stm32f303xc/
spi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

use core::cell::Cell;
use core::cmp;
use kernel::utilities::cells::MapCell;
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::ErrorCode;

use kernel::hil;
use kernel::hil::spi::{self, ClockPhase, ClockPolarity, SpiMasterClient};
use kernel::platform::chip::ClockInterface;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::registers::{register_bitfields, ReadOnly, ReadWrite};
use kernel::utilities::StaticRef;

use crate::rcc;

const SPI_READ_IN_PROGRESS: u8 = 0b001;
const SPI_WRITE_IN_PROGRESS: u8 = 0b010;
const SPI_IN_PROGRESS: u8 = 0b100;
const SPI_IDLE: u8 = 0b000;

/// Serial peripheral interface
#[repr(C)]
struct SpiRegisters {
    /// control register 1
    cr1: ReadWrite<u32, CR1::Register>,
    /// control register 2
    cr2: ReadWrite<u32, CR2::Register>,
    /// status register
    sr: ReadWrite<u32, SR::Register>,
    // this should be _reserved: [u8; 3], but it does not work,
    // packing is correct, but writing to the data register does not work
    // leaving it commented out until an upgrade to packed data is written
    /// data register
    dr: ReadWrite<u8, DR::Register>,
    /// CRC polynomial register
    crcpr: ReadWrite<u32, CRCPR::Register>,
    /// RX CRC register
    rxcrcr: ReadOnly<u32, RXCRCR::Register>,
    /// TX CRC register
    txcrcr: ReadOnly<u32, TXCRCR::Register>,
    /// I2S configuration register
    i2scfgr: ReadWrite<u32, I2SCFGR::Register>,
    /// I2S prescaler register
    i2spr: ReadWrite<u32, I2SPR::Register>,
}

register_bitfields![u8,
    DR [
        /// 8-bit data register
        DR OFFSET(0) NUMBITS(8) []
    ]
];

register_bitfields![u32,
    CR1 [
        /// Bidirectional data mode enable
        BIDIMODE OFFSET(15) NUMBITS(1) [],
        /// Output enable in bidirectional mode
        BIDIOE OFFSET(14) NUMBITS(1) [],
        /// Hardware CRC calculation enable
        CRCEN OFFSET(13) NUMBITS(1) [],
        /// CRC transfer next
        CRCNEXT OFFSET(12) NUMBITS(1) [],
        /// CRC length
        CRCL OFFSET(11) NUMBITS(1) [],
        /// Receive only
        RXONLY OFFSET(10) NUMBITS(1) [],
        /// Software slave management
        SSM OFFSET(9) NUMBITS(1) [],
        /// Internal slave select
        SSI OFFSET(8) NUMBITS(1) [],
        /// Frame format
        LSBFIRST OFFSET(7) NUMBITS(1) [],
        /// SPI enable
        SPE OFFSET(6) NUMBITS(1) [],
        /// Baud rate control
        BR OFFSET(3) NUMBITS(3) [],
        /// Master selection
        MSTR OFFSET(2) NUMBITS(1) [],
        /// Clock polarity
        CPOL OFFSET(1) NUMBITS(1) [],
        /// Clock phase
        CPHA OFFSET(0) NUMBITS(1) []
    ],
    CR2 [
        /// Last DMA transfer for transmission
        LDMA_TX OFFSET(14) NUMBITS(1) [],
        /// Last DMA transfer for reception
        LDMA_RX OFFSET(13) NUMBITS(1) [],
        /// FIFO reception threshold
        FRXTH OFFSET(12) NUMBITS(1) [],
        /// Data size
        DS OFFSET(8) NUMBITS(4) [],
        /// Tx buffer empty interrupt enable
        TXEIE OFFSET(7) NUMBITS(1) [],
        /// RX buffer not empty interrupt enable
        RXNEIE OFFSET(6) NUMBITS(1) [],
        /// Error interrupt enable
        ERRIE OFFSET(5) NUMBITS(1) [],
        /// Frame format
        FRF OFFSET(4) NUMBITS(1) [],
        /// NSS pulse management
        NSS OFFSET(3) NUMBITS(1) [],
        /// SS output enable
        SSOE OFFSET(2) NUMBITS(1) [],
        /// Tx buffer DMA enable
        TXDMAEN OFFSET(1) NUMBITS(1) [],
        /// Rx buffer DMA enable
        RXDMAEN OFFSET(0) NUMBITS(1) []
    ],
    SR [
        /// FIFO transmission level
        FTLVL OFFSET(11) NUMBITS(2) [],
        /// FIFO reception level
        FRLVL OFFSET(9) NUMBITS(2) [],
        /// TI frame format error
        FRE OFFSET(8) NUMBITS(1) [],
        /// Busy flag
        BSY OFFSET(7) NUMBITS(1) [],
        /// Overrun flag
        OVR OFFSET(6) NUMBITS(1) [],
        /// Mode fault
        MODF OFFSET(5) NUMBITS(1) [],
        /// CRC error flag
        CRCERR OFFSET(4) NUMBITS(1) [],
        /// Underrun flag
        UDR OFFSET(3) NUMBITS(1) [],
        /// Channel side
        CHSIDE OFFSET(2) NUMBITS(1) [],
        /// Transmit buffer empty
        TXE OFFSET(1) NUMBITS(1) [],
        /// Receive buffer not empty
        RXNE OFFSET(0) NUMBITS(1) []
    ],
    CRCPR [
        /// CRC polynomial register
        CRCPOLY OFFSET(0) NUMBITS(16) []
    ],
    RXCRCR [
        /// Rx CRC register
        RXCRC OFFSET(0) NUMBITS(16) []
    ],
    TXCRCR [
        /// Tx CRC register
        TXCRC OFFSET(0) NUMBITS(16) []
    ],
    I2SCFGR [
        /// I2S mode selection
        I2SMOD OFFSET(11) NUMBITS(1) [],
        /// I2S Enable
        I2SE OFFSET(10) NUMBITS(1) [],
        /// I2S configuration mode
        I2SCFG OFFSET(8) NUMBITS(2) [],
        /// PCM frame synchronization
        PCMSYNC OFFSET(7) NUMBITS(1) [],
        /// I2S standard selection
        I2SSTD OFFSET(4) NUMBITS(2) [],
        /// Steady state clock polarity
        CKPOL OFFSET(3) NUMBITS(1) [],
        /// Data length to be transferred
        DATLEN OFFSET(1) NUMBITS(2) [],
        /// Channel length (number of bits per audio channel)
        CHLEN OFFSET(0) NUMBITS(1) []
    ],
    I2SPR [
        /// Master clock output enable
        MCKOE OFFSET(9) NUMBITS(1) [],
        /// Odd factor for the prescaler
        ODD OFFSET(8) NUMBITS(1) [],
        /// I2S Linear prescaler
        I2SDIV OFFSET(0) NUMBITS(8) []
    ]
];

const SPI1_BASE: StaticRef<SpiRegisters> =
    unsafe { StaticRef::new(0x4001_3000 as *const SpiRegisters) };

// const SPI2_BASE: StaticRef<SpiRegisters> =
//     unsafe { StaticRef::new(0x4000_3800 as *const SpiRegisters) };

// const SPI3_BASE: StaticRef<SpiRegisters> =
//     unsafe { StaticRef::new(0x4000_3C00 as *const SpiRegisters) };

pub struct Spi<'a> {
    registers: StaticRef<SpiRegisters>,
    clock: SpiClock<'a>,

    // SPI slave support not yet implemented
    master_client: OptionalCell<&'a dyn hil::spi::SpiMasterClient>,

    active_slave: OptionalCell<spi::cs::ChipSelectPolar<'a, crate::gpio::Pin<'a>>>,

    tx_buffer: MapCell<SubSliceMut<'static, u8>>,
    tx_position: Cell<usize>,

    rx_buffer: MapCell<SubSliceMut<'static, u8>>,
    rx_position: Cell<usize>,
    len: Cell<usize>,

    transfers: Cell<u8>,

    active_after: Cell<bool>,
}

impl<'a> Spi<'a> {
    fn new(base_addr: StaticRef<SpiRegisters>, clock: SpiClock<'a>) -> Self {
        Self {
            registers: base_addr,
            clock,

            master_client: OptionalCell::empty(),
            active_slave: OptionalCell::empty(),

            tx_buffer: MapCell::empty(),
            tx_position: Cell::new(0),

            rx_buffer: MapCell::empty(),
            rx_position: Cell::new(0),

            len: Cell::new(0),

            transfers: Cell::new(SPI_IDLE),

            active_after: Cell::new(false),
        }
    }

    pub fn new_spi1(rcc: &'a rcc::Rcc) -> Self {
        Self::new(
            SPI1_BASE,
            SpiClock(rcc::PeripheralClock::new(
                rcc::PeripheralClockType::APB2(rcc::PCLK2::SPI1),
                rcc,
            )),
        )
    }

    pub fn is_enabled_clock(&self) -> bool {
        self.clock.is_enabled()
    }

    pub fn enable_clock(&self) {
        self.clock.enable();
    }

    pub fn disable_clock(&self) {
        self.clock.disable();
    }

    pub fn handle_interrupt(&self) {
        if self.registers.sr.is_set(SR::TXE) {
            if self.tx_buffer.is_some() && self.tx_position.get() < self.len.get() {
                self.tx_buffer.map(|buf| {
                    self.registers
                        .dr
                        .write(DR::DR.val(buf[self.tx_position.get()]));
                    self.tx_position.set(self.tx_position.get() + 1);
                });
            } else {
                self.registers.cr2.modify(CR2::TXEIE::CLEAR);
                self.transfers
                    .set(self.transfers.get() & !SPI_WRITE_IN_PROGRESS);
            }
        }

        if self.registers.sr.is_set(SR::RXNE) {
            while self.registers.sr.read(SR::FRLVL) > 0 {
                let byte = self.registers.dr.read(DR::DR);
                if self.rx_buffer.is_some() && self.rx_position.get() < self.len.get() {
                    self.rx_buffer.map(|buf| {
                        buf[self.rx_position.get()] = byte;
                    });
                }
                self.rx_position.set(self.rx_position.get() + 1);
            }

            if self.rx_position.get() >= self.len.get() {
                self.transfers
                    .set(self.transfers.get() & !SPI_READ_IN_PROGRESS);
            }
        }

        if self.transfers.get() == SPI_IN_PROGRESS {
            // we release the line and put the SPI in IDLE as the client might
            // initiate another SPI transfer right away
            if !self.active_after.get() {
                self.active_slave.map(|p| {
                    p.deactivate();
                });
            }
            self.transfers.set(SPI_IDLE);
            self.master_client.map(|client| {
                self.tx_buffer.take().map(|buf| {
                    client.read_write_done(buf, self.rx_buffer.take(), Ok(self.len.get()))
                })
            });
            self.transfers.set(SPI_IDLE);
        }
    }

    fn set_cr<F>(&self, f: F)
    where
        F: FnOnce(),
    {
        self.registers.cr1.modify(CR1::SPE::CLEAR);
        f();
        self.registers.cr1.modify(CR1::SPE::SET);
    }

    // IdleLow  = CPOL = 0
    // IdleHigh = CPOL = 1
    fn set_polarity(&self, polarity: ClockPolarity) {
        self.set_cr(|| match polarity {
            ClockPolarity::IdleLow => self.registers.cr1.modify(CR1::CPOL::CLEAR),
            ClockPolarity::IdleHigh => self.registers.cr1.modify(CR1::CPOL::SET),
        });
    }

    fn get_polarity(&self) -> ClockPolarity {
        if !self.registers.cr1.is_set(CR1::CPOL) {
            ClockPolarity::IdleLow
        } else {
            ClockPolarity::IdleHigh
        }
    }

    // SampleLeading  = CPHA = 0
    // SampleTrailing = CPHA = 1
    fn set_phase(&self, phase: ClockPhase) {
        self.set_cr(|| match phase {
            ClockPhase::SampleLeading => self.registers.cr1.modify(CR1::CPHA::CLEAR),
            ClockPhase::SampleTrailing => self.registers.cr1.modify(CR1::CPHA::SET),
        });
    }

    fn get_phase(&self) -> ClockPhase {
        if !self.registers.cr1.is_set(CR1::CPHA) {
            ClockPhase::SampleLeading
        } else {
            ClockPhase::SampleTrailing
        }
    }

    fn read_write_bytes(
        &self,
        write_buffer: SubSliceMut<'static, u8>,
        read_buffer: Option<SubSliceMut<'static, u8>>,
    ) -> Result<
        (),
        (
            ErrorCode,
            SubSliceMut<'static, u8>,
            Option<SubSliceMut<'static, u8>>,
        ),
    > {
        if self.transfers.get() == 0 {
            self.registers.cr2.modify(CR2::RXNEIE::CLEAR);
            self.active_slave.map(|p| {
                p.activate();
            });

            self.transfers.set(self.transfers.get() | SPI_IN_PROGRESS);

            let mut count: usize = write_buffer.len();
            read_buffer
                .as_ref()
                .map(|buf| count = cmp::min(count, buf.len()));

            self.transfers
                .set(self.transfers.get() | SPI_WRITE_IN_PROGRESS);

            if read_buffer.is_some() {
                self.transfers
                    .set(self.transfers.get() | SPI_READ_IN_PROGRESS);
            }

            self.rx_position.set(0);

            read_buffer.map(|buf| {
                self.rx_buffer.replace(buf);
                self.len.set(count);
            });

            self.registers.cr2.modify(CR2::RXNEIE::SET);

            self.tx_buffer.replace(write_buffer);
            self.len.set(count);
            self.tx_position.set(0);
            self.registers.cr2.modify(CR2::TXEIE::SET);

            Ok(())
        } else {
            Err((ErrorCode::BUSY, write_buffer, read_buffer))
        }
    }
}

impl<'a> spi::SpiMaster<'a> for Spi<'a> {
    type ChipSelect = spi::cs::ChipSelectPolar<'a, crate::gpio::Pin<'a>>;

    fn set_client(&self, client: &'a dyn SpiMasterClient) {
        self.master_client.set(client);
    }

    fn init(&self) -> Result<(), ErrorCode> {
        // enable error interrupt (used only for debugging)
        // self.registers.cr2.modify(CR2::ERRIE::SET);

        // Set 8 bit mode
        // Set FIFO level at 1/4
        self.registers
            .cr2
            .modify(CR2::DS.val(0b0111) + CR2::FRXTH::SET);

        // 2 line unidirectional mode
        // Select as master
        // Software slave management
        // Enable
        self.registers.cr1.modify(
            CR1::BIDIMODE::CLEAR + CR1::MSTR::SET + CR1::SSM::SET + CR1::SSI::SET + CR1::SPE::SET,
        );
        Ok(())
    }

    fn is_busy(&self) -> bool {
        self.registers.sr.is_set(SR::BSY)
    }

    fn write_byte(&self, out_byte: u8) -> Result<(), ErrorCode> {
        // debug! ("spi write byte {}", out_byte);
        // loop till TXE (Transmit Buffer Empty) becomes 1
        while !self.registers.sr.is_set(SR::TXE) {}

        self.registers.dr.modify(DR::DR.val(out_byte));
        Ok(())
    }

    fn read_byte(&self) -> Result<u8, ErrorCode> {
        self.read_write_byte(0)
    }

    fn read_write_byte(&self, val: u8) -> Result<u8, ErrorCode> {
        self.write_byte(val)?;
        // loop till RXNE becomes 1
        while !self.registers.sr.is_set(SR::RXNE) {}
        Ok(self.registers.dr.read(DR::DR))
    }

    fn read_write_bytes(
        &self,
        write_buffer: SubSliceMut<'static, u8>,
        read_buffer: Option<SubSliceMut<'static, u8>>,
    ) -> Result<
        (),
        (
            ErrorCode,
            SubSliceMut<'static, u8>,
            Option<SubSliceMut<'static, u8>>,
        ),
    > {
        // If busy, don't start
        if self.is_busy() {
            return Err((ErrorCode::BUSY, write_buffer, read_buffer));
        }

        if let Err((err, write_buffer, read_buffer)) =
            self.read_write_bytes(write_buffer, read_buffer)
        {
            Err((err, write_buffer, read_buffer))
        } else {
            Ok(())
        }
    }

    /// We *only* support 1Mhz. If `rate` is set to any value other than
    /// `1_000_000`, then return INVAL
    fn set_rate(&self, rate: u32) -> Result<u32, ErrorCode> {
        // debug! ("stm32f3 spi set rate");
        if rate != 1_000_000 {
            return Err(ErrorCode::INVAL);
        }

        self.set_cr(|| {
            // HSI is 8Mhz and Fpclk is also 8Mhz. 0b010 is Fpclk / 8
            self.registers.cr1.modify(CR1::BR.val(0b010));
        });

        Ok(1_000_000)
    }

    /// We *only* support 1Mhz. If we need to return any other value other than
    /// `1_000_000`, then this function panics
    fn get_rate(&self) -> u32 {
        if self.registers.cr1.read(CR1::BR) != 0b010 {
            panic!("rate not set to 1_000_000");
        }

        1_000_000
    }

    fn set_polarity(&self, polarity: ClockPolarity) -> Result<(), ErrorCode> {
        self.set_polarity(polarity);
        Ok(())
    }

    fn get_polarity(&self) -> ClockPolarity {
        self.get_polarity()
    }

    fn set_phase(&self, phase: ClockPhase) -> Result<(), ErrorCode> {
        self.set_phase(phase);
        Ok(())
    }

    fn get_phase(&self) -> ClockPhase {
        self.get_phase()
    }

    fn hold_low(&self) {
        self.active_after.set(true);
    }

    fn release_low(&self) {
        self.active_after.set(false);
    }

    fn specify_chip_select(&self, cs: Self::ChipSelect) -> Result<(), ErrorCode> {
        self.active_slave.set(cs);
        Ok(())
    }
}

struct SpiClock<'a>(rcc::PeripheralClock<'a>);

impl ClockInterface for SpiClock<'_> {
    fn is_enabled(&self) -> bool {
        self.0.is_enabled()
    }

    fn enable(&self) {
        self.0.enable();
    }

    fn disable(&self) {
        self.0.disable();
    }
}