kernel/
process_loading.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Helper functions and machines for loading process binaries into in-memory
//! Tock processes.
//!
//! Process loaders are responsible for parsing the binary formats of Tock
//! processes, checking whether they are allowed to be loaded, and if so
//! initializing a process structure to run it.
//!
//! This module provides multiple process loader options depending on which
//! features a particular board requires.

use core::cell::Cell;
use core::fmt;

use crate::capabilities::ProcessManagementCapability;
use crate::config;
use crate::debug;
use crate::deferred_call::{DeferredCall, DeferredCallClient};
use crate::kernel::Kernel;
use crate::platform::chip::Chip;
use crate::process::{Process, ShortId};
use crate::process_binary::{ProcessBinary, ProcessBinaryError};
use crate::process_checker::AcceptedCredential;
use crate::process_checker::{AppIdPolicy, ProcessCheckError, ProcessCheckerMachine};
use crate::process_policies::ProcessFaultPolicy;
use crate::process_policies::ProcessStandardStoragePermissionsPolicy;
use crate::process_standard::ProcessStandard;
use crate::process_standard::{ProcessStandardDebug, ProcessStandardDebugFull};
use crate::utilities::cells::{MapCell, OptionalCell};

/// Errors that can occur when trying to load and create processes.
pub enum ProcessLoadError {
    /// Not enough memory to meet the amount requested by a process. Modify the
    /// process to request less memory, flash fewer processes, or increase the
    /// size of the region your board reserves for process memory.
    NotEnoughMemory,

    /// A process was loaded with a length in flash that the MPU does not
    /// support. The fix is probably to correct the process size, but this could
    /// also be caused by a bad MPU implementation.
    MpuInvalidFlashLength,

    /// The MPU configuration failed for some other, unspecified reason. This
    /// could be of an internal resource exhaustion, or a mismatch between the
    /// (current) MPU constraints and process requirements.
    MpuConfigurationError,

    /// A process specified a fixed memory address that it needs its memory
    /// range to start at, and the kernel did not or could not give the process
    /// a memory region starting at that address.
    MemoryAddressMismatch {
        actual_address: u32,
        expected_address: u32,
    },

    /// There is nowhere in the `PROCESSES` array to store this process.
    NoProcessSlot,

    /// Process loading failed because parsing the binary failed.
    BinaryError(ProcessBinaryError),

    /// Process loading failed because checking the process failed.
    CheckError(ProcessCheckError),

    /// Process loading error due (likely) to a bug in the kernel. If you get
    /// this error please open a bug report.
    InternalError,
}

impl fmt::Debug for ProcessLoadError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            ProcessLoadError::NotEnoughMemory => {
                write!(f, "Not able to provide RAM requested by app")
            }

            ProcessLoadError::MpuInvalidFlashLength => {
                write!(f, "App flash length not supported by MPU")
            }

            ProcessLoadError::MpuConfigurationError => {
                write!(f, "Configuring the MPU failed")
            }

            ProcessLoadError::MemoryAddressMismatch {
                actual_address,
                expected_address,
            } => write!(
                f,
                "App memory does not match requested address Actual:{:#x}, Expected:{:#x}",
                actual_address, expected_address
            ),

            ProcessLoadError::NoProcessSlot => {
                write!(f, "Nowhere to store the loaded process")
            }

            ProcessLoadError::BinaryError(binary_error) => {
                writeln!(f, "Error parsing process binary")?;
                write!(f, "{:?}", binary_error)
            }

            ProcessLoadError::CheckError(check_error) => {
                writeln!(f, "Error checking process")?;
                write!(f, "{:?}", check_error)
            }

            ProcessLoadError::InternalError => write!(f, "Error in kernel. Likely a bug."),
        }
    }
}

////////////////////////////////////////////////////////////////////////////////
// SYNCHRONOUS PROCESS LOADING
////////////////////////////////////////////////////////////////////////////////

/// Load processes into runnable process structures.
///
/// Load processes (stored as TBF objects in flash) into runnable process
/// structures stored in the `procs` array and mark all successfully loaded
/// processes as runnable. This method does not check the cryptographic
/// credentials of TBF objects. Platforms for which code size is tight and do
/// not need to check TBF credentials can call this method because it results in
/// a smaller kernel, as it does not invoke the credential checking state
/// machine.
///
/// This function is made `pub` so that board files can use it, but loading
/// processes from slices of flash an memory is fundamentally unsafe. Therefore,
/// we require the `ProcessManagementCapability` to call this function.
// Mark inline always to reduce code size. Since this is only called in one
// place (a board's main.rs), by inlining the load_*processes() functions, the
// compiler can elide many checks which reduces code size appreciably. Note,
// however, these functions require a rather large stack frame, which may be an
// issue for boards small kernel stacks.
#[inline(always)]
pub fn load_processes<C: Chip>(
    kernel: &'static Kernel,
    chip: &'static C,
    app_flash: &'static [u8],
    app_memory: &'static mut [u8],
    mut procs: &'static mut [Option<&'static dyn Process>],
    fault_policy: &'static dyn ProcessFaultPolicy,
    _capability_management: &dyn ProcessManagementCapability,
) -> Result<(), ProcessLoadError> {
    load_processes_from_flash::<C, ProcessStandardDebugFull>(
        kernel,
        chip,
        app_flash,
        app_memory,
        &mut procs,
        fault_policy,
    )?;

    if config::CONFIG.debug_process_credentials {
        debug!("Checking: no checking, load and run all processes");
    }
    for proc in procs.iter() {
        proc.map(|p| {
            if config::CONFIG.debug_process_credentials {
                debug!("Running {}", p.get_process_name());
            }
        });
    }
    Ok(())
}

/// Helper function to load processes from flash into an array of active
/// processes. This is the default template for loading processes, but a board
/// is able to create its own `load_processes()` function and use that instead.
///
/// Processes are found in flash starting from the given address and iterating
/// through Tock Binary Format (TBF) headers. Processes are given memory out of
/// the `app_memory` buffer until either the memory is exhausted or the
/// allocated number of processes are created. This buffer is a non-static slice,
/// ensuring that this code cannot hold onto the slice past the end of this function
/// (instead, processes store a pointer and length), which necessary for later
/// creation of `ProcessBuffer`s in this memory region to be sound.
/// A reference to each process is stored in the provided `procs` array.
/// How process faults are handled by the
/// kernel must be provided and is assigned to every created process.
///
/// Returns `Ok(())` if process discovery went as expected. Returns a
/// `ProcessLoadError` if something goes wrong during TBF parsing or process
/// creation.
#[inline(always)]
fn load_processes_from_flash<C: Chip, D: ProcessStandardDebug + 'static>(
    kernel: &'static Kernel,
    chip: &'static C,
    app_flash: &'static [u8],
    app_memory: &'static mut [u8],
    procs: &mut &'static mut [Option<&'static dyn Process>],
    fault_policy: &'static dyn ProcessFaultPolicy,
) -> Result<(), ProcessLoadError> {
    if config::CONFIG.debug_load_processes {
        debug!(
            "Loading processes from flash={:#010X}-{:#010X} into sram={:#010X}-{:#010X}",
            app_flash.as_ptr() as usize,
            app_flash.as_ptr() as usize + app_flash.len() - 1,
            app_memory.as_ptr() as usize,
            app_memory.as_ptr() as usize + app_memory.len() - 1
        );
    }

    let mut remaining_flash = app_flash;
    let mut remaining_memory = app_memory;
    // Try to discover up to `procs.len()` processes in flash.
    let mut index = 0;
    let num_procs = procs.len();
    while index < num_procs {
        let load_binary_result = discover_process_binary(remaining_flash);

        match load_binary_result {
            Ok((new_flash, process_binary)) => {
                remaining_flash = new_flash;

                let load_result = load_process::<C, D>(
                    kernel,
                    chip,
                    process_binary,
                    remaining_memory,
                    ShortId::LocallyUnique,
                    index,
                    fault_policy,
                    &(),
                );
                match load_result {
                    Ok((new_mem, proc)) => {
                        remaining_memory = new_mem;
                        match proc {
                            Some(p) => {
                                if config::CONFIG.debug_load_processes {
                                    debug!("Loaded process {}", p.get_process_name())
                                }
                                procs[index] = proc;
                                index += 1;
                            }
                            None => {
                                if config::CONFIG.debug_load_processes {
                                    debug!("No process loaded.");
                                }
                            }
                        }
                    }
                    Err((new_mem, err)) => {
                        remaining_memory = new_mem;
                        if config::CONFIG.debug_load_processes {
                            debug!("Processes load error: {:?}.", err);
                        }
                    }
                }
            }
            Err((new_flash, err)) => {
                remaining_flash = new_flash;
                match err {
                    ProcessBinaryError::NotEnoughFlash | ProcessBinaryError::TbfHeaderNotFound => {
                        if config::CONFIG.debug_load_processes {
                            debug!("No more processes to load: {:?}.", err);
                        }
                        // No more processes to load.
                        break;
                    }

                    ProcessBinaryError::TbfHeaderParseFailure(_)
                    | ProcessBinaryError::IncompatibleKernelVersion { .. }
                    | ProcessBinaryError::IncorrectFlashAddress { .. }
                    | ProcessBinaryError::NotEnabledProcess
                    | ProcessBinaryError::Padding => {
                        if config::CONFIG.debug_load_processes {
                            debug!("Unable to use process binary: {:?}.", err);
                        }

                        // Skip this binary and move to the next one.
                        continue;
                    }
                }
            }
        }
    }
    Ok(())
}

////////////////////////////////////////////////////////////////////////////////
// HELPER FUNCTIONS
////////////////////////////////////////////////////////////////////////////////

/// Find a process binary stored at the beginning of `flash` and create a
/// `ProcessBinary` object if the process is viable to run on this kernel.
fn discover_process_binary(
    flash: &'static [u8],
) -> Result<(&'static [u8], ProcessBinary), (&'static [u8], ProcessBinaryError)> {
    if config::CONFIG.debug_load_processes {
        debug!(
            "Looking for process binary in flash={:#010X}-{:#010X}",
            flash.as_ptr() as usize,
            flash.as_ptr() as usize + flash.len() - 1
        );
    }

    // If this fails, not enough remaining flash to check for an app.
    let test_header_slice = flash
        .get(0..8)
        .ok_or((flash, ProcessBinaryError::NotEnoughFlash))?;

    // Pass the first eight bytes to tbfheader to parse out the length of
    // the tbf header and app. We then use those values to see if we have
    // enough flash remaining to parse the remainder of the header.
    //
    // Start by converting [u8] to [u8; 8].
    let header = test_header_slice
        .try_into()
        .or(Err((flash, ProcessBinaryError::NotEnoughFlash)))?;

    let (version, header_length, app_length) =
        match tock_tbf::parse::parse_tbf_header_lengths(header) {
            Ok((v, hl, el)) => (v, hl, el),
            Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(app_length)) => {
                // If we could not parse the header, then we want to skip over
                // this app and look for the next one.
                (0, 0, app_length)
            }
            Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => {
                // Since Tock apps use a linked list, it is very possible the
                // header we started to parse is intentionally invalid to signal
                // the end of apps. This is ok and just means we have finished
                // loading apps.
                return Err((flash, ProcessBinaryError::TbfHeaderNotFound));
            }
        };

    // Now we can get a slice which only encompasses the length of flash
    // described by this tbf header.  We will either parse this as an actual
    // app, or skip over this region.
    let app_flash = flash
        .get(0..app_length as usize)
        .ok_or((flash, ProcessBinaryError::NotEnoughFlash))?;

    // Advance the flash slice for process discovery beyond this last entry.
    // This will be the start of where we look for a new process since Tock
    // processes are allocated back-to-back in flash.
    let remaining_flash = flash
        .get(app_flash.len()..)
        .ok_or((flash, ProcessBinaryError::NotEnoughFlash))?;

    let pb = ProcessBinary::create(app_flash, header_length as usize, version, true)
        .map_err(|e| (remaining_flash, e))?;

    Ok((remaining_flash, pb))
}

/// Load a process stored as a TBF process binary with `app_memory` as the RAM
/// pool that its RAM should be allocated from. Returns `Ok` if the process
/// object was created, `Err` with a relevant error if the process object could
/// not be created.
fn load_process<C: Chip, D: ProcessStandardDebug>(
    kernel: &'static Kernel,
    chip: &'static C,
    process_binary: ProcessBinary,
    app_memory: &'static mut [u8],
    app_id: ShortId,
    index: usize,
    fault_policy: &'static dyn ProcessFaultPolicy,
    storage_policy: &'static dyn ProcessStandardStoragePermissionsPolicy<C, D>,
) -> Result<(&'static mut [u8], Option<&'static dyn Process>), (&'static mut [u8], ProcessLoadError)>
{
    if config::CONFIG.debug_load_processes {
        debug!(
            "Loading: process flash={:#010X}-{:#010X} ram={:#010X}-{:#010X}",
            process_binary.flash.as_ptr() as usize,
            process_binary.flash.as_ptr() as usize + process_binary.flash.len() - 1,
            app_memory.as_ptr() as usize,
            app_memory.as_ptr() as usize + app_memory.len() - 1
        );
    }

    // Need to reassign remaining_memory in every iteration so the compiler
    // knows it will not be re-borrowed.
    // If we found an actual app header, try to create a `Process`
    // object. We also need to shrink the amount of remaining memory
    // based on whatever is assigned to the new process if one is
    // created.

    // Try to create a process object from that app slice. If we don't
    // get a process and we didn't get a loading error (aka we got to
    // this point), then the app is a disabled process or just padding.
    let (process_option, unused_memory) = unsafe {
        ProcessStandard::<C, D>::create(
            kernel,
            chip,
            process_binary,
            app_memory,
            fault_policy,
            storage_policy,
            app_id,
            index,
        )
        .map_err(|(e, memory)| (memory, e))?
    };

    process_option.map(|process| {
        if config::CONFIG.debug_load_processes {
            debug!(
                "Loading: {} [{}] flash={:#010X}-{:#010X} ram={:#010X}-{:#010X}",
                process.get_process_name(),
                index,
                process.get_addresses().flash_start,
                process.get_addresses().flash_end,
                process.get_addresses().sram_start,
                process.get_addresses().sram_end - 1,
            );
        }
    });

    Ok((unused_memory, process_option))
}

////////////////////////////////////////////////////////////////////////////////
// ASYNCHRONOUS PROCESS LOADING
////////////////////////////////////////////////////////////////////////////////

/// Client for asynchronous process loading.
///
/// This supports a client that is notified after trying to load each process in
/// flash. Also there is a callback for after all processes have been
/// discovered.
pub trait ProcessLoadingAsyncClient {
    /// A process was successfully found in flash, checked, and loaded into a
    /// `ProcessStandard` object.
    fn process_loaded(&self, result: Result<(), ProcessLoadError>);

    /// There are no more processes in flash to be loaded.
    fn process_loading_finished(&self);
}

/// Asynchronous process loading.
///
/// Machines which implement this trait perform asynchronous process loading and
/// signal completion through `ProcessLoadingAsyncClient`.
///
/// Various process loaders may exist. This includes a loader from a MCU's
/// integrated flash, or a loader from an external flash chip.
pub trait ProcessLoadingAsync<'a> {
    /// Set the client to receive callbacks about process loading and when
    /// process loading has finished.
    fn set_client(&self, client: &'a dyn ProcessLoadingAsyncClient);

    /// Set the credential checking policy for the loader.
    fn set_policy(&self, policy: &'a dyn AppIdPolicy);

    /// Start the process loading operation.
    fn start(&self);
}

/// Operating mode of the loader.
#[derive(Clone, Copy)]
enum SequentialProcessLoaderMachineState {
    /// Phase of discovering `ProcessBinary` objects in flash.
    DiscoverProcessBinaries,
    /// Phase of loading `ProcessBinary`s into `Process`s.
    LoadProcesses,
}

/// A machine for loading processes stored sequentially in a region of flash.
///
/// Load processes (stored as TBF objects in flash) into runnable process
/// structures stored in the `procs` array. This machine scans the footers in
/// the TBF for cryptographic credentials for binary integrity, passing them to
/// the checker to decide whether the process has sufficient credentials to run.
pub struct SequentialProcessLoaderMachine<'a, C: Chip + 'static, D: ProcessStandardDebug + 'static>
{
    /// Client to notify as processes are loaded and process loading finishes.
    client: OptionalCell<&'a dyn ProcessLoadingAsyncClient>,
    /// Machine to use to check process credentials.
    checker: &'static ProcessCheckerMachine,
    /// Array of stored process references for loaded processes.
    procs: MapCell<&'static mut [Option<&'static dyn Process>]>,
    /// Array to store `ProcessBinary`s after checking credentials.
    proc_binaries: MapCell<&'static mut [Option<ProcessBinary>]>,
    /// Flash memory region to load processes from.
    flash: Cell<&'static [u8]>,
    /// Memory available to assign to applications.
    app_memory: Cell<&'static mut [u8]>,
    /// Mechanism for generating async callbacks.
    deferred_call: DeferredCall,
    /// Reference to the kernel object for creating Processes.
    kernel: &'static Kernel,
    /// Reference to the Chip object for creating Processes.
    chip: &'static C,
    /// The policy to use when determining ShortIds and process uniqueness.
    policy: OptionalCell<&'a dyn AppIdPolicy>,
    /// The fault policy to assign to each created Process.
    fault_policy: &'static dyn ProcessFaultPolicy,
    /// The storage permissions policy to assign to each created Process.
    storage_policy: &'static dyn ProcessStandardStoragePermissionsPolicy<C, D>,
    /// Current mode of the loading machine.
    state: OptionalCell<SequentialProcessLoaderMachineState>,
}

impl<C: Chip, D: ProcessStandardDebug> SequentialProcessLoaderMachine<'_, C, D> {
    /// This function is made `pub` so that board files can use it, but loading
    /// processes from slices of flash an memory is fundamentally unsafe.
    /// Therefore, we require the `ProcessManagementCapability` to call this
    /// function.
    pub fn new(
        checker: &'static ProcessCheckerMachine,
        procs: &'static mut [Option<&'static dyn Process>],
        proc_binaries: &'static mut [Option<ProcessBinary>],
        kernel: &'static Kernel,
        chip: &'static C,
        flash: &'static [u8],
        app_memory: &'static mut [u8],
        fault_policy: &'static dyn ProcessFaultPolicy,
        storage_policy: &'static dyn ProcessStandardStoragePermissionsPolicy<C, D>,
        policy: &'static dyn AppIdPolicy,
        _capability_management: &dyn ProcessManagementCapability,
    ) -> Self {
        Self {
            deferred_call: DeferredCall::new(),
            checker,
            client: OptionalCell::empty(),
            procs: MapCell::new(procs),
            proc_binaries: MapCell::new(proc_binaries),
            kernel,
            chip,
            flash: Cell::new(flash),
            app_memory: Cell::new(app_memory),
            policy: OptionalCell::new(policy),
            fault_policy,
            storage_policy,
            state: OptionalCell::empty(),
        }
    }

    /// Find a slot in the `PROCESSES` array to store this process.
    fn find_open_process_slot(&self) -> Option<usize> {
        self.procs.map_or(None, |procs| {
            for (i, p) in procs.iter().enumerate() {
                if p.is_none() {
                    return Some(i);
                }
            }
            None
        })
    }

    /// Find a slot in the `PROCESS_BINARIES` array to store this process.
    fn find_open_process_binary_slot(&self) -> Option<usize> {
        self.proc_binaries.map_or(None, |proc_bins| {
            for (i, p) in proc_bins.iter().enumerate() {
                if p.is_none() {
                    return Some(i);
                }
            }
            None
        })
    }

    fn load_and_check(&self) {
        let ret = self.discover_process_binary();
        match ret {
            Ok(pb) => match self.checker.check(pb) {
                Ok(()) => {}
                Err(e) => {
                    self.client.map(|client| {
                        client.process_loaded(Err(ProcessLoadError::CheckError(e)));
                    });
                }
            },
            Err(ProcessBinaryError::NotEnoughFlash)
            | Err(ProcessBinaryError::TbfHeaderNotFound) => {
                // These two errors occur when there are no more app binaries in
                // flash. Now we can move to actually loading process binaries
                // into full processes.

                self.state
                    .set(SequentialProcessLoaderMachineState::LoadProcesses);
                self.deferred_call.set();
            }
            Err(e) => {
                if config::CONFIG.debug_load_processes {
                    debug!("Loading: unable to create ProcessBinary: {:?}", e);
                }

                // Other process binary errors indicate the process is not
                // compatible. Signal error and try the next item in flash.
                self.client.map(|client| {
                    client.process_loaded(Err(ProcessLoadError::BinaryError(e)));
                });
                self.deferred_call.set();
            }
        }
    }

    /// Try to parse a process binary from flash.
    ///
    /// Returns the process binary object or an error if a valid process
    /// binary could not be extracted.
    fn discover_process_binary(&self) -> Result<ProcessBinary, ProcessBinaryError> {
        let flash = self.flash.get();

        if config::CONFIG.debug_load_processes {
            debug!(
                "Looking for process binary in flash={:#010X}-{:#010X}",
                flash.as_ptr() as usize,
                flash.as_ptr() as usize + flash.len() - 1
            );
        }

        // If this fails, not enough remaining flash to check for an app.
        let test_header_slice = flash.get(0..8).ok_or(ProcessBinaryError::NotEnoughFlash)?;

        // Pass the first eight bytes to tbfheader to parse out the length of
        // the tbf header and app. We then use those values to see if we have
        // enough flash remaining to parse the remainder of the header.
        //
        // Start by converting [u8] to [u8; 8].
        let header = test_header_slice
            .try_into()
            .or(Err(ProcessBinaryError::NotEnoughFlash))?;

        let (version, header_length, app_length) =
            match tock_tbf::parse::parse_tbf_header_lengths(header) {
                Ok((v, hl, el)) => (v, hl, el),
                Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(app_length)) => {
                    // If we could not parse the header, then we want to skip over
                    // this app and look for the next one.
                    (0, 0, app_length)
                }
                Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => {
                    // Since Tock apps use a linked list, it is very possible the
                    // header we started to parse is intentionally invalid to signal
                    // the end of apps. This is ok and just means we have finished
                    // loading apps.
                    return Err(ProcessBinaryError::TbfHeaderNotFound);
                }
            };

        // Now we can get a slice which only encompasses the length of flash
        // described by this tbf header.  We will either parse this as an actual
        // app, or skip over this region.
        let app_flash = flash
            .get(0..app_length as usize)
            .ok_or(ProcessBinaryError::NotEnoughFlash)?;

        // Advance the flash slice for process discovery beyond this last entry.
        // This will be the start of where we look for a new process since Tock
        // processes are allocated back-to-back in flash.
        let remaining_flash = flash
            .get(app_flash.len()..)
            .ok_or(ProcessBinaryError::NotEnoughFlash)?;
        self.flash.set(remaining_flash);

        let pb = ProcessBinary::create(app_flash, header_length as usize, version, true)?;

        Ok(pb)
    }

    /// Create process objects from the discovered process binaries.
    ///
    /// This verifies that the discovered processes are valid to run.
    fn load_process_objects(&self) -> Result<(), ()> {
        let proc_binaries = self.proc_binaries.take().ok_or(())?;
        let proc_binaries_len = proc_binaries.len();

        // Iterate all process binary entries.
        for i in 0..proc_binaries_len {
            // We are either going to load this process binary or discard it, so
            // we can use `take()` here.
            if let Some(process_binary) = proc_binaries[i].take() {
                // We assume the process can be loaded. This is not the case
                // if there is a conflicting process.
                let mut ok_to_load = true;

                // Start by iterating all other process binaries and seeing
                // if any are in conflict (same AppID with newer version).
                for proc_bin in proc_binaries.iter() {
                    match proc_bin {
                        Some(other_process_binary) => {
                            let blocked = self
                                .is_blocked_from_loading_by(&process_binary, other_process_binary);

                            if blocked {
                                ok_to_load = false;
                                break;
                            }
                        }
                        None => {}
                    }
                }

                // Go to next ProcessBinary if we cannot load this process.
                if !ok_to_load {
                    continue;
                }

                // Now scan the already loaded processes and make sure this
                // doesn't conflict with any of those. Since those processes
                // are already loaded, we just need to check if this process
                // binary has the same AppID as an already loaded process.
                self.procs.map(|procs| {
                    for proc in procs.iter() {
                        match proc {
                            Some(p) => {
                                let blocked =
                                    self.is_blocked_from_loading_by_process(&process_binary, *p);

                                if blocked {
                                    ok_to_load = false;
                                    break;
                                }
                            }
                            None => {}
                        }
                    }
                });

                if !ok_to_load {
                    continue;
                }

                // If we get here it is ok to load the process.
                match self.find_open_process_slot() {
                    Some(index) => {
                        // Calculate the ShortId for this new process.
                        let short_app_id = self.policy.map_or(ShortId::LocallyUnique, |policy| {
                            policy.to_short_id(&process_binary)
                        });

                        // Try to create a `Process` object.
                        let load_result = load_process(
                            self.kernel,
                            self.chip,
                            process_binary,
                            self.app_memory.take(),
                            short_app_id,
                            index,
                            self.fault_policy,
                            self.storage_policy,
                        );
                        match load_result {
                            Ok((new_mem, proc)) => {
                                self.app_memory.set(new_mem);
                                match proc {
                                    Some(p) => {
                                        if config::CONFIG.debug_load_processes {
                                            debug!(
                                                "Loading: Loaded process {}",
                                                p.get_process_name()
                                            )
                                        }

                                        // Store the `ProcessStandard` object in the `PROCESSES`
                                        // array.
                                        self.procs.map(|procs| {
                                            procs[index] = proc;
                                        });
                                        // Notify the client the process was loaded
                                        // successfully.
                                        self.client.map(|client| {
                                            client.process_loaded(Ok(()));
                                        });
                                    }
                                    None => {
                                        if config::CONFIG.debug_load_processes {
                                            debug!("No process loaded.");
                                        }
                                    }
                                }
                            }
                            Err((new_mem, err)) => {
                                self.app_memory.set(new_mem);
                                if config::CONFIG.debug_load_processes {
                                    debug!("Could not load process: {:?}.", err);
                                }

                                self.client.map(|client| {
                                    client.process_loaded(Err(err));
                                });
                            }
                        }
                    }
                    None => {
                        // Nowhere to store the process.
                        self.client.map(|client| {
                            client.process_loaded(Err(ProcessLoadError::NoProcessSlot));
                        });
                    }
                }
            }
        }
        self.proc_binaries.put(proc_binaries);

        // We have iterated all discovered `ProcessBinary`s and loaded what we
        // could so now we can signal that process loading is finished.
        self.client.map(|client| {
            client.process_loading_finished();
        });

        self.state.clear();
        Ok(())
    }

    /// Check if `pb1` is blocked from running by `pb2`.
    ///
    /// `pb2` blocks `pb1` if:
    ///
    /// - They both have the same AppID or they both have the same ShortId, and
    /// - `pb2` has a higher version number.
    fn is_blocked_from_loading_by(&self, pb1: &ProcessBinary, pb2: &ProcessBinary) -> bool {
        let same_app_id = self
            .policy
            .map_or(false, |policy| !policy.different_identifier(pb1, pb2));
        let same_short_app_id = self.policy.map_or(false, |policy| {
            policy.to_short_id(pb1) == policy.to_short_id(pb2)
        });
        let other_newer = pb2.header.get_binary_version() > pb1.header.get_binary_version();

        let blocks = (same_app_id || same_short_app_id) && other_newer;

        if config::CONFIG.debug_process_credentials {
            debug!(
                "Loading: ProcessBinary {}({:#02x}) does{} block {}({:#02x})",
                pb2.header.get_package_name().unwrap_or(""),
                pb2.flash.as_ptr() as usize,
                if blocks { " not" } else { "" },
                pb1.header.get_package_name().unwrap_or(""),
                pb1.flash.as_ptr() as usize,
            );
        }

        blocks
    }

    /// Check if `pb` is blocked from running by `process`.
    ///
    /// `process` blocks `pb` if:
    ///
    /// - They both have the same AppID, or
    /// - They both have the same ShortId
    ///
    /// Since `process` is already loaded, we only have to enforce the AppID and
    /// ShortId uniqueness guarantees.
    fn is_blocked_from_loading_by_process(
        &self,
        pb: &ProcessBinary,
        process: &dyn Process,
    ) -> bool {
        let same_app_id = self.policy.map_or(false, |policy| {
            !policy.different_identifier_process(pb, process)
        });
        let same_short_app_id = self.policy.map_or(false, |policy| {
            policy.to_short_id(pb) == process.short_app_id()
        });

        let blocks = same_app_id || same_short_app_id;

        if config::CONFIG.debug_process_credentials {
            debug!(
                "Loading: Process {}({:#02x}) does{} block {}({:#02x})",
                process.get_process_name(),
                process.get_addresses().flash_start,
                if blocks { " not" } else { "" },
                pb.header.get_package_name().unwrap_or(""),
                pb.flash.as_ptr() as usize,
            );
        }

        blocks
    }
}

impl<'a, C: Chip, D: ProcessStandardDebug> ProcessLoadingAsync<'a>
    for SequentialProcessLoaderMachine<'a, C, D>
{
    fn set_client(&self, client: &'a dyn ProcessLoadingAsyncClient) {
        self.client.set(client);
    }

    fn set_policy(&self, policy: &'a dyn AppIdPolicy) {
        self.policy.replace(policy);
    }

    fn start(&self) {
        self.state
            .set(SequentialProcessLoaderMachineState::DiscoverProcessBinaries);
        // Start an asynchronous flow so we can issue a callback on error.
        self.deferred_call.set();
    }
}

impl<C: Chip, D: ProcessStandardDebug> DeferredCallClient
    for SequentialProcessLoaderMachine<'_, C, D>
{
    fn handle_deferred_call(&self) {
        // We use deferred calls to start the operation in the async loop.
        match self.state.get() {
            Some(SequentialProcessLoaderMachineState::DiscoverProcessBinaries) => {
                self.load_and_check();
            }
            Some(SequentialProcessLoaderMachineState::LoadProcesses) => {
                let ret = self.load_process_objects();
                match ret {
                    Ok(()) => {}
                    Err(()) => {
                        // If this failed for some reason, we still need to
                        // signal that process loading has finished.
                        self.client.map(|client| {
                            client.process_loading_finished();
                        });
                    }
                }
            }
            None => {}
        }
    }

    fn register(&'static self) {
        self.deferred_call.register(self);
    }
}

impl<C: Chip, D: ProcessStandardDebug> crate::process_checker::ProcessCheckerMachineClient
    for SequentialProcessLoaderMachine<'_, C, D>
{
    fn done(
        &self,
        process_binary: ProcessBinary,
        result: Result<Option<AcceptedCredential>, crate::process_checker::ProcessCheckError>,
    ) {
        // Check if this process was approved by the checker.
        match result {
            Ok(optional_credential) => {
                if config::CONFIG.debug_load_processes {
                    debug!(
                        "Loading: Check succeeded for process {}",
                        process_binary.header.get_package_name().unwrap_or("")
                    );
                }
                // Save the checked process binary now that we know it is valid.
                match self.find_open_process_binary_slot() {
                    Some(index) => {
                        self.proc_binaries.map(|proc_binaries| {
                            process_binary.credential.insert(optional_credential);
                            proc_binaries[index] = Some(process_binary);
                        });
                    }
                    None => {
                        self.client.map(|client| {
                            client.process_loaded(Err(ProcessLoadError::NoProcessSlot));
                        });
                    }
                }
            }
            Err(e) => {
                if config::CONFIG.debug_load_processes {
                    debug!(
                        "Loading: Process {} check failed {:?}",
                        process_binary.header.get_package_name().unwrap_or(""),
                        e
                    );
                }
                // Signal error and call try next
                self.client.map(|client| {
                    client.process_loaded(Err(ProcessLoadError::CheckError(e)));
                });
            }
        }

        // Try to load the next process in flash.
        self.deferred_call.set();
    }
}