nrf52/spi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Implementation of SPI for NRF52 using EasyDMA.
//!
//! This file only implements support for the three SPI master (`SPIM`)
//! peripherals, and not SPI slave (`SPIS`).
//!
//! Although `kernel::hil::spi::SpiMaster` is implemented for `SPIM`,
//! only the functions marked with `x` are fully defined:
//!
//! * ✓ set_client
//! * ✓ init
//! * ✓ is_busy
//! * ✓ read_write_bytes
//! * write_byte
//! * read_byte
//! * read_write_byte
//! * ✓ specify_chip_select
//! * ✓ set_rate
//! * ✓ get_rate
//! * ✓ set_polarity
//! * ✓ get_polarity
//! * ✓ set_phase
//! * ✓ get_phase
//! * hold_low
//! * release_low
//!
//! Author
//! -------------------
//!
//! * Author: Jay Kickliter
//! * Date: Sep 10, 2017
use core::cell::Cell;
use core::{cmp, ptr};
use kernel::hil;
use kernel::hil::gpio::Configure;
use kernel::hil::spi::cs::ChipSelectPolar;
use kernel::utilities::cells::{MapCell, OptionalCell, VolatileCell};
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::registers::{register_bitfields, ReadWrite, WriteOnly};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
use nrf5x::pinmux::Pinmux;
const INSTANCES: [StaticRef<SpimRegisters>; 3] = unsafe {
[
StaticRef::new(0x40003000 as *const SpimRegisters),
StaticRef::new(0x40004000 as *const SpimRegisters),
StaticRef::new(0x40023000 as *const SpimRegisters),
]
};
#[repr(C)]
struct SpimRegisters {
_reserved0: [u8; 16], // reserved
tasks_start: WriteOnly<u32, TASK::Register>, // Start SPI transaction
tasks_stop: WriteOnly<u32, TASK::Register>, // Stop SPI transaction
_reserved1: [u8; 4], // reserved
tasks_suspend: WriteOnly<u32, TASK::Register>, // Suspend SPI transaction
tasks_resume: WriteOnly<u32, TASK::Register>, // Resume SPI transaction
_reserved2: [u8; 224], // reserved
events_stopped: ReadWrite<u32, EVENT::Register>, // SPI transaction has stopped
_reserved3: [u8; 8], // reserved
events_endrx: ReadWrite<u32, EVENT::Register>, // End of RXD buffer reached
_reserved4: [u8; 4], // reserved
events_end: ReadWrite<u32, EVENT::Register>, // End of RXD buffer and TXD buffer reached
_reserved5: [u8; 4], // reserved
events_endtx: ReadWrite<u32, EVENT::Register>, // End of TXD buffer reached
_reserved6: [u8; 40], // reserved
events_started: ReadWrite<u32, EVENT::Register>, // Transaction started
_reserved7: [u8; 176], // reserved
shorts: ReadWrite<u32>, // Shortcut register
_reserved8: [u8; 256], // reserved
intenset: ReadWrite<u32, INTE::Register>, // Enable interrupt
intenclr: ReadWrite<u32, INTE::Register>, // Disable interrupt
_reserved9: [u8; 500], // reserved
enable: ReadWrite<u32, ENABLE::Register>, // Enable SPIM
_reserved10: [u8; 4], // reserved
psel_sck: VolatileCell<Pinmux>, // Pin select for SCK
psel_mosi: VolatileCell<Pinmux>, // Pin select for MOSI signal
psel_miso: VolatileCell<Pinmux>, // Pin select for MISO signal
_reserved11: [u8; 16], // reserved
frequency: ReadWrite<u32>, // SPI frequency
_reserved12: [u8; 12], // reserved
rxd_ptr: VolatileCell<*mut u8>, // Data pointer
rxd_maxcnt: ReadWrite<u32, MAXCNT::Register>, // Maximum number of bytes in receive buffer
rxd_amount: ReadWrite<u32>, // Number of bytes transferred
rxd_list: ReadWrite<u32>, // EasyDMA list type
txd_ptr: VolatileCell<*const u8>, // Data pointer
txd_maxcnt: ReadWrite<u32, MAXCNT::Register>, // Maximum number of bytes in transmit buffer
txd_amount: ReadWrite<u32>, // Number of bytes transferred
txd_list: ReadWrite<u32>, // EasyDMA list type
config: ReadWrite<u32, CONFIG::Register>, // Configuration register
_reserved13: [u8; 104], // reserved
orc: ReadWrite<u32>, // Over-read character.
}
register_bitfields![u32,
INTE [
/// Write '1' to Enable interrupt on EVENTS_STOPPED event
STOPPED OFFSET(1) NUMBITS(1) [
/// Read: Disabled
ReadDisabled = 0,
/// Enable
Enable = 1
],
/// Write '1' to Enable interrupt on EVENTS_ENDRX event
ENDRX OFFSET(4) NUMBITS(1) [
/// Read: Disabled
ReadDisabled = 0,
/// Enable
Enable = 1
],
/// Write '1' to Enable interrupt on EVENTS_END event
END OFFSET(6) NUMBITS(1) [
/// Read: Disabled
ReadDisabled = 0,
/// Enable
Enable = 1
],
/// Write '1' to Enable interrupt on EVENTS_ENDTX event
ENDTX OFFSET(8) NUMBITS(1) [
/// Read: Disabled
ReadDisabled = 0,
/// Enable
Enable = 1
],
/// Write '1' to Enable interrupt on EVENTS_STARTED event
STARTED OFFSET(19) NUMBITS(1) [
/// Read: Disabled
ReadDisabled = 0,
/// Enable
Enable = 1
]
],
MAXCNT [
/// Maximum number of bytes in buffer
MAXCNT OFFSET(0) NUMBITS(16)
],
CONFIG [
/// Bit order
ORDER OFFSET(0) NUMBITS(1) [
/// Most significant bit shifted out first
MostSignificantBitShiftedOutFirst = 0,
/// Least significant bit shifted out first
LeastSignificantBitShiftedOutFirst = 1
],
/// Serial clock (SCK) phase
CPHA OFFSET(1) NUMBITS(1) [
/// Sample on leading edge of clock, shift serial data on trailing edge
SampleOnLeadingEdge = 0,
/// Sample on trailing edge of clock, shift serial data on leading edge
SampleOnTrailingEdge = 1
],
/// Serial clock (SCK) polarity
CPOL OFFSET(2) NUMBITS(1) [
/// Active high
ActiveHigh = 0,
/// Active low
ActiveLow = 1
]
],
ENABLE [
ENABLE OFFSET(0) NUMBITS(4) [
Disable = 0,
Enable = 7
]
],
EVENT [
EVENT 0
],
TASK [
TASK 0
]
];
/// An enum representing all allowable `frequency` register values.
#[repr(u32)]
#[derive(Copy, Clone)]
pub enum Frequency {
K125 = 0x02000000,
K250 = 0x04000000,
K500 = 0x08000000,
M1 = 0x10000000,
M2 = 0x20000000,
M4 = 0x40000000,
M8 = 0x80000000,
}
impl Frequency {
pub fn from_register(reg: u32) -> Option<Frequency> {
match reg {
0x02000000 => Some(Frequency::K125),
0x04000000 => Some(Frequency::K250),
0x08000000 => Some(Frequency::K500),
0x10000000 => Some(Frequency::M1),
0x20000000 => Some(Frequency::M2),
0x40000000 => Some(Frequency::M4),
0x80000000 => Some(Frequency::M8),
_ => None,
}
}
pub fn into_spi_rate(&self) -> u32 {
match *self {
Frequency::K125 => 125_000,
Frequency::K250 => 250_000,
Frequency::K500 => 500_000,
Frequency::M1 => 1_000_000,
Frequency::M2 => 2_000_000,
Frequency::M4 => 4_000_000,
Frequency::M8 => 8_000_000,
}
}
pub fn from_spi_rate(freq: u32) -> Frequency {
if freq < 250_000 {
Frequency::K125
} else if freq < 500_000 {
Frequency::K250
} else if freq < 1_000_000 {
Frequency::K500
} else if freq < 2_000_000 {
Frequency::M1
} else if freq < 4_000_000 {
Frequency::M2
} else if freq < 8_000_000 {
Frequency::M4
} else {
Frequency::M8
}
}
}
/// A SPI master device.
///
/// A `SPIM` instance wraps a `registers::spim::SPIM` together with
/// addition data necessary to implement an asynchronous interface.
pub struct SPIM<'a> {
registers: StaticRef<SpimRegisters>,
client: OptionalCell<&'a dyn hil::spi::SpiMasterClient>,
chip_select: OptionalCell<ChipSelectPolar<'a, crate::gpio::GPIOPin<'a>>>,
busy: Cell<bool>,
tx_buf: MapCell<SubSliceMut<'static, u8>>,
rx_buf: MapCell<SubSliceMut<'static, u8>>,
transfer_len: Cell<usize>,
}
impl<'a> SPIM<'a> {
pub const fn new(instance: usize) -> SPIM<'a> {
SPIM {
registers: INSTANCES[instance],
client: OptionalCell::empty(),
chip_select: OptionalCell::empty(),
busy: Cell::new(false),
tx_buf: MapCell::empty(),
rx_buf: MapCell::empty(),
transfer_len: Cell::new(0),
}
}
#[inline(never)]
pub fn handle_interrupt(&self) {
if self.registers.events_end.is_set(EVENT::EVENT) {
// End of RXD buffer and TXD buffer reached
if self.chip_select.is_none() {
debug_assert!(false, "Invariant violated. Chip-select must be Some.");
return;
}
self.chip_select.map(|cs| cs.deactivate());
self.registers.events_end.write(EVENT::EVENT::CLEAR);
// When we are no longer active or busy we can disable the
// peripheral.
self.disable();
self.busy.set(false);
self.client.map(|client| match self.tx_buf.take() {
None => (),
Some(tx_buf) => {
client.read_write_done(tx_buf, self.rx_buf.take(), Ok(self.transfer_len.get()))
}
});
}
// Although we only configured the chip interrupt on the
// above 'end' event, the other event fields also get set by
// the chip. Let's clear those flags.
if self.registers.events_stopped.is_set(EVENT::EVENT) {
// SPI transaction has stopped
self.registers.events_stopped.write(EVENT::EVENT::CLEAR);
}
if self.registers.events_endrx.is_set(EVENT::EVENT) {
// End of RXD buffer reached
self.registers.events_endrx.write(EVENT::EVENT::CLEAR);
}
if self.registers.events_endtx.is_set(EVENT::EVENT) {
// End of TXD buffer reached
self.registers.events_endtx.write(EVENT::EVENT::CLEAR);
}
if self.registers.events_started.is_set(EVENT::EVENT) {
// Transaction started
self.registers.events_started.write(EVENT::EVENT::CLEAR);
}
}
/// Configures an already constructed `SPIM`.
pub fn configure(&self, mosi: Pinmux, miso: Pinmux, sck: Pinmux) {
self.registers.psel_mosi.set(mosi);
self.registers.psel_miso.set(miso);
self.registers.psel_sck.set(sck);
}
/// Enables `SPIM` peripheral.
pub fn enable(&self) {
self.registers.enable.write(ENABLE::ENABLE::Enable);
}
/// Disables `SPIM` peripheral.
pub fn disable(&self) {
self.registers.enable.write(ENABLE::ENABLE::Disable);
}
pub fn is_enabled(&self) -> bool {
self.registers.enable.matches_all(ENABLE::ENABLE::Enable)
}
}
impl<'a> hil::spi::SpiMaster<'a> for SPIM<'a> {
type ChipSelect = ChipSelectPolar<'a, crate::gpio::GPIOPin<'a>>;
fn set_client(&self, client: &'a dyn hil::spi::SpiMasterClient) {
self.client.set(client);
}
fn init(&self) -> Result<(), ErrorCode> {
Ok(())
}
fn is_busy(&self) -> bool {
self.busy.get()
}
fn read_write_bytes(
&self,
tx_buf: SubSliceMut<'static, u8>,
rx_buf: Option<SubSliceMut<'static, u8>>,
) -> Result<
(),
(
ErrorCode,
SubSliceMut<'static, u8>,
Option<SubSliceMut<'static, u8>>,
),
> {
debug_assert!(!self.busy.get());
debug_assert!(self.tx_buf.is_none());
debug_assert!(self.rx_buf.is_none());
// Clear (set to low) chip-select
if self.chip_select.is_none() {
return Err((ErrorCode::NODEVICE, tx_buf, rx_buf));
}
self.chip_select.map(|cs| cs.activate());
// Setup transmit data registers
let tx_len: u32 = tx_buf.len() as u32;
self.registers.txd_ptr.set(tx_buf.as_ptr());
self.registers.txd_maxcnt.write(MAXCNT::MAXCNT.val(tx_len));
self.tx_buf.replace(tx_buf);
// Setup receive data registers
match rx_buf {
None => {
self.registers.rxd_ptr.set(ptr::null_mut());
self.registers.rxd_maxcnt.write(MAXCNT::MAXCNT.val(0));
self.transfer_len.set(tx_len as usize);
self.rx_buf.take();
}
Some(mut buf) => {
self.registers.rxd_ptr.set(buf.as_mut_ptr());
let rx_len: u32 = buf.len() as u32;
self.registers.rxd_maxcnt.write(MAXCNT::MAXCNT.val(rx_len));
self.transfer_len.set(cmp::min(tx_len, rx_len) as usize);
self.rx_buf.put(buf);
}
}
// Start the transfer
self.busy.set(true);
// Start and enable the SPIM peripheral. The SPIM peripheral is only
// enabled when the busy flag is set.
self.registers.intenset.write(INTE::END::Enable);
self.enable();
self.registers.tasks_start.write(TASK::TASK::SET);
Ok(())
}
fn write_byte(&self, _val: u8) -> Result<(), ErrorCode> {
unimplemented!("SPI: Use `read_write_bytes()` instead.");
}
fn read_byte(&self) -> Result<u8, ErrorCode> {
unimplemented!("SPI: Use `read_write_bytes()` instead.");
}
fn read_write_byte(&self, _val: u8) -> Result<u8, ErrorCode> {
unimplemented!("SPI: Use `read_write_bytes()` instead.");
}
// Tell the SPI peripheral what to use as a chip select pin.
// The type of the argument is based on what makes sense for the
// peripheral when this trait is implemented.
fn specify_chip_select(&self, cs: Self::ChipSelect) -> Result<(), ErrorCode> {
cs.pin.make_output();
cs.deactivate();
self.chip_select.set(cs);
Ok(())
}
// Returns the actual rate set
fn set_rate(&self, rate: u32) -> Result<u32, ErrorCode> {
let f = Frequency::from_spi_rate(rate);
self.registers.frequency.set(f as u32);
Ok(f.into_spi_rate())
}
fn get_rate(&self) -> u32 {
// Reset value is a valid frequency (250kbps), so .expect
// should be safe here
let f = Frequency::from_register(self.registers.frequency.get()).unwrap(); // Unwrap fail = nrf52 unknown spi rate
f.into_spi_rate()
}
fn set_polarity(&self, polarity: hil::spi::ClockPolarity) -> Result<(), ErrorCode> {
let new_polarity = match polarity {
hil::spi::ClockPolarity::IdleLow => CONFIG::CPOL::ActiveHigh,
hil::spi::ClockPolarity::IdleHigh => CONFIG::CPOL::ActiveLow,
};
self.registers.config.modify(new_polarity);
Ok(())
}
fn get_polarity(&self) -> hil::spi::ClockPolarity {
match self.registers.config.read(CONFIG::CPOL) {
0 => hil::spi::ClockPolarity::IdleLow,
1 => hil::spi::ClockPolarity::IdleHigh,
_ => unreachable!(),
}
}
fn set_phase(&self, phase: hil::spi::ClockPhase) -> Result<(), ErrorCode> {
let new_phase = match phase {
hil::spi::ClockPhase::SampleLeading => CONFIG::CPHA::SampleOnLeadingEdge,
hil::spi::ClockPhase::SampleTrailing => CONFIG::CPHA::SampleOnTrailingEdge,
};
self.registers.config.modify(new_phase);
Ok(())
}
fn get_phase(&self) -> hil::spi::ClockPhase {
match self.registers.config.read(CONFIG::CPHA) {
0 => hil::spi::ClockPhase::SampleLeading,
1 => hil::spi::ClockPhase::SampleTrailing,
_ => unreachable!(),
}
}
// The following two trait functions are not implemented for
// SAM4L, and appear to not provide much functionality. Let's not
// bother implementing them unless needed.
fn hold_low(&self) {
unimplemented!("SPI: Use `read_write_bytes()` instead.");
}
fn release_low(&self) {
unimplemented!("SPI: Use `read_write_bytes()` instead.");
}
}