sam4l/adc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Implementation of the SAM4L ADCIFE.
//!
//! This is an implementation of the SAM4L analog to digital converter. It is
//! bare-bones because it provides little flexibility on how samples are taken.
//! Currently, all samples:
//!
//! - are 12 bits
//! - use the ground pad as the negative reference
//! - use a VCC/2 positive reference
//! - use a gain of 0.5x
//! - are left justified
//!
//! Samples can either be collected individually or continuously at a specified
//! frequency.
//!
//! - Author: Philip Levis <pal@cs.stanford.edu>, Branden Ghena <brghena@umich.edu>
//! - Updated: May 1, 2017
use crate::dma;
use crate::pm::{self, Clock, PBAClock};
use crate::scif;
use core::cell::Cell;
use core::{cmp, mem, slice};
use kernel::hil;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::math;
use kernel::utilities::registers::interfaces::{Readable, Writeable};
use kernel::utilities::registers::{register_bitfields, ReadOnly, ReadWrite, WriteOnly};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
/// Representation of an ADC channel on the SAM4L.
#[derive(PartialEq)]
pub struct AdcChannel {
chan_num: u32,
internal: u32,
}
/// SAM4L ADC channels.
#[derive(Copy, Clone, Debug)]
#[repr(u8)]
pub enum Channel {
AD0 = 0x00,
AD1 = 0x01,
AD2 = 0x02,
AD3 = 0x03,
AD4 = 0x04,
AD5 = 0x05,
AD6 = 0x06,
AD7 = 0x07,
AD8 = 0x08,
AD9 = 0x09,
AD10 = 0x0A,
AD11 = 0x0B,
AD12 = 0x0C,
AD13 = 0x0D,
AD14 = 0x0E,
Bandgap = 0x0F,
ScaledVCC = 0x12,
DAC = 0x13,
Vsingle = 0x16,
ReferenceGround = 0x17,
}
/// Initialization of an ADC channel.
impl AdcChannel {
/// Create a new ADC channel.
///
/// - `channel`: Channel enum representing the channel number and whether it
/// is internal
pub const fn new(channel: Channel) -> AdcChannel {
AdcChannel {
chan_num: ((channel as u8) & 0x0F) as u32,
internal: (((channel as u8) >> 4) & 0x01) as u32,
}
}
}
/// ADC driver code for the SAM4L.
pub struct Adc<'a> {
registers: StaticRef<AdcRegisters>,
// state tracking for the ADC
enabled: Cell<bool>,
adc_clk_freq: Cell<u32>,
active: Cell<bool>,
continuous: Cell<bool>,
dma_running: Cell<bool>,
cpu_clock: Cell<bool>,
// timer fire counting for slow sampling rates
timer_repeats: Cell<u8>,
timer_counts: Cell<u8>,
// DMA peripheral, buffers, and length
rx_dma: OptionalCell<&'static dma::DMAChannel>,
rx_dma_peripheral: dma::DMAPeripheral,
rx_length: Cell<usize>,
next_dma_buffer: TakeCell<'static, [u16]>,
next_dma_length: Cell<usize>,
stopped_buffer: TakeCell<'static, [u16]>,
// ADC client to send sample complete notifications to
client: OptionalCell<&'a dyn hil::adc::Client>,
highspeed_client: OptionalCell<&'a dyn hil::adc::HighSpeedClient>,
pm: &'static pm::PowerManager,
}
/// Memory mapped registers for the ADC.
#[repr(C)]
pub struct AdcRegisters {
// From page 1005 of SAM4L manual
cr: WriteOnly<u32, Control::Register>,
cfg: ReadWrite<u32, Configuration::Register>,
sr: ReadOnly<u32, Status::Register>,
scr: WriteOnly<u32, Interrupt::Register>,
_reserved0: u32,
seqcfg: ReadWrite<u32, SequencerConfig::Register>,
cdma: WriteOnly<u32>,
tim: ReadWrite<u32, TimingConfiguration::Register>,
itimer: ReadWrite<u32, InternalTimer::Register>,
wcfg: ReadWrite<u32, WindowMonitorConfiguration::Register>,
wth: ReadWrite<u32, WindowMonitorThresholdConfiguration::Register>,
lcv: ReadOnly<u32, SequencerLastConvertedValue::Register>,
ier: WriteOnly<u32, Interrupt::Register>,
idr: WriteOnly<u32, Interrupt::Register>,
imr: ReadOnly<u32, Interrupt::Register>,
calib: ReadWrite<u32>,
}
register_bitfields![u32,
Control [
/// Bandgap buffer request disable
BGREQDIS 11,
/// Bandgap buffer request enable
BGREQEN 10,
/// ADCIFE disable
DIS 9,
/// ADCIFE enable
EN 8,
/// Reference buffer disable
REFBUFDIS 5,
/// Reference buffer enable
REFBUFEN 4,
/// Sequence trigger
STRIG 3,
/// Internal timer start bit
TSTART 2,
/// Internal timer stop bit
TSTOP 1,
/// Software reset
SWRST 0
],
Configuration [
/// Prescaler Rate Selection
PRESCAL OFFSET(8) NUMBITS(3) [
DIV4 = 0,
DIV8 = 1,
DIV16 = 2,
DIV32 = 3,
DIV64 = 4,
DIV128 = 5,
DIV256 = 6,
DIV512 = 7
],
/// Clock Selection for sequencer/ADC cell
CLKSEL OFFSET(6) NUMBITS(1) [
GenericClock = 0,
ApbClock = 1
],
/// ADC current reduction
SPEED OFFSET(4) NUMBITS(2) [
ksps300 = 0,
ksps225 = 1,
ksps150 = 2,
ksps75 = 3
],
/// ADC Reference selection
REFSEL OFFSET(1) NUMBITS(3) [
Internal1V = 0,
VccX0p625 = 1,
ExternalRef1 = 2,
ExternalRef2 = 3,
VccX0p5 = 4
]
],
Status [
/// Bandgap buffer request Status
BGREQ 30,
/// Reference Buffer Status
REFBUF 28,
/// Conversion busy
CBUSY 27,
/// Sequencer busy
SBUSY 26,
/// Timer busy
TBUSY 25,
/// Enable Status
EN 24,
/// Timer time out
TTO 5,
/// Sequencer missed trigger event
SMTRG 3,
/// Window monitor
WM 2,
/// Sequencer last converted value overrun
LOVR 1,
/// Sequencer end of conversion
SEOC 0
],
Interrupt [
/// Timer time out
TTO 5,
/// Sequencer missed trigger event
SMTRG 3,
/// Window monitor
WM 2,
/// Sequencer last converted value overrun
LOVR 1,
/// Sequencer end of conversion
SEOC 0
],
SequencerConfig [
/// Zoom shift/unipolar reference source selection
ZOOMRANGE OFFSET(28) NUMBITS(3) [],
/// MUX selection on Negative ADC input channel
MUXNEG OFFSET(20) NUMBITS(3) [],
/// MUS selection of Positive ADC input channel
MUXPOS OFFSET(16) NUMBITS(4) [],
/// Internal Voltage Sources Selection
INTERNAL OFFSET(14) NUMBITS(2) [],
/// Resolution
RES OFFSET(12) NUMBITS(1) [
Bits12 = 0,
Bits8 = 1
],
/// Trigger selection
TRGSEL OFFSET(8) NUMBITS(3) [
Software = 0,
InternalAdcTimer = 1,
InternalTriggerSource = 2,
ContinuousMode = 3,
ExternalTriggerPinRising = 4,
ExternalTriggerPinFalling = 5,
ExternalTriggerPinBoth = 6
],
/// Gain Compensation
GCOMP OFFSET(7) NUMBITS(1) [
Disable = 0,
Enable = 1
],
/// Gain factor
GAIN OFFSET(4) NUMBITS(3) [
Gain1x = 0,
Gain2x = 1,
Gain4x = 2,
Gain8x = 3,
Gain16x = 4,
Gain32x = 5,
Gain64x = 6,
Gain0p5x = 7
],
/// Bipolar Mode
BIPOLAR OFFSET(2) NUMBITS(1) [
Disable = 0,
Enable = 1
],
/// Half Word Left Adjust
HWLA OFFSET(0) NUMBITS(1) [
Disable = 0,
Enable = 1
]
],
TimingConfiguration [
/// Enable Startup
ENSTUP OFFSET(8) NUMBITS(1) [
Disable = 0,
Enable = 1
],
/// Startup time
STARTUP OFFSET(0) NUMBITS(5) []
],
InternalTimer [
/// Internal Timer Max Counter
ITMC OFFSET(0) NUMBITS(16) []
],
WindowMonitorConfiguration [
/// Window Monitor Mode
WM OFFSET(12) NUMBITS(3) []
],
WindowMonitorThresholdConfiguration [
/// High Threshold
HT OFFSET(16) NUMBITS(12) [],
/// Low Threshold
LT OFFSET(0) NUMBITS(12) []
],
SequencerLastConvertedValue [
/// Last converted negative channel
LCNC OFFSET(20) NUMBITS(3) [],
/// Last converted positive channel
LCPC OFFSET(16) NUMBITS(4) [],
/// Last converted value
LCV OFFSET(0) NUMBITS(16) []
]
];
// Page 59 of SAM4L data sheet
const BASE_ADDRESS: StaticRef<AdcRegisters> =
unsafe { StaticRef::new(0x40038000 as *const AdcRegisters) };
/// Functions for initializing the ADC.
impl Adc<'_> {
/// Create a new ADC driver.
///
/// - `rx_dma_peripheral`: type used for DMA transactions
pub fn new(rx_dma_peripheral: dma::DMAPeripheral, pm: &'static pm::PowerManager) -> Self {
Self {
// pointer to memory mapped I/O registers
registers: BASE_ADDRESS,
// status of the ADC peripheral
enabled: Cell::new(false),
adc_clk_freq: Cell::new(0),
active: Cell::new(false),
continuous: Cell::new(false),
dma_running: Cell::new(false),
cpu_clock: Cell::new(false),
// timer repeating state for slow sampling rates
timer_repeats: Cell::new(0),
timer_counts: Cell::new(0),
// DMA status and stuff
rx_dma: OptionalCell::empty(),
rx_dma_peripheral,
rx_length: Cell::new(0),
next_dma_buffer: TakeCell::empty(),
next_dma_length: Cell::new(0),
stopped_buffer: TakeCell::empty(),
// higher layer to send responses to
client: OptionalCell::empty(),
highspeed_client: OptionalCell::empty(),
pm,
}
}
/// Sets the DMA channel for this driver.
///
/// - `rx_dma`: reference to the DMA channel the ADC should use
pub fn set_dma(&self, rx_dma: &'static dma::DMAChannel) {
self.rx_dma.set(rx_dma);
}
/// Interrupt handler for the ADC.
pub fn handle_interrupt(&self) {
let status = self.registers.sr.is_set(Status::SEOC);
if self.enabled.get() && self.active.get() {
if status {
// sample complete interrupt
// should we deal with this sample now, or wait for the next
// one?
if self.timer_counts.get() >= self.timer_repeats.get() {
// we actually care about this sample
// single sample complete. Send value to client
let val = self.registers.lcv.read(SequencerLastConvertedValue::LCV) as u16;
self.client.map(|client| {
client.sample_ready(val);
});
// clean up state
if self.continuous.get() {
// continuous sampling, reset counts and keep going
self.timer_counts.set(0);
} else {
// single sampling, disable interrupt and set inactive
self.active.set(false);
self.registers.idr.write(Interrupt::SEOC::SET);
}
} else {
// increment count and wait for next sample
self.timer_counts.set(self.timer_counts.get() + 1);
}
// clear status
self.registers.scr.write(Interrupt::SEOC::SET);
}
} else {
// we are inactive, why did we get an interrupt?
// disable all interrupts, clear status, and just ignore it
self.registers.idr.write(
Interrupt::TTO::SET
+ Interrupt::SMTRG::SET
+ Interrupt::WM::SET
+ Interrupt::LOVR::SET
+ Interrupt::SEOC::SET,
);
self.clear_status();
}
}
/// Clear all status bits using the status clear register.
fn clear_status(&self) {
self.registers.scr.write(
Interrupt::TTO::SET
+ Interrupt::SMTRG::SET
+ Interrupt::WM::SET
+ Interrupt::LOVR::SET
+ Interrupt::SEOC::SET,
);
}
// Configures the ADC with the slowest clock that can provide continuous sampling at
// the desired frequency and enables the ADC. Subsequent calls with the same frequency
// value have no effect. Using the slowest clock also ensures efficient discrete
// sampling.
fn config_and_enable(&self, frequency: u32) -> Result<(), ErrorCode> {
if self.active.get() {
// disallow reconfiguration during sampling
Err(ErrorCode::BUSY)
} else if frequency == self.adc_clk_freq.get() {
// already configured to work on this frequency
Ok(())
} else {
// disabling the ADC before switching clocks is necessary to avoid
// leaving it in undefined state
self.registers.cr.write(Control::DIS::SET);
// wait until status is disabled
let mut timeout = 10000;
while self.registers.sr.is_set(Status::EN) {
timeout -= 1;
if timeout == 0 {
// ADC never disabled
return Err(ErrorCode::FAIL);
}
}
self.enabled.set(true);
// configure the ADC max speed and reference select
let mut cfg_val = Configuration::SPEED::ksps300 + Configuration::REFSEL::VccX0p5;
// First, enable the clocks
// Both the ADCIFE clock and GCLK10 are needed,
// but the GCLK10 source depends on the requested sampling frequency
// turn on ADCIFE bus clock. Already set to the same frequency
// as the CPU clock
pm::enable_clock(Clock::PBA(PBAClock::ADCIFE));
// Now, determine the prescalar.
// The maximum sampling frequency with the RC clocks is 1/32th of their clock
// frequency. This is because of the minimum PRESCAL by a factor of 4 and the
// 7+1 cycles needed for conversion in continuous mode. Hence, 4*(7+1)=32.
if frequency <= 113600 / 32 {
// RC oscillator
self.cpu_clock.set(false);
let max_freq: u32 = if frequency <= 32000 / 32 {
// frequency of the RC32K is 32KHz.
scif::generic_clock_enable(
scif::GenericClock::GCLK10,
scif::ClockSource::RC32K,
);
32000 / 32
} else {
// frequency of the RCSYS is 115KHz.
scif::generic_clock_enable(
scif::GenericClock::GCLK10,
scif::ClockSource::RCSYS,
);
113600 / 32
};
let divisor = (frequency + max_freq - 1) / frequency; // ceiling of division
let divisor_pow2 = math::closest_power_of_two(divisor);
let clock_divisor = cmp::min(math::log_base_two(divisor_pow2), 7);
self.adc_clk_freq.set(max_freq / (1 << (clock_divisor)));
cfg_val += Configuration::PRESCAL.val(clock_divisor);
} else {
// CPU clock
self.cpu_clock.set(true);
scif::generic_clock_enable(scif::GenericClock::GCLK10, scif::ClockSource::CLK_CPU);
// determine clock divider
// we need the ADC_CLK to be a maximum of 1.5 MHz in frequency,
// so we need to find the PRESCAL value that will make this
// happen.
// Formula: f(ADC_CLK) = f(CLK_CPU)/2^(N+2) <= 1.5 MHz
// and we solve for N
// becomes: N <= ceil(log_2(f(CLK_CPU)/1500000)) - 2
let cpu_frequency = self.pm.get_system_frequency();
let divisor = cpu_frequency.div_ceil(1500000);
let divisor_pow2 = math::closest_power_of_two(divisor);
let clock_divisor = cmp::min(math::log_base_two(divisor_pow2).saturating_sub(2), 7);
self.adc_clk_freq
.set(cpu_frequency / (1 << (clock_divisor + 2)));
cfg_val += Configuration::PRESCAL.val(clock_divisor);
}
if self.cpu_clock.get() {
cfg_val += Configuration::CLKSEL::ApbClock
} else {
cfg_val += Configuration::CLKSEL::GenericClock
}
self.registers.cfg.write(cfg_val);
// set startup to wait 24 cycles
self.registers.tim.write(
TimingConfiguration::ENSTUP::Enable + TimingConfiguration::STARTUP.val(0x17),
);
// software reset (does not clear registers)
self.registers.cr.write(Control::SWRST::SET);
// enable ADC
self.registers.cr.write(Control::EN::SET);
// wait until status is enabled
let mut timeout = 10000;
while !self.registers.sr.is_set(Status::EN) {
timeout -= 1;
if timeout == 0 {
// ADC never enabled
return Err(ErrorCode::FAIL);
}
}
// enable Bandgap buffer and Reference buffer. I don't actually
// know what these do, but you need to turn them on
self.registers
.cr
.write(Control::BGREQEN::SET + Control::REFBUFEN::SET);
// wait until buffers are enabled
timeout = 100000;
while !self
.registers
.sr
.matches_all(Status::BGREQ::SET + Status::REFBUF::SET + Status::EN::SET)
{
timeout -= 1;
if timeout == 0 {
// ADC buffers never enabled
return Err(ErrorCode::FAIL);
}
}
Ok(())
}
}
/// Disables the ADC so that the chip can return to deep sleep
fn disable(&self) {
// disable ADC
self.registers.cr.write(Control::DIS::SET);
// wait until status is disabled
let mut timeout = 10000;
while self.registers.sr.is_set(Status::EN) {
timeout -= 1;
if timeout == 0 {
// ADC never disabled
return;
}
}
// disable bandgap and reference buffers
self.registers
.cr
.write(Control::BGREQDIS::SET + Control::REFBUFDIS::SET);
self.enabled.set(false);
scif::generic_clock_disable(scif::GenericClock::GCLK10);
pm::disable_clock(Clock::PBA(PBAClock::ADCIFE));
}
}
/// Implements an ADC capable reading ADC samples on any channel.
impl<'a> hil::adc::Adc<'a> for Adc<'a> {
type Channel = AdcChannel;
/// Capture a single analog sample, calling the client when complete.
/// Returns an error if the ADC is already sampling.
///
/// - `channel`: the ADC channel to sample
fn sample(&self, channel: &Self::Channel) -> Result<(), ErrorCode> {
// always configure to 1KHz to get the slowest clock with single sampling
let res = self.config_and_enable(1000);
if res != Ok(()) {
res
} else if !self.enabled.get() {
Err(ErrorCode::OFF)
} else if self.active.get() {
// only one operation at a time
Err(ErrorCode::BUSY)
} else {
self.active.set(true);
self.continuous.set(false);
self.timer_repeats.set(0);
self.timer_counts.set(0);
// MUXNEG.val(0x7) -> ground pad
let cfg = SequencerConfig::MUXNEG.val(0x7)
+ SequencerConfig::MUXPOS.val(channel.chan_num)
+ SequencerConfig::INTERNAL.val(0x2 | channel.internal)
+ SequencerConfig::RES::Bits12
+ SequencerConfig::TRGSEL::Software
+ SequencerConfig::GCOMP::Disable
+ SequencerConfig::GAIN::Gain0p5x
+ SequencerConfig::BIPOLAR::Disable
+ SequencerConfig::HWLA::Enable;
self.registers.seqcfg.write(cfg);
// clear any current status
self.clear_status();
// enable end of conversion interrupt
self.registers.ier.write(Interrupt::SEOC::SET);
// initiate conversion
self.registers.cr.write(Control::STRIG::SET);
Ok(())
}
}
/// Request repeated analog samples on a particular channel, calling after
/// each sample. In order to not unacceptably slow down the system
/// collecting samples, this interface is limited to one sample every 100
/// microseconds (10000 samples per second). To sample faster, use the
/// sample_highspeed function.
///
/// - `channel`: the ADC channel to sample
/// - `frequency`: the number of samples per second to collect
fn sample_continuous(&self, channel: &Self::Channel, frequency: u32) -> Result<(), ErrorCode> {
let res = self.config_and_enable(frequency);
if res != Ok(()) {
res
} else if !self.enabled.get() {
Err(ErrorCode::OFF)
} else if self.active.get() {
// only one sample at a time
Err(ErrorCode::BUSY)
} else if frequency == 0 || frequency > 10000 {
// limit sampling frequencies to a valid range
Err(ErrorCode::INVAL)
} else {
self.active.set(true);
self.continuous.set(true);
// adc sequencer configuration
// MUXNEG.val(0x7) -> ground pad
let mut cfg = SequencerConfig::MUXNEG.val(0x7)
+ SequencerConfig::MUXPOS.val(channel.chan_num)
+ SequencerConfig::INTERNAL.val(0x2 | channel.internal)
+ SequencerConfig::RES::Bits12
+ SequencerConfig::GCOMP::Disable
+ SequencerConfig::GAIN::Gain0p5x
+ SequencerConfig::BIPOLAR::Disable
+ SequencerConfig::HWLA::Enable;
// set trigger based on how good our clock is
if self.cpu_clock.get() {
cfg += SequencerConfig::TRGSEL::InternalAdcTimer;
} else {
cfg += SequencerConfig::TRGSEL::ContinuousMode;
}
self.registers.seqcfg.write(cfg);
// stop timer if running
self.registers.cr.write(Control::TSTOP::SET);
if self.cpu_clock.get() {
// This logic only applies for sampling off the CPU
// setup timer for low-frequency samples. Based on the ADC clock,
// the minimum timer frequency is:
// 1500000 / (0xFFFF + 1) = 22.888 Hz.
// So for any frequency less than 23 Hz, we will keep our own
// counter in addition and only actually perform a callback every N
// timer fires. This is important to enable low-jitter sampling in
// the 1-22 Hz range.
let timer_frequency = if frequency < 23 {
// set a number of timer repeats before the callback is
// performed. 60 here is an arbitrary number which limits the
// actual itimer frequency to between 42 and 60 in the desired
// range of 1-22 Hz, which seems slow enough to keep the system
// from getting bogged down with interrupts
let counts = 60 / frequency;
self.timer_repeats.set(counts as u8);
self.timer_counts.set(0);
frequency * counts
} else {
// we can sample at this frequency directly with the timer
self.timer_repeats.set(0);
self.timer_counts.set(0);
frequency
};
// set timer, limit to bounds
// f(timer) = f(adc) / (counter + 1)
let mut counter = (self.adc_clk_freq.get() / timer_frequency) - 1;
counter = cmp::max(cmp::min(counter, 0xFFFF), 0);
self.registers
.itimer
.write(InternalTimer::ITMC.val(counter));
} else {
// we can sample at this frequency directly with the timer
self.timer_repeats.set(0);
self.timer_counts.set(0);
}
// clear any current status
self.clear_status();
// enable end of conversion interrupt
self.registers.ier.write(Interrupt::SEOC::SET);
// start timer
self.registers.cr.write(Control::TSTART::SET);
Ok(())
}
}
/// Stop continuously sampling the ADC.
/// This is expected to be called to stop continuous sampling operations,
/// but can be called to abort any currently running operation. The buffer,
/// if any, will be returned via the `samples_ready` callback.
fn stop_sampling(&self) -> Result<(), ErrorCode> {
if !self.enabled.get() {
Err(ErrorCode::OFF)
} else if !self.active.get() {
// cannot cancel sampling that isn't running
Err(ErrorCode::INVAL)
} else {
// clean up state
self.active.set(false);
self.continuous.set(false);
self.dma_running.set(false);
// stop internal timer
self.registers.cr.write(Control::TSTOP::SET);
// disable sample interrupts
self.registers.idr.write(Interrupt::SEOC::SET);
// reset the ADC peripheral
self.registers.cr.write(Control::SWRST::SET);
// disable the ADC
self.disable();
// stop DMA transfer if going. This should safely return a None if
// the DMA was not being used
let dma_buffer = self.rx_dma.map_or(None, |rx_dma| {
let dma_buf = rx_dma.abort_transfer();
rx_dma.disable();
dma_buf
});
self.rx_length.set(0);
// store the buffer if it exists
dma_buffer.map(|dma_buf| {
// change buffer back into a [u16]
// the buffer was originally a [u16] so this should be okay
let buf_ptr = unsafe { mem::transmute::<*mut u8, *mut u16>(dma_buf.as_mut_ptr()) };
let buf = unsafe { slice::from_raw_parts_mut(buf_ptr, dma_buf.len() / 2) };
// we'll place it here so we can return it to the higher level
// later in a `retrieve_buffers` call
self.stopped_buffer.replace(buf);
});
Ok(())
}
}
/// Resolution of the reading.
fn get_resolution_bits(&self) -> usize {
12
}
/// Voltage reference is VCC/2, we assume VCC is 3.3 V, and we use a gain
/// of 0.5.
fn get_voltage_reference_mv(&self) -> Option<usize> {
Some(3300)
}
/// Sets the client for this driver.
///
/// - `client`: reference to capsule which handles responses
fn set_client(&self, client: &'a dyn hil::adc::Client) {
self.client.set(client);
}
}
/// Implements an ADC capable of continuous sampling
impl<'a> hil::adc::AdcHighSpeed<'a> for Adc<'a> {
/// Capture buffered samples from the ADC continuously at a given
/// frequency, calling the client whenever a buffer fills up. The client is
/// then expected to either stop sampling or provide an additional buffer
/// to sample into. Note that due to hardware constraints the maximum
/// frequency range of the ADC is from 187 kHz to 23 Hz (although its
/// precision is limited at higher frequencies due to aliasing).
///
/// - `channel`: the ADC channel to sample
/// - `frequency`: frequency to sample at
/// - `buffer1`: first buffer to fill with samples
/// - `length1`: number of samples to collect (up to buffer length)
/// - `buffer2`: second buffer to fill once the first is full
/// - `length2`: number of samples to collect (up to buffer length)
fn sample_highspeed(
&self,
channel: &Self::Channel,
frequency: u32,
buffer1: &'static mut [u16],
length1: usize,
buffer2: &'static mut [u16],
length2: usize,
) -> Result<(), (ErrorCode, &'static mut [u16], &'static mut [u16])> {
let res = self.config_and_enable(frequency);
if res != Ok(()) {
Err((res.unwrap_err(), buffer1, buffer2))
} else if !self.enabled.get() {
Err((ErrorCode::OFF, buffer1, buffer2))
} else if self.active.get() {
// only one sample at a time
Err((ErrorCode::BUSY, buffer1, buffer2))
} else if frequency <= (self.adc_clk_freq.get() / (0xFFFF + 1)) || frequency > 250000 {
// can't sample faster than the max sampling frequency or slower
// than the timer can be set to
Err((ErrorCode::INVAL, buffer1, buffer2))
} else if length1 == 0 {
// at least need a valid length for the for the first buffer full of
// samples. Otherwise, what are we doing here?
Err((ErrorCode::INVAL, buffer1, buffer2))
} else {
self.active.set(true);
self.continuous.set(true);
// store the second buffer for later use
self.next_dma_buffer.replace(buffer2);
self.next_dma_length.set(length2);
// adc sequencer configuration
// MUXNEG.val(0x7) -> ground pad
let mut cfg = SequencerConfig::MUXNEG.val(0x7)
+ SequencerConfig::MUXPOS.val(channel.chan_num)
+ SequencerConfig::INTERNAL.val(0x2 | channel.internal)
+ SequencerConfig::RES::Bits12
+ SequencerConfig::GCOMP::Disable
+ SequencerConfig::GAIN::Gain0p5x
+ SequencerConfig::BIPOLAR::Disable
+ SequencerConfig::HWLA::Enable;
// set trigger based on how good our clock is
if self.cpu_clock.get() {
cfg += SequencerConfig::TRGSEL::InternalAdcTimer;
} else {
cfg += SequencerConfig::TRGSEL::ContinuousMode;
}
self.registers.seqcfg.write(cfg);
// stop timer if running
self.registers.cr.write(Control::TSTOP::SET);
if self.cpu_clock.get() {
// set timer, limit to bounds
// f(timer) = f(adc) / (counter + 1)
let mut counter = (self.adc_clk_freq.get() / frequency) - 1;
counter = cmp::max(cmp::min(counter, 0xFFFF), 0);
self.registers
.itimer
.write(InternalTimer::ITMC.val(counter));
}
// clear any current status
self.clear_status();
// receive up to the buffer's length samples
let dma_len = cmp::min(buffer1.len(), length1);
// change buffer into a [u8]
// this is unsafe but acceptable for the following reasons
// * the buffer is aligned based on 16-bit boundary, so the 8-bit
// alignment is fine
// * the DMA is doing checking based on our expected data width to
// make sure we don't go past dma_buf.len()/width
// * we will transmute the array back to a [u16] after the DMA
// transfer is complete
let dma_buf_ptr = unsafe { mem::transmute::<*mut u16, *mut u8>(buffer1.as_mut_ptr()) };
let dma_buf = unsafe { slice::from_raw_parts_mut(dma_buf_ptr, buffer1.len() * 2) };
// set up the DMA
self.rx_dma.map(move |dma| {
self.dma_running.set(true);
dma.enable();
self.rx_length.set(dma_len);
dma.do_transfer(self.rx_dma_peripheral, dma_buf, dma_len);
});
// start timer
self.registers.cr.write(Control::TSTART::SET);
Ok(())
}
}
/// Provide a new buffer to send on-going buffered continuous samples to.
/// This is expected to be called after the `samples_ready` callback.
///
/// - `buf`: buffer to fill with samples
/// - `length`: number of samples to collect (up to buffer length)
fn provide_buffer(
&self,
buf: &'static mut [u16],
length: usize,
) -> Result<(), (ErrorCode, &'static mut [u16])> {
if !self.enabled.get() {
Err((ErrorCode::OFF, buf))
} else if !self.active.get() {
// cannot continue sampling that isn't running
Err((ErrorCode::INVAL, buf))
} else if !self.continuous.get() {
// cannot continue a single sample operation
Err((ErrorCode::INVAL, buf))
} else if self.next_dma_buffer.is_some() {
// we've already got a second buffer, we don't need a third yet
Err((ErrorCode::BUSY, buf))
} else {
// store the buffer for later use
self.next_dma_buffer.replace(buf);
self.next_dma_length.set(length);
Ok(())
}
}
/// Reclaim buffers after the ADC is stopped.
/// This is expected to be called after `stop_sampling`.
fn retrieve_buffers(
&self,
) -> Result<(Option<&'static mut [u16]>, Option<&'static mut [u16]>), ErrorCode> {
if self.active.get() {
// cannot return buffers while running
Err(ErrorCode::INVAL)
} else {
// we're not running, so give back whatever we've got
Ok((self.next_dma_buffer.take(), self.stopped_buffer.take()))
}
}
fn set_highspeed_client(&self, client: &'a dyn hil::adc::HighSpeedClient) {
self.highspeed_client.set(client);
}
}
/// Implements a client of a DMA.
impl dma::DMAClient for Adc<'_> {
/// Handler for DMA transfer completion.
///
/// - `pid`: the DMA peripheral that is complete
fn transfer_done(&self, pid: dma::DMAPeripheral) {
// check if this was an RX transfer
if pid == self.rx_dma_peripheral {
// RX transfer was completed
// get buffer filled with samples from DMA
let dma_buffer = self.rx_dma.map_or(None, |rx_dma| {
self.dma_running.set(false);
let dma_buf = rx_dma.abort_transfer();
rx_dma.disable();
dma_buf
});
// get length of received buffer
let length = self.rx_length.get();
// start a new transfer with the next buffer
// we need to do this quickly in order to keep from missing samples.
// At 175000 Hz, we only have 5.8 us (~274 cycles) to do so
self.next_dma_buffer.take().map(|buf| {
// first determine the buffer's length in samples
let dma_len = cmp::min(buf.len(), self.next_dma_length.get());
// only continue with a nonzero length. If we were given a
// zero-length buffer or length field, assume that the user knew
// what was going on, and just don't use the buffer
if dma_len > 0 {
// change buffer into a [u8]
// this is unsafe but acceptable for the following reasons
// * the buffer is aligned based on 16-bit boundary, so the
// 8-bit alignment is fine
// * the DMA is doing checking based on our expected data
// width to make sure we don't go past
// dma_buf.len()/width
// * we will transmute the array back to a [u16] after the
// DMA transfer is complete
let dma_buf_ptr =
unsafe { mem::transmute::<*mut u16, *mut u8>(buf.as_mut_ptr()) };
let dma_buf = unsafe { slice::from_raw_parts_mut(dma_buf_ptr, buf.len() * 2) };
// set up the DMA
self.rx_dma.map(move |dma| {
self.dma_running.set(true);
dma.enable();
self.rx_length.set(dma_len);
dma.do_transfer(self.rx_dma_peripheral, dma_buf, dma_len);
});
} else {
// if length was zero, just keep the buffer in the takecell
// so we can return it when `stop_sampling` is called
self.next_dma_buffer.replace(buf);
}
});
// alert client
self.highspeed_client.map(|client| {
dma_buffer.map(|dma_buf| {
// change buffer back into a [u16]
// the buffer was originally a [u16] so this should be okay
let buf_ptr =
unsafe { mem::transmute::<*mut u8, *mut u16>(dma_buf.as_mut_ptr()) };
let buf = unsafe { slice::from_raw_parts_mut(buf_ptr, dma_buf.len() / 2) };
// pass the buffer up to the next layer. It will then either
// send down another buffer to continue sampling, or stop
// sampling
client.samples_ready(buf, length);
});
});
}
}
}