rp2040/
timer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

use cortexm0p::support::atomic;
use kernel::hil;
use kernel::hil::time::{Alarm, Ticks, Ticks32, Time};
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::registers::{
    register_bitfields, register_structs, ReadOnly, ReadWrite, WriteOnly,
};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;

use crate::interrupts::TIMER_IRQ_0;

register_structs! {
    /// Controls time and alarms\n
    /// time is a 64 bit value indicating the time in usec since power-on\n
    /// timeh is the top 32 bits of time & timel is the bottom 32 bits\n
    /// to change time write to timelw before timehw\n
    /// to read time read from timelr before timehr\n
    /// An alarm is set by setting alarm_enable and writing to the corresponding
    /// When an alarm is pending, the corresponding alarm_running signal will be
    /// An alarm can be cancelled before it has finished by clearing the alarm_e
    /// When an alarm fires, the corresponding alarm_irq is set and alarm_runnin
    /// To clear the interrupt write a 1 to the corresponding alarm_irq
    TimerRegisters {
        /// Write to bits 63:32 of time\n
        /// always write timelw before timehw
        (0x000 => timehw: WriteOnly<u32, TIMEHW::Register>),
        /// Write to bits 31:0 of time\n
        /// writes do not get copied to time until timehw is written
        (0x004 => timelw: WriteOnly<u32, TIMELW::Register>),
        /// Read from bits 63:32 of time\n
        /// always read timelr before timehr
        (0x008 => timehr: ReadOnly<u32, TIMEHR::Register>),
        /// Read from bits 31:0 of time
        (0x00C => timelr: ReadOnly<u32, TIMELR::Register>),
        /// Arm alarm 0, and configure the time it will fire.\n
        /// Once armed, the alarm fires when TIMER_ALARM0 == TIMELR.\n
        /// The alarm will disarm itself once it fires, and can\n
        /// be disarmed early using the ARMED status register.
        (0x010 => alarm0: ReadWrite<u32, ALARM0::Register>),
        /// Arm alarm 1, and configure the time it will fire.\n
        /// Once armed, the alarm fires when TIMER_ALARM1 == TIMELR.\n
        /// The alarm will disarm itself once it fires, and can\n
        /// be disarmed early using the ARMED status register.
        (0x014 => alarm1: ReadWrite<u32, ALARM1::Register>),
        /// Arm alarm 2, and configure the time it will fire.\n
        /// Once armed, the alarm fires when TIMER_ALARM2 == TIMELR.\n
        /// The alarm will disarm itself once it fires, and can\n
        /// be disarmed early using the ARMED status register.
        (0x018 => alarm2: ReadWrite<u32, ALARM2::Register>),
        /// Arm alarm 3, and configure the time it will fire.\n
        /// Once armed, the alarm fires when TIMER_ALARM3 == TIMELR.\n
        /// The alarm will disarm itself once it fires, and can\n
        /// be disarmed early using the ARMED status register.
        (0x01C => alarm3: ReadWrite<u32, ALARM3::Register>),
        /// Indicates the armed/disarmed status of each alarm.\n
        /// A write to the corresponding ALARMx register arms the alarm.\n
        /// Alarms automatically disarm upon firing, but writing ones here\n
        /// will disarm immediately without waiting to fire.
        (0x020 => armed: ReadWrite<u32>),
        /// Raw read from bits 63:32 of time (no side effects)
        (0x024 => timerawh: ReadOnly<u32, TIMERAWH::Register>),
        /// Raw read from bits 31:0 of time (no side effects)
        (0x028 => timerawl: ReadOnly<u32, TIMERAWL::Register>),
        /// Set bits high to enable pause when the corresponding debug ports are active
        (0x02C => dbgpause: ReadWrite<u32, DBGPAUSE::Register>),
        /// Set high to pause the timer
        (0x030 => pause: ReadWrite<u32>),
        /// Raw Interrupts
        (0x034 => intr: ReadWrite<u32, INTR::Register>),
        /// Interrupt Enable
        (0x038 => inte: ReadWrite<u32, INTE::Register>),
        /// Interrupt Force
        (0x03C => intf: ReadWrite<u32, INTF::Register>),
        /// Interrupt status after masking & forcing
        (0x040 => ints: ReadWrite<u32, INTS::Register>),
        (0x044 => @END),
    }
}
register_bitfields![u32,
TIMEHW [
    VALUE OFFSET (0) NUMBITS (32) []
],
TIMELW [
    VALUE OFFSET (0) NUMBITS (32) []
],
TIMEHR [
    VALUE OFFSET (0) NUMBITS (32) []
],
TIMELR [
    VALUE OFFSET (0) NUMBITS (32) []
],
ALARM0 [
    VALUE OFFSET (0) NUMBITS (32) []
],
ALARM1 [
    VALUE OFFSET (0) NUMBITS (32) []
],
ALARM2 [
    VALUE OFFSET (0) NUMBITS (32) []
],
ALARM3 [
    VALUE OFFSET (0) NUMBITS (32) []
],
ARMED [
    ARMED OFFSET(0) NUMBITS(4) []
],
TIMERAWH [
    VALUE OFFSET (0) NUMBITS (32) []
],
TIMERAWL [
    VALUE OFFSET (0) NUMBITS (32) []
],
DBGPAUSE [
    /// Pause when processor 1 is in debug mode
    DBG1 OFFSET(2) NUMBITS(1) [],
    /// Pause when processor 0 is in debug mode
    DBG0 OFFSET(1) NUMBITS(1) []
],
PAUSE [

    PAUSE OFFSET(0) NUMBITS(1) []
],
INTR [

    ALARM_3 OFFSET(3) NUMBITS(1) [],

    ALARM_2 OFFSET(2) NUMBITS(1) [],

    ALARM_1 OFFSET(1) NUMBITS(1) [],

    ALARM_0 OFFSET(0) NUMBITS(1) []
],
INTE [

    ALARM_3 OFFSET(3) NUMBITS(1) [],

    ALARM_2 OFFSET(2) NUMBITS(1) [],

    ALARM_1 OFFSET(1) NUMBITS(1) [],

    ALARM_0 OFFSET(0) NUMBITS(1) []
],
INTF [

    ALARM_3 OFFSET(3) NUMBITS(1) [],

    ALARM_2 OFFSET(2) NUMBITS(1) [],

    ALARM_1 OFFSET(1) NUMBITS(1) [],

    ALARM_0 OFFSET(0) NUMBITS(1) []
],
INTS [

    ALARM_3 OFFSET(3) NUMBITS(1) [],

    ALARM_2 OFFSET(2) NUMBITS(1) [],

    ALARM_1 OFFSET(1) NUMBITS(1) [],

    ALARM_0 OFFSET(0) NUMBITS(1) []
]
];
const TIMER_BASE: StaticRef<TimerRegisters> =
    unsafe { StaticRef::new(0x40054000 as *const TimerRegisters) };

pub struct RPTimer<'a> {
    registers: StaticRef<TimerRegisters>,
    client: OptionalCell<&'a dyn hil::time::AlarmClient>,
}

impl<'a> RPTimer<'a> {
    pub const fn new() -> RPTimer<'a> {
        RPTimer {
            registers: TIMER_BASE,
            client: OptionalCell::empty(),
        }
    }

    fn enable_interrupt(&self) {
        self.registers.inte.modify(INTE::ALARM_0::SET);
    }

    fn disable_interrupt(&self) {
        self.registers.inte.modify(INTE::ALARM_0::CLEAR);
    }

    fn enable_timer_interrupt(&self) {
        // Even though setting the INTE::ALARM_0 bit should be enough to enable
        // the interrupt firing, it seems that RP2040 requires manual NVIC
        // enabling of the interrupt.
        //
        // Failing to do so results in the interrupt being set as pending but
        // not fired. This means that the interrupt will be handled whenever the
        // next kernel tasks are processed.
        unsafe {
            atomic(|| {
                let n = cortexm0p::nvic::Nvic::new(TIMER_IRQ_0);
                n.enable();
            })
        }
    }

    fn disable_timer_interrupt(&self) {
        // Even though clearing the INTE::ALARM_0 bit should be enough to disable
        // the interrupt firing, it seems that RP2040 requires manual NVIC
        // disabling of the interrupt.
        unsafe {
            cortexm0p::nvic::Nvic::new(TIMER_IRQ_0).disable();
        }
    }

    pub fn handle_interrupt(&self) {
        self.registers.intr.modify(INTR::ALARM_0::SET);
        self.client.map(|client| client.alarm());
    }
}

impl Time for RPTimer<'_> {
    type Frequency = hil::time::Freq1MHz;
    type Ticks = Ticks32;

    fn now(&self) -> Self::Ticks {
        Self::Ticks::from(self.registers.timerawl.get())
    }
}

impl<'a> Alarm<'a> for RPTimer<'a> {
    fn set_alarm_client(&self, client: &'a dyn hil::time::AlarmClient) {
        self.client.set(client);
    }

    fn set_alarm(&self, reference: Self::Ticks, dt: Self::Ticks) {
        let mut expire = reference.wrapping_add(dt);
        let now = self.now();
        if !now.within_range(reference, expire) {
            expire = now;
        }

        if expire.wrapping_sub(now) < self.minimum_dt() {
            expire = now.wrapping_add(self.minimum_dt());
        }

        self.registers.alarm0.set(expire.into_u32());
        self.enable_timer_interrupt();
        self.enable_interrupt();
    }

    fn get_alarm(&self) -> Self::Ticks {
        Self::Ticks::from(self.registers.alarm0.get())
    }

    fn disarm(&self) -> Result<(), ErrorCode> {
        self.registers.armed.set(1);
        unsafe {
            atomic(|| {
                // Clear pending interrupts
                cortexm0p::nvic::Nvic::new(TIMER_IRQ_0).clear_pending();
            });
        }
        self.disable_interrupt();
        self.disable_timer_interrupt();
        Ok(())
    }

    fn is_armed(&self) -> bool {
        let armed = self.registers.armed.get() & 0b0001;
        if armed == 1 {
            return true;
        }
        false
    }

    fn minimum_dt(&self) -> Self::Ticks {
        Self::Ticks::from(50)
    }
}