration so the compiler
380 // knows it will not be re-borrowed.
381 // If we found an actual app header, try to create a `Process`
382 // object. We also need to shrink the amount of remaining memory
383 // based on whatever is assigned to the new process if one is
384 // created.
385
386 // Try to create a process object from that app slice. If we don't
387 // get a process and we didn't get a loading error (aka we got to
388 // this point), then the app is a disabled process or just padding.
389 let (process_option, unused_memory) = unsafe {
390 ProcessStandard::<C, D>::create(
391 kernel,
392 chip,
393 process_binary,
394 app_memory,
395 fault_policy,
396 storage_policy,
397 app_id,
398 index,
399 )
400 .map_err(|(e, memory)| (memory, e))?
401 };
402
403 process_option.map(|process| {
404 if config::CONFIG.debug_load_processes {
405 debug!(
406 "Loading: {} [{}] flash={:#010X}-{:#010X} ram={:#010X}-{:#010X}",
407 process.get_process_name(),
408 index,
409 process.get_addresses().flash_start,
410 process.get_addresses().flash_end,
411 process.get_addresses().sram_start,
412 process.get_addresses().sram_end - 1,
413 );
414 }
415 });
416
417 Ok((unused_memory, process_option))
418}
419
420////////////////////////////////////////////////////////////////////////////////
421// ASYNCHRONOUS PROCESS LOADING
422////////////////////////////////////////////////////////////////////////////////
423
424/// Client for asynchronous process loading.
425///
426/// This supports a client that is notified after trying to load each process in
427/// flash. Also there is a callback for after all processes have been
428/// discovered.
429pub trait ProcessLoadingAsyncClient {
430 /// A process was successfully found in flash, checked, and loaded into a
431 /// `ProcessStandard` object.
432 fn process_loaded(&self, result: Result<(), ProcessLoadError>);
433
434 /// There are no more processes in flash to be loaded.
435 fn process_loading_finished(&self);
436}
437
438/// Asynchronous process loading.
439///
440/// Machines which implement this trait perform asynchronous process loading and
441/// signal completion through `ProcessLoadingAsyncClient`.
442///
443/// Various process loaders may exist. This includes a loader from a MCU's
444/// integrated flash, or a loader from an external flash chip.
445pub trait ProcessLoadingAsync<'a> {
446 /// Set the client to receive callbacks about process loading and when
447 /// process loading has finished.
448 fn set_client(&self, client: &'a dyn ProcessLoadingAsyncClient);
449
450 /// Set the credential checking policy for the loader.
451 fn set_policy(&self, policy: &'a dyn AppIdPolicy);
452
453 /// Start the process loading operation.
454 fn start(&self);
455}
456
457/// Operating mode of the loader.
458#[derive(Clone, Copy)]
459enum SequentialProcessLoaderMachineState {
460 /// Phase of discovering `ProcessBinary` objects in flash.
461 DiscoverProcessBinaries,
462 /// Phase of loading `ProcessBinary`s into `Process`es.
463 LoadProcesses,
464}
465
466/// Operating mode of the sequential process loader.
467///
468/// The loader supports loading processes from flash at boot, and loading processes
469/// that were written to flash dynamically at runtime. Most of the internal logic is the
470/// same (and therefore reused), but we need to track which mode of operation the
471/// loader is in.
472#[derive(Clone, Copy)]
473enum SequentialProcessLoaderMachineRunMode {
474 /// The loader was called by a board's main function at boot.
475 BootMode,
476 /// The loader was called by a dynamic process loader at runtime.
477 RuntimeMode,
478}
479
480/// Enum to hold the padding requirements for a new application.
481#[derive(Clone, Copy, PartialEq, Default)]
482pub enum PaddingRequirement {
483 #[default]
484 None,
485 PrePad,
486 PostPad,
487 PreAndPostPad,
488}
489
490/// A machine for loading processes stored sequentially in a region of flash.
491///
492/// Load processes (stored as TBF objects in flash) into runnable process
493/// structures stored in the `procs` array. This machine scans the footers in
494/// the TBF for cryptographic credentials for binary integrity, passing them to
495/// the checker to decide whether the process has sufficient credentials to run.
496pub struct SequentialProcessLoaderMachine<'a, C: Chip + 'static, D: ProcessStandardDebug + 'static>
497{
498 /// Client to notify as processes are loaded and process loading finishes after boot.
499 boot_client: OptionalCell<&'a dyn ProcessLoadingAsyncClient>,
500 /// Client to notify as processes are loaded and process loading finishes during runtime.
501 runtime_client: OptionalCell<&'a dyn ProcessLoadingAsyncClient>,
502 /// Machine to use to check process credentials.
503 checker: &'static ProcessCheckerMachine,
504 /// Array to store `ProcessBinary`s after checking credentials.
505 proc_binaries: MapCell<&'static mut [Option<ProcessBinary>]>,
506 /// Total available flash for process binaries on this board.
507 flash_bank: Cell<&'static [u8]>,
508 /// Flash memory region to load processes from.
509 flash: Cell<&'static [u8]>,
510 /// Memory available to assign to applications.
511 app_memory: Cell<&'static mut [u8]>,
512 /// Mechanism for generating async callbacks.
513 deferred_call: DeferredCall,
514 /// Reference to the kernel object for creating Processes.
515 kernel: &'static Kernel,
516 /// Reference to the Chip object for creating Processes.
517 chip: &'static C,
518 /// The policy to use when determining ShortIds and process uniqueness.
519 policy: OptionalCell<&'a dyn AppIdPolicy>,
520 /// The fault policy to assign to each created Process.
521 fault_policy: &'static dyn ProcessFaultPolicy,
522 /// The storage permissions policy to assign to each created Process.
523 storage_policy: &'static dyn ProcessStandardStoragePermissionsPolicy<C, D>,
524 /// Current mode of the loading machine.
525 state: OptionalCell<SequentialProcessLoaderMachineState>,
526 /// Current operating mode of the loading machine.
527 run_mode: OptionalCell<SequentialProcessLoaderMachineRunMode>,
528}
529
530impl<'a, C: Chip, D: ProcessStandardDebug> SequentialProcessLoaderMachine<'a, C, D> {
531 /// This function is made `pub` so that board files can use it, but loading
532 /// processes from slices of flash an memory is fundamentally unsafe.
533 /// Therefore, we require the `ProcessManagementCapability` to call this
534 /// function.
535 pub fn new(
536 checker: &'static ProcessCheckerMachine,
537 proc_binaries: &'static mut [Option<ProcessBinary>],
538 kernel: &'static Kernel,
539 chip: &'static C,
540 flash: &'static [u8],
541 app_memory: &'static mut [u8],
542 fault_policy: &'static dyn ProcessFaultPolicy,
543 storage_policy: &'static dyn ProcessStandardStoragePermissionsPolicy<C, D>,
544 policy: &'static dyn AppIdPolicy,
545 _capability_management: &dyn ProcessManagementCapability,
546 ) -> Self {
547 Self {
548 deferred_call: DeferredCall::new(),
549 checker,
550 boot_client: OptionalCell::empty(),
551 runtime_client: OptionalCell::empty(),
552 run_mode: OptionalCell::empty(),
553 proc_binaries: MapCell::new(proc_binaries),
554 kernel,
555 chip,
556 flash_bank: Cell::new(flash),
557 flash: Cell::new(flash),
558 app_memory: Cell::new(app_memory),
559 policy: OptionalCell::new(policy),
560 fault_policy,
561 storage_policy,
562 state: OptionalCell::empty(),
563 }
564 }
565
566 /// Set the runtime client to receive callbacks about process loading and when
567 /// process loading has finished.
568 pub fn set_runtime_client(&self, client: &'a dyn ProcessLoadingAsyncClient) {
569 self.runtime_client.set(client);
570 }
571
572 /// Find the current active client based on the operation mode.
573 fn get_current_client(&self) -> Option<&dyn ProcessLoadingAsyncClient> {
574 match self.run_mode.get()? {
575 SequentialProcessLoaderMachineRunMode::BootMode => self.boot_client.get(),
576 SequentialProcessLoaderMachineRunMode::RuntimeMode => self.runtime_client.get(),
577 }
578 }
579
580 /// Find a slot in the `PROCESS_BINARIES` array to store this process.
581 fn find_open_process_binary_slot(&self) -> Option<usize> {
582 self.proc_binaries.map_or(None, |proc_bins| {
583 for (i, p) in proc_bins.iter().enumerate() {
584 if p.is_none() {
585 return Some(i);
586 }
587 }
588 None
589 })
590 }
591
592 fn load_and_check(&self) {
593 let ret = self.discover_process_binary();
594 match ret {
595 Ok(pb) => match self.checker.check(pb) {
596 Ok(()) => {}
597 Err(e) => {
598 self.get_current_client().map(|client| {
599 client.process_loaded(Err(ProcessLoadError::CheckError(e)));
600 });
601 }
602 },
603 Err(ProcessBinaryError::NotEnoughFlash)
604 | Err(ProcessBinaryError::TbfHeaderNotFound) => {
605 // These two errors occur when there are no more app binaries in
606 // flash. Now we can move to actually loading process binaries
607 // into full processes.
608
609 self.state
610 .set(SequentialProcessLoaderMachineState::LoadProcesses);
611 self.deferred_call.set();
612 }
613 Err(e) => {
614 if config::CONFIG.debug_load_processes {
615 debug!("Loading: unable to create ProcessBinary: {:?}", e);
616 }
617
618 // Other process binary errors indicate the process is not
619 // compatible. Signal error and try the next item in flash.
620 self.get_current_client().map(|client| {
621 client.process_loaded(Err(ProcessLoadError::BinaryError(e)));
622 });
623
624 self.deferred_call.set();
625 }
626 }
627 }
628
629 /// Try to parse a process binary from flash.
630 ///
631 /// Returns the process binary object or an error if a valid process
632 /// binary could not be extracted.
633 fn discover_process_binary(&self) -> Result<ProcessBinary, ProcessBinaryError> {
634 let flash = self.flash.get();
635
636 match discover_process_binary(flash) {
637 Ok((remaining_flash, pb)) => {
638 self.flash.set(remaining_flash);
639 Ok(pb)
640 }
641
642 Err((remaining_flash, err)) => {
643 self.flash.set(remaining_flash);
644 Err(err)
645 }
646 }
647 }
648
649 /// Create process objects from the discovered process binaries.
650 ///
651 /// This verifies that the discovered processes are valid to run.
652 fn load_process_objects(&self) -> Result<(), ()> {
653 let proc_binaries = self.proc_binaries.take().ok_or(())?;
654 let proc_binaries_len = proc_binaries.len();
655
656 // Iterate all process binary entries.
657 for i in 0..proc_binaries_len {
658 // We are either going to load this process binary or discard it, so
659 // we can use `take()` here.
660 if let Some(process_binary) = proc_binaries[i].take() {
661 // We assume the process can be loaded. This is not the case
662 // if there is a conflicting process.
663 let mut ok_to_load = true;
664
665 // Start by iterating all other process binaries and seeing
666 // if any are in conflict (same AppID with newer version).
667 for proc_bin in proc_binaries.iter() {
668 if let Some(other_process_binary) = proc_bin {
669 let blocked =
670 self.is_blocked_from_loading_by(&process_binary, other_process_binary);
671
672 if blocked {
673 ok_to_load = false;
674 break;
675 }
676 }
677 }
678
679 // Go to next ProcessBinary if we cannot load this process.
680 if !ok_to_load {
681 continue;
682 }
683
684 // Now scan the already loaded processes and make sure this
685 // doesn't conflict with any of those. Since those processes
686 // are already loaded, we just need to check if this process
687 // binary has the same AppID as an already loaded process.
688 for proc in self.kernel.get_process_iter() {
689 let blocked = self.is_blocked_from_loading_by_process(&process_binary, proc);
690 if blocked {
691 ok_to_load = false;
692 break;
693 }
694 }
695
696 if !ok_to_load {
697 continue;
698 }
699
700 // If we get here it is ok to load the process.
701 match self.kernel.next_available_process_slot() {
702 Ok((index, slot)) => {
703 // Calculate the ShortId for this new process.
704 let short_app_id = self.policy.map_or(ShortId::LocallyUnique, |policy| {
705 policy.to_short_id(&process_binary)
706 });
707
708 // Try to create a `Process` object.
709 let load_result = load_process(
710 self.kernel,
711 self.chip,
712 process_binary,
713 self.app_memory.take(),
714 short_app_id,
715 index,
716 self.fault_policy,
717 self.storage_policy,
718 );
719 match load_result {
720 Ok((new_mem, proc)) => {
721 self.app_memory.set(new_mem);
722 match proc {
723 Some(p) => {
724 if config::CONFIG.debug_load_processes {
725 debug!(
726 "Loading: Loaded process {}",
727 p.get_process_name()
728 )
729 }
730
731 // Store the `ProcessStandard` object in the `PROCESSES`
732 // array.
733 slot.set(p);
734 // Notify the client the process was loaded
735 // successfully.
736 self.get_current_client().map(|client| {
737 client.process_loaded(Ok(()));
738 });
739 }
740 None => {
741 if config::CONFIG.debug_load_processes {
742 debug!("No process loaded.");
743 }
744 }
745 }
746 }
747 Err((new_mem, err)) => {
748 self.app_memory.set(new_mem);
749 if config::CONFIG.debug_load_processes {
750 debug!("Could not load process: {:?}.", err);
751 }
752 self.get_current_client().map(|client| {
753 client.process_loaded(Err(err));
754 });
755 }
756 }
757 }
758 Err(()) => {
759 // Nowhere to store the process.
760 self.get_current_client().map(|client| {
761 client.process_loaded(Err(ProcessLoadError::NoProcessSlot));
762 });
763 }
764 }
765 }
766 }
767 self.proc_binaries.put(proc_binaries);
768
769 // We have iterated all discovered `ProcessBinary`s and loaded what we
770 // could so now we can signal that process loading is finished.
771 self.get_current_client().map(|client| {
772 client.process_loading_finished();
773 });
774
775 self.state.clear();
776 Ok(())
777 }
778
779 /// Check if `pb1` is blocked from running by `pb2`.
780 ///
781 /// `pb2` blocks `pb1` if:
782 ///
783 /// - They both have the same AppID or they both have the same ShortId, and
784 /// - `pb2` has a higher version number.
785 fn is_blocked_from_loading_by(&self, pb1: &ProcessBinary, pb2: &ProcessBinary) -> bool {
786 let same_app_id = self
787 .policy
788 .map_or(false, |policy| !policy.different_identifier(pb1, pb2));
789 let same_short_app_id = self.policy.map_or(false, |policy| {
790 policy.to_short_id(pb1) == policy.to_short_id(pb2)
791 });
792 let other_newer = pb2.header.get_binary_version() > pb1.header.get_binary_version();
793
794 let blocks = (same_app_id || same_short_app_id) && other_newer;
795
796 if config::CONFIG.debug_process_credentials {
797 debug!(
798 "Loading: ProcessBinary {}({:#02x}) does{} block {}({:#02x})",
799 pb2.header.get_package_name().unwrap_or(""),
800 pb2.flash.as_ptr() as usize,
801 if blocks { "" } else { " not" },
802 pb1.header.get_package_name().unwrap_or(""),
803 pb1.flash.as_ptr() as usize,
804 );
805 }
806
807 blocks
808 }
809
810 /// Check if `pb` is blocked from running by `process`.
811 ///
812 /// `process` blocks `pb` if:
813 ///
814 /// - They both have the same AppID, or
815 /// - They both have the same ShortId
816 ///
817 /// Since `process` is already loaded, we only have to enforce the AppID and
818 /// ShortId uniqueness guarantees.
819 fn is_blocked_from_loading_by_process(
820 &self,
821 pb: &ProcessBinary,
822 process: &dyn Process,
823 ) -> bool {
824 let same_app_id = self.policy.map_or(false, |policy| {
825 !policy.different_identifier_process(pb, process)
826 });
827 let same_short_app_id = self.policy.map_or(false, |policy| {
828 policy.to_short_id(pb) == process.short_app_id()
829 });
830
831 let blocks = same_app_id || same_short_app_id;
832
833 if config::CONFIG.debug_process_credentials {
834 debug!(
835 "Loading: Process {}({:#02x}) does{} block {}({:#02x})",
836 process.get_process_name(),
837 process.get_addresses().flash_start,
838 if blocks { "" } else { " not" },
839 pb.header.get_package_name().unwrap_or(""),
840 pb.flash.as_ptr() as usize,
841 );
842 }
843
844 blocks
845 }
846
847 ////////////////////////////////////////////////////////////////////////////////
848 // DYNAMIC PROCESS LOADING HELPERS
849 ////////////////////////////////////////////////////////////////////////////////
850
851 /// Scan the entire flash to populate lists of existing binaries addresses.
852 fn scan_flash_for_process_binaries(
853 &self,
854 flash: &'static [u8],
855 process_binaries_start_addresses: &mut [usize],
856 process_binaries_end_addresses: &mut [usize],
857 ) -> Result<(), ()> {
858 fn inner_function(
859 flash: &'static [u8],
860 process_binaries_start_addresses: &mut [usize],
861 process_binaries_end_addresses: &mut [usize],
862 ) -> Result<(), ProcessBinaryError> {
863 let flash_end = flash.as_ptr() as usize + flash.len() - 1;
864 let mut addresses = flash.as_ptr() as usize;
865 let mut index: usize = 0;
866
867 while addresses < flash_end {
868 let flash_offset = addresses - flash.as_ptr() as usize;
869
870 let test_header_slice = flash
871 .get(flash_offset..flash_offset + 8)
872 .ok_or(ProcessBinaryError::NotEnoughFlash)?;
873
874 let header = test_header_slice
875 .try_into()
876 .or(Err(ProcessBinaryError::NotEnoughFlash))?;
877
878 let (_version, header_length, app_length) =
879 match tock_tbf::parse::parse_tbf_header_lengths(header) {
880 Ok((v, hl, el)) => (v, hl, el),
881 Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(app_length)) => {
882 (0, 0, app_length)
883 }
884 Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => {
885 return Ok(());
886 }
887 };
888
889 let app_flash = flash
890 .get(flash_offset..flash_offset + app_length as usize)
891 .ok_or(ProcessBinaryError::NotEnoughFlash)?;
892
893 let app_header = flash
894 .get(flash_offset..flash_offset + header_length as usize)
895 .ok_or(ProcessBinaryError::NotEnoughFlash)?;
896
897 let remaining_flash = flash
898 .get(flash_offset + app_flash.len()..)
899 .ok_or(ProcessBinaryError::NotEnoughFlash)?;
900
901 // Get the rest of the header. The `remaining_header` variable
902 // will continue to hold the remainder of the header we have
903 // not processed.
904 let remaining_header = app_header
905 .get(16..)
906 .ok_or(ProcessBinaryError::NotEnoughFlash)?;
907
908 if remaining_header.len() == 0 {
909 // This is a padding app.
910 if config::CONFIG.debug_load_processes {
911 debug!("Is padding!");
912 }
913 } else {
914 // This is an app binary, add it to the pb arrays.
915 process_binaries_start_addresses[index] = app_flash.as_ptr() as usize;
916 process_binaries_end_addresses[index] =
917 app_flash.as_ptr() as usize + app_length as usize;
918
919 if config::CONFIG.debug_load_processes {
920 debug!(
921 "[Metadata] Process binary start address at index {}: {:#010x}, with end_address {:#010x}",
922 index,
923 process_binaries_start_addresses[index],
924 process_binaries_end_addresses[index]
925 );
926 }
927 index += 1;
928 if index > process_binaries_start_addresses.len() - 1 {
929 return Err(ProcessBinaryError::NotEnoughFlash);
930 }
931 }
932 addresses = remaining_flash.as_ptr() as usize;
933 }
934
935 Ok(())
936 }
937
938 inner_function(
939 flash,
940 process_binaries_start_addresses,
941 process_binaries_end_addresses,
942 )
943 .or(Err(()))
944 }
945
946 /// Helper function to find the next potential aligned address for the
947 /// new app with size `app_length` assuming Cortex-M alignment rules.
948 fn find_next_cortex_m_aligned_address(&self, address: usize, app_length: usize) -> usize {
949 let remaining = address % app_length;
950 if remaining == 0 {
951 address
952 } else {
953 address + (app_length - remaining)
954 }
955 }
956
957 /// Function to compute the address for a new app with size `app_size`.
958 fn compute_new_process_binary_address(
959 &self,
960 app_size: usize,
961 process_binaries_start_addresses: &mut [usize],
962 process_binaries_end_addresses: &mut [usize],
963 ) -> usize {
964 let mut start_count = 0;
965 let mut end_count = 0;
966
967 // Remove zeros from addresses in place.
968 for i in 0..process_binaries_start_addresses.len() {
969 if process_binaries_start_addresses[i] != 0 {
970 process_binaries_start_addresses[start_count] = process_binaries_start_addresses[i];
971 start_count += 1;
972 }
973 }
974
975 for i in 0..process_binaries_end_addresses.len() {
976 if process_binaries_end_addresses[i] != 0 {
977 process_binaries_end_addresses[end_count] = process_binaries_end_addresses[i];
978 end_count += 1;
979 }
980 }
981
982 // If there is only one application in flash:
983 if start_count == 1 {
984 let potential_address = self
985 .find_next_cortex_m_aligned_address(process_binaries_end_addresses[0], app_size);
986 return potential_address;
987 }
988
989 // Otherwise, iterate through the sorted start and end addresses to find gaps for the new app.
990 for i in 0..start_count - 1 {
991 let gap_start = process_binaries_end_addresses[i];
992 let gap_end = process_binaries_start_addresses[i + 1];
993
994 // Ensure gap_end is valid (skip zeros - these indicate there are no process binaries).
995 if gap_end == 0 {
996 continue;
997 }
998
999 // If there is a valid gap, i.e., (gap_end > gap_start), check alignment.
1000 if gap_end > gap_start {
1001 let potential_address =
1002 self.find_next_cortex_m_aligned_address(gap_start, app_size);
1003 if potential_address + app_size < gap_end {
1004 return potential_address;
1005 }
1006 }
1007 }
1008 // If no gaps found, check after the last app.
1009 let last_app_end_address = process_binaries_end_addresses[end_count - 1];
1010 self.find_next_cortex_m_aligned_address(last_app_end_address, app_size)
1011 }
1012
1013 /// This function checks if there is a need to pad either before or after
1014 /// the new app to preserve the linked list.
1015 ///
1016 /// When do we pad?
1017 ///
1018 /// 1. When there is a binary located in flash after the new app but
1019 /// not immediately after, we need to add padding between the new
1020 /// app and the existing app.
1021 /// 2. Due to MPU alignment, the new app may be similarly placed not
1022 /// immediately after an existing process, in that case, we need to add
1023 /// padding between the previous app and the new app.
1024 /// 3. If both the above conditions are met, we add both a prepadding and a
1025 /// postpadding.
1026 /// 4. If either of these conditions are not met, we don't pad.
1027 ///
1028 /// Change checks against process binaries instead of processes?
1029 fn compute_padding_requirement_and_neighbors(
1030 &self,
1031 new_app_start_address: usize,
1032 app_length: usize,
1033 process_binaries_start_addresses: &[usize],
1034 process_binaries_end_addresses: &[usize],
1035 ) -> (PaddingRequirement, usize, usize) {
1036 // The end address of our newly loaded application.
1037 let new_app_end_address = new_app_start_address + app_length;
1038 // To store the address until which we need to write the padding app.
1039 let mut next_app_start_addr = 0;
1040 // To store the address from which we need to write the padding app.
1041 let mut previous_app_end_addr = 0;
1042 let mut padding_requirement: PaddingRequirement = PaddingRequirement::None;
1043
1044 // We compute the closest neighbor to our app such that:
1045 //
1046 // 1. If the new app is placed in between two existing binaries, we
1047 // compute the closest located binaries.
1048 // 2. Once we compute these values, we determine if we need to write a
1049 // pre pad header, or a post pad header, or both.
1050 // 3. If there are no apps after ours in the process binary array, we don't
1051 // do anything.
1052
1053 // Postpad requirement.
1054 if let Some(next_closest_neighbor) = process_binaries_start_addresses
1055 .iter()
1056 .filter(|&&x| x > new_app_end_address - 1)
1057 .min()
1058 {
1059 // We found the next closest app in flash.
1060 next_app_start_addr = *next_closest_neighbor;
1061 if next_app_start_addr != 0 {
1062 padding_requirement = PaddingRequirement::PostPad;
1063 }
1064 } else {
1065 if config::CONFIG.debug_load_processes {
1066 debug!("No App Found after the new app so not adding post padding.");
1067 }
1068 }
1069
1070 // Prepad requirement.
1071 if let Some(previous_closest_neighbor) = process_binaries_end_addresses
1072 .iter()
1073 .filter(|&&x| x < new_app_start_address + 1)
1074 .max()
1075 {
1076 // We found the previous closest app in flash.
1077 previous_app_end_addr = *previous_closest_neighbor;
1078 if new_app_start_address - previous_app_end_addr != 0 {
1079 if padding_requirement == PaddingRequirement::PostPad {
1080 padding_requirement = PaddingRequirement::PreAndPostPad;
1081 } else {
1082 padding_requirement = PaddingRequirement::PrePad;
1083 }
1084 }
1085 } else {
1086 if config::CONFIG.debug_load_processes {
1087 debug!("No Previous App Found, so not padding before the new app.");
1088 }
1089 }
1090 (
1091 padding_requirement,
1092 previous_app_end_addr,
1093 next_app_start_addr,
1094 )
1095 }
1096
1097 /// This function scans flash, checks for, and returns an address that follows alignment rules given
1098 /// an app size of `new_app_size`.
1099 fn check_flash_for_valid_address(
1100 &self,
1101 new_app_size: usize,
1102 pb_start_address: &mut [usize],
1103 pb_end_address: &mut [usize],
1104 ) -> Result<usize, ProcessBinaryError> {
1105 let total_flash = self.flash_bank.get();
1106 let total_flash_start = total_flash.as_ptr() as usize;
1107 let total_flash_end = total_flash_start + total_flash.len() - 1;
1108
1109 match self.scan_flash_for_process_binaries(total_flash, pb_start_address, pb_end_address) {
1110 Ok(()) => {
1111 if config::CONFIG.debug_load_processes {
1112 debug!("Successfully scanned flash");
1113 }
1114 let new_app_address = self.compute_new_process_binary_address(
1115 new_app_size,
1116 pb_start_address,
1117 pb_end_address,
1118 );
1119 if new_app_address + new_app_size - 1 > total_flash_end {
1120 Err(ProcessBinaryError::NotEnoughFlash)
1121 } else {
1122 Ok(new_app_address)
1123 }
1124 }
1125 Err(()) => Err(ProcessBinaryError::NotEnoughFlash),
1126 }
1127 }
1128
1129 /// Function to check if the object with address `offset` of size `length` lies
1130 /// within flash bounds.
1131 pub fn check_if_within_flash_bounds(&self, offset: usize, length: usize) -> bool {
1132 let flash = self.flash_bank.get();
1133 let flash_end = flash.as_ptr() as usize + flash.len() - 1;
1134
1135 (flash_end - offset) >= length
1136 }
1137
1138 /// Function to compute an available address for the new application binary.
1139 pub fn check_flash_for_new_address(
1140 &self,
1141 new_app_size: usize,
1142 ) -> Result<(usize, PaddingRequirement, usize, usize), ProcessBinaryError> {
1143 const MAX_PROCS: usize = 10;
1144 let mut pb_start_address: [usize; MAX_PROCS] = [0; MAX_PROCS];
1145 let mut pb_end_address: [usize; MAX_PROCS] = [0; MAX_PROCS];
1146 match self.check_flash_for_valid_address(
1147 new_app_size,
1148 &mut pb_start_address,
1149 &mut pb_end_address,
1150 ) {
1151 Ok(app_address) => {
1152 let (pr, prev_app_addr, next_app_addr) = self
1153 .compute_padding_requirement_and_neighbors(
1154 app_address,
1155 new_app_size,
1156 &pb_start_address,
1157 &pb_end_address,
1158 );
1159 let (padding_requirement, previous_app_end_addr, next_app_start_addr) =
1160 (pr, prev_app_addr, next_app_addr);
1161 Ok((
1162 app_address,
1163 padding_requirement,
1164 previous_app_end_addr,
1165 next_app_start_addr,
1166 ))
1167 }
1168 Err(e) => Err(e),
1169 }
1170 }
1171
1172 /// Function to check if the app binary at address `app_address` is valid.
1173 fn check_new_binary_validity(&self, app_address: usize) -> bool {
1174 let flash = self.flash_bank.get();
1175 // Pass the first eight bytes of the tbfheader to parse out the
1176 // length of the tbf header and app. We then use those values to see
1177 // if we have enough flash remaining to parse the remainder of the
1178 // header.
1179 let binary_header = match flash.get(app_address..app_address + 8) {
1180 Some(slice) if slice.len() == 8 => slice,
1181 _ => return false, // Ensure exactly 8 bytes are available
1182 };
1183
1184 let binary_header_array: &[u8; 8] = match binary_header.try_into() {
1185 Ok(arr) => arr,
1186 Err(_) => return false,
1187 };
1188
1189 match tock_tbf::parse::parse_tbf_header_lengths(binary_header_array) {
1190 Ok((_version, _header_length, _entry_length)) => true,
1191 Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(_entry_length)) => false,
1192 Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => false,
1193 }
1194 }
1195
1196 /// Function to start loading the new application at address `app_address` with size
1197 /// `app_size`.
1198 pub fn load_new_process_binary(
1199 &self,
1200 app_address: usize,
1201 app_size: usize,
1202 ) -> Result<(), ProcessLoadError> {
1203 let flash = self.flash_bank.get();
1204 let process_address = app_address - flash.as_ptr() as usize;
1205 let process_flash = flash.get(process_address..process_address + app_size);
1206 let result = self.check_new_binary_validity(process_address);
1207 match result {
1208 true => {
1209 if let Some(flash) = process_flash {
1210 self.flash.set(flash);
1211 } else {
1212 return Err(ProcessLoadError::BinaryError(
1213 ProcessBinaryError::TbfHeaderNotFound,
1214 ));
1215 }
1216
1217 self.state
1218 .set(SequentialProcessLoaderMachineState::DiscoverProcessBinaries);
1219
1220 self.run_mode
1221 .set(SequentialProcessLoaderMachineRunMode::RuntimeMode);
1222 // Start an asynchronous flow so we can issue a callback on error.
1223 self.deferred_call.set();
1224
1225 Ok(())
1226 }
1227 false => Err(ProcessLoadError::BinaryError(
1228 ProcessBinaryError::TbfHeaderNotFound,
1229 )),
1230 }
1231 }
1232}
1233
1234impl<'a, C: Chip, D: ProcessStandardDebug> ProcessLoadingAsync<'a>
1235 for SequentialProcessLoaderMachine<'a, C, D>
1236{
1237 fn set_client(&self, client: &'a dyn ProcessLoadingAsyncClient) {
1238 self.boot_client.set(client);
1239 }
1240
1241 fn set_policy(&self, policy: &'a dyn AppIdPolicy) {
1242 self.policy.replace(policy);
1243 }
1244
1245 fn start(&self) {
1246 self.state
1247 .set(SequentialProcessLoaderMachineState::DiscoverProcessBinaries);
1248 self.run_mode
1249 .set(SequentialProcessLoaderMachineRunMode::BootMode);
1250 // Start an asynchronous flow so we can issue a callback on error.
1251 self.deferred_call.set();
1252 }
1253}
1254
1255impl<C: Chip, D: ProcessStandardDebug> DeferredCallClient
1256 for SequentialProcessLoaderMachine<'_, C, D>
1257{
1258 fn handle_deferred_call(&self) {
1259 // We use deferred calls to start the operation in the async loop.
1260 match self.state.get() {
1261 Some(SequentialProcessLoaderMachineState::DiscoverProcessBinaries) => {
1262 self.load_and_check();
1263 }
1264 Some(SequentialProcessLoaderMachineState::LoadProcesses) => {
1265 let ret = self.load_process_objects();
1266 match ret {
1267 Ok(()) => {}
1268 Err(()) => {
1269 // If this failed for some reason, we still need to
1270 // signal that process loading has finished.
1271 self.get_current_client().map(|client| {
1272 client.process_loading_finished();
1273 });
1274 }
1275 }
1276 }
1277 None => {}
1278 }
1279 }
1280
1281 fn register(&'static self) {
1282 self.deferred_call.register(self);
1283 }
1284}
1285
1286impl<C: Chip, D: ProcessStandardDebug> crate::process_checker::ProcessCheckerMachineClient
1287 for SequentialProcessLoaderMachine<'_, C, D>
1288{
1289 fn done(
1290 &self,
1291 process_binary: ProcessBinary,
1292 result: Result<Option<AcceptedCredential>, crate::process_checker::ProcessCheckError>,
1293 ) {
1294 // Check if this process was approved by the checker.
1295 match result {
1296 Ok(optional_credential) => {
1297 if config::CONFIG.debug_load_processes {
1298 debug!(
1299 "Loading: Check succeeded for process {}",
1300 process_binary.header.get_package_name().unwrap_or("")
1301 );
1302 }
1303 // Save the checked process binary now that we know it is valid.
1304 match self.find_open_process_binary_slot() {
1305 Some(index) => {
1306 self.proc_binaries.map(|proc_binaries| {
1307 process_binary.credential.insert(optional_credential);
1308 proc_binaries[index] = Some(process_binary);
1309 });
1310 }
1311 None => {
1312 self.get_current_client().map(|client| {
1313 client.process_loaded(Err(ProcessLoadError::NoProcessSlot));
1314 });
1315 }
1316 }
1317 }
1318 Err(e) => {
1319 if config::CONFIG.debug_load_processes {
1320 debug!(
1321 "Loading: Process {} check failed {:?}",
1322 process_binary.header.get_package_name().unwrap_or(""),
1323 e
1324 );
1325 }
1326 // Signal error and call try next
1327 self.get_current_client().map(|client| {
1328 client.process_loaded(Err(ProcessLoadError::CheckError(e)));
1329 });
1330 }
1331 }
1332
1333 // Try to load the next process in flash.
1334 self.deferred_call.set();
1335 }
1336}