capsules_extra/lpm013m126.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Frame buffer driver for the Japan Display LPM013M126 display
//!
//! Used in Bangle.js 2 and [Jazda](https://jazda.org).
//! The driver is configured for the above devices:
//! EXTCOM inversion is driven with EXTCOMIN.
//!
//! This driver supports monochrome mode only.
//!
//! Written by Dorota <gihu.dcz@porcupinefactory.org>
use core::cell::Cell;
use core::cmp;
use kernel::debug;
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil::gpio::Pin;
use kernel::hil::screen::{Screen, ScreenClient, ScreenPixelFormat, ScreenRotation, ScreenSetup};
use kernel::hil::spi::{SpiMasterClient, SpiMasterDevice};
use kernel::hil::time::{Alarm, AlarmClient, ConvertTicks};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::ErrorCode;
/// 4-bit frame buffer bytes.
///
/// 176 rows, of 176 4-bit pixels and a 2-byte command header, plus a
/// trailing 2 byte transfer period
const ROWS: usize = 176;
const COLS: usize = 176;
const ROW_BYTES: usize = COLS / 2;
const LINE_LEN: usize = ROW_BYTES + 2;
pub const BUF_LEN: usize = ROWS * LINE_LEN + 2;
struct InputBuffer<'a, const PIXEL_BITS: usize> {
data: &'a [u8],
frame: &'a WriteFrame,
}
impl<const PIXEL_BITS: usize> InputBuffer<'_, PIXEL_BITS> {
fn rows(&self) -> impl Iterator<Item = Row> {
let chunk_width = if PIXEL_BITS < 8 {
self.frame.width as usize / (8 / PIXEL_BITS)
} else {
self.frame.width as usize * (PIXEL_BITS / 8)
};
self.data.chunks(chunk_width).map(|data| Row { data })
}
}
struct Pixel<'a> {
data: &'a u8,
top: bool,
}
impl Pixel<'_> {
fn get(&self) -> u8 {
if self.top {
(*self.data >> 4) & 0xf
} else {
*self.data & 0xf
}
}
}
struct PixelMut<'a> {
data: &'a Cell<u8>,
top: bool,
}
impl PixelMut<'_> {
fn transform<F>(&self, f: F)
where
F: FnOnce(&mut u8),
{
let mut data = if self.top {
(self.data.get() & 0xf0) >> 4
} else {
self.data.get() & 0x0f
};
f(&mut data);
if self.top {
self.data.set(self.data.get() & 0x0f | ((data << 4) & 0xf0));
} else {
self.data.set(self.data.get() & 0xf0 | (data & 0x0f));
}
}
}
struct Row<'a> {
data: &'a [u8],
}
impl<'a> Row<'a> {
fn iter<'b>(&'b self) -> impl Iterator<Item = Pixel<'a>> {
self.data
.iter()
.flat_map(|data| [Pixel { data, top: true }, Pixel { data, top: false }])
}
}
struct RowMut<'a> {
data: &'a [Cell<u8>],
}
impl RowMut<'_> {
fn iter_mut(&self) -> impl Iterator<Item = PixelMut> {
self.data
.iter()
.flat_map(|data| [PixelMut { data, top: true }, PixelMut { data, top: false }])
}
}
/// Arranges frame data in a buffer
/// whose portions can be sent directly to the device.
struct FrameBuffer<'a> {
data: SubSliceMut<'a, u8>,
}
impl<'a> FrameBuffer<'a> {
/// Turns a regular buffer (back) into a FrameBuffer.
/// If the buffer is fresh, and the display is initialized,
/// this *MUST* be initialized after the call to `new`.
fn new(mut frame_buffer: SubSliceMut<'a, u8>) -> Self {
frame_buffer.reset();
Self { data: frame_buffer }
}
/// Initialize header bytes for each line.
fn initialize(&mut self) {
for i in 0..ROWS {
self.set_line_header(
i,
&CommandHeader {
mode: Mode::Input4Bit,
gate_line: (i + 1) as u16,
},
);
}
}
/// Copy pixels from the buffer. The buffer may be shorter than frame.
fn blit_rgb565(&mut self, buffer: InputBuffer<16>) {
let frame_rows = self
.rows()
.skip(buffer.frame.row as usize)
.take(buffer.frame.height as usize);
let buf_rows = buffer.rows();
for (frame_row, buf_row) in frame_rows.zip(buf_rows) {
for (frame_pixel, buf_pixel) in frame_row
.iter_mut()
.skip(buffer.frame.column as usize)
.zip(buf_row.data.chunks_exact(2))
{
let buf_pixel = [buf_pixel[0], buf_pixel[1]];
let buf_p = u16::from_le_bytes(buf_pixel);
frame_pixel.transform(|pixel| {
let red = if (buf_p >> 11) & 0b11111 >= 32 / 2 {
// are red five bits more than 50%?
0b1000
} else {
0
};
let green = if (buf_p >> 5) & 0b111111 >= 64 / 2 {
// green 6 bits more than 50%?
0b0100
} else {
0
};
let blue = if buf_p & 0b11111 >= 32 / 2 {
// blue five bits more than 50%?
0b0010
} else {
0
};
*pixel = red | green | blue;
});
}
}
}
/// Copy pixels from the buffer. The buffer may be shorter than frame.
fn blit_rgb332(&mut self, buffer: InputBuffer<8>) {
let frame_rows = self
.rows()
.skip(buffer.frame.row as usize)
.take(buffer.frame.height as usize);
let buf_rows = buffer.rows();
for (frame_row, buf_row) in frame_rows.zip(buf_rows) {
for (frame_pixel, buf_pixel) in frame_row
.iter_mut()
.skip(buffer.frame.column as usize)
.zip(buf_row.data.iter())
{
let buf_p: u8 = *buf_pixel;
frame_pixel.transform(|pixel| {
let red = if (buf_p >> 5) & 0b111 >= 7 / 2 {
// are red three bits more than 50%?
0b1000
} else {
0
};
let green = if (buf_p >> 2) & 0b111 >= 7 / 2 {
// green three bits more than 50%?
0b0100
} else {
0
};
let blue = if buf_p & 0b11 >= 3 / 2 {
// blue two bits more than 50%?
0b0010
} else {
0
};
*pixel = red | green | blue;
});
}
}
}
/// Copy pixels from the buffer. The buffer may be shorter than frame.
fn blit_4bit_srgb(&mut self, buffer: InputBuffer<4>) {
let frame_rows = self
.rows()
.skip(buffer.frame.row as usize)
.take(buffer.frame.height as usize);
let buf_rows = buffer.rows();
for (frame_row, buf_row) in frame_rows.zip(buf_rows) {
for (frame_pixel, buf_pixel) in frame_row
.iter_mut()
.skip(buffer.frame.column as usize)
.zip(buf_row.iter())
{
let buf_p: u8 = buf_pixel.get();
if buf_p & 0b1 != 0 {
frame_pixel.transform(|pixel| {
// transform from sRGB to the LPM native 4-bit format.
//
// 4-bit sRGB is encoded as `| B | G | R | s |`, where
// `s` is something like intensity. We'll interpret
// intensity `0` to mean transparent, and intensity
// `1` to mean opaque. Meanwhile LPM native 4-bit is
// encoded as `| R | G | B | x |`, where `x` is
// ignored. So we need to swap the R & B bits, and
// only apply the pixel if `s` is 1.
*pixel = ((buf_p & 0b10) << 2) | (buf_p & 0b100) | ((buf_p & 0b1000) >> 2);
});
}
}
}
}
fn set_line_header(&mut self, index: usize, header: &CommandHeader) {
const CMD: usize = 2;
if let Some(buf) = self.data[(LINE_LEN * index)..].first_chunk_mut::<CMD>() {
*buf = header.encode();
}
}
fn rows(&mut self) -> impl Iterator<Item = RowMut> {
self.data.as_slice().chunks_mut(LINE_LEN).map_while(|c| {
c.get_mut(2..).map(|data| RowMut {
data: Cell::from_mut(data).as_slice_of_cells(),
})
})
}
}
/// Modes are 6-bit, network order.
/// They use a tree-ish encoding, so only the ones in use are listed here.
#[allow(dead_code)]
#[derive(Clone, Copy)]
enum Mode {
/// Clear memory
/// bits: 0 Function, X, 1 Clear, 0 Blink off, X, X
AllClear = 0b001000,
/// Input 1-bit data
/// bits: 1 No function, X, 0 Data Update, 01 1-bit, X
Input1Bit = 0b100_01_0,
Input4Bit = 0b100100,
NoUpdate = 0b101000,
}
/// Command header is composed of a 6-bit mode and 10 bits of address,
/// network bit order.
struct CommandHeader {
mode: Mode,
gate_line: u16,
}
impl CommandHeader {
/// Formats header for transfer
fn encode(&self) -> [u8; 2] {
((self.gate_line & 0b1111111111) | ((self.mode as u16) << 10)).to_be_bytes()
}
}
/// Area of the screen to which data is written
#[derive(Debug, Copy, Clone)]
struct WriteFrame {
row: u16,
column: u16,
width: u16,
height: u16,
}
/// Internal state of the driver.
/// Each state can lead to the next one in order of appearance.
#[derive(Debug, Copy, Clone)]
enum State {
/// Data structures not ready, call `setup`
Uninitialized,
/// Display hardware is off, uninitialized.
Off,
InitializingPixelMemory,
/// COM polarity and internal latch circuits
InitializingRest,
// Normal operation
Idle,
AllClearing,
Writing,
/// This driver is buggy. Turning off and on will try to recover it.
Bug,
}
#[derive(Debug)]
pub enum InitError {
BufferTooSmall,
}
pub struct Lpm013m126<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> {
spi: &'a S,
extcomin: &'a P,
disp: &'a P,
state: Cell<State>,
pixel_format: Cell<ScreenPixelFormat>,
frame: Cell<WriteFrame>,
/// Fields responsible for sending callbacks
/// for actions completed in software.
ready_callback: DeferredCall,
ready_callback_handler: ReadyCallbackHandler<'a, A, P, S>,
command_complete_callback: DeferredCall,
command_complete_callback_handler: CommandCompleteCallbackHandler<'a, A, P, S>,
/// The HIL requires updates to arbitrary rectangles.
/// The display supports only updating entire rows,
/// so edges need to be cached.
frame_buffer: OptionalCell<FrameBuffer<'static>>,
client: OptionalCell<&'a dyn ScreenClient>,
/// Buffer for incoming pixel data, coming from the client.
/// It's not submitted directly anywhere.
buffer: TakeCell<'static, [u8]>,
/// Needed for init and to flip the EXTCOMIN pin at regular intervals
alarm: &'a A,
}
impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> Lpm013m126<'a, A, P, S>
where
Self: 'static,
{
pub fn new(
spi: &'a S,
extcomin: &'a P,
disp: &'a P,
alarm: &'a A,
frame_buffer: &'static mut [u8; BUF_LEN],
) -> Result<Self, InitError> {
Ok(Self {
spi,
alarm,
disp,
extcomin,
ready_callback: DeferredCall::new(),
ready_callback_handler: ReadyCallbackHandler::new(),
command_complete_callback: DeferredCall::new(),
command_complete_callback_handler: CommandCompleteCallbackHandler::new(),
frame_buffer: OptionalCell::new(FrameBuffer::new((frame_buffer as &mut [u8]).into())),
pixel_format: Cell::new(ScreenPixelFormat::RGB_565),
buffer: TakeCell::empty(),
client: OptionalCell::empty(),
state: Cell::new(State::Uninitialized),
frame: Cell::new(WriteFrame {
row: 0,
column: 0,
width: COLS as u16,
height: ROWS as u16,
}),
})
}
/// Set up internal data structures.
/// Does not touch the hardware.
/// Idempotent.
pub fn setup(&'static self) -> Result<(), ErrorCode> {
// Needed this way to avoid exposing accessors to deferred callers.
// That would be unnecessary, no external data is needed.
// At the same time, self must be static for client registration.
match self.state.get() {
State::Uninitialized => {
self.ready_callback_handler.lpm.set(self);
self.ready_callback.register(&self.ready_callback_handler);
self.command_complete_callback_handler.lpm.set(self);
self.command_complete_callback
.register(&self.command_complete_callback_handler);
self.state.set(State::Off);
Ok(())
}
_ => Err(ErrorCode::ALREADY),
}
}
fn initialize(&self) -> Result<(), ErrorCode> {
match self.state.get() {
State::Off | State::Bug => {
// Even if we took Pin type that implements Output,
// it's still possible that it is *not configured as a output*
// at the moment.
// To ensure outputness, output must be configured at runtime,
// even though this eliminates pins
// which don't implement Configure due to being
// simple, unconfigurable outputs.
self.extcomin.make_output();
self.extcomin.clear();
self.disp.make_output();
self.disp.clear();
match self.frame_buffer.take() {
None => Err(ErrorCode::NOMEM),
Some(mut frame_buffer) => {
// Cheating a little:
// the frame buffer does not yet contain pixels,
// so use its beginning to send the clear command.
frame_buffer.set_line_header(
0,
&CommandHeader {
mode: Mode::AllClear,
gate_line: 0,
},
);
let mut l = frame_buffer.data;
l.slice(0..2);
let res = self.spi.read_write_bytes(l, None);
let (res, new_state) = match res {
Ok(()) => (Ok(()), State::InitializingPixelMemory),
Err((e, buf, _)) => {
self.frame_buffer.replace(FrameBuffer::new(buf));
(Err(e), State::Bug)
}
};
self.state.set(new_state);
res
}
}
}
_ => Err(ErrorCode::ALREADY),
}
}
fn uninitialize(&self) -> Result<(), ErrorCode> {
match self.state.get() {
State::Off => Err(ErrorCode::ALREADY),
_ => {
// TODO: investigate clearing pixels asynchronously,
// like the datasheet asks.
// It seems to turn off fine without clearing, but
// perhaps the state of the buffer affects power draw when off.
// The following stops extcomin timer.
self.alarm.disarm()?;
self.disp.clear();
self.state.set(State::Off);
self.ready_callback.set();
Ok(())
}
}
}
fn arm_alarm(&self) {
// Datasheet says 2Hz or more often flipping is required
// for transmissive mode.
let delay = self.alarm.ticks_from_ms(100);
self.alarm.set_alarm(self.alarm.now(), delay);
}
fn handle_ready_callback(&self) {
self.client.map(|client| client.screen_is_ready());
}
fn handle_command_complete_callback(&self) {
// Thankfully, this is the only command that results in the callback,
// so there's no danger that this will get attributed
// to a command that's not finished yet.
self.client.map(|client| client.command_complete(Ok(())));
}
}
impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> Screen<'a> for Lpm013m126<'a, A, P, S>
where
Self: 'static,
{
fn get_resolution(&self) -> (usize, usize) {
(ROWS, COLS)
}
fn get_pixel_format(&self) -> ScreenPixelFormat {
self.pixel_format.get()
}
fn get_rotation(&self) -> ScreenRotation {
ScreenRotation::Normal
}
fn set_write_frame(
&self,
x: usize,
y: usize,
width: usize,
height: usize,
) -> Result<(), ErrorCode> {
let (columns, rows) = self.get_resolution();
if y >= rows || y + height > rows || x >= columns || x + width > columns {
//return Err(ErrorCode::INVAL);
}
let frame = WriteFrame {
row: y as u16,
column: x as u16,
width: width as u16,
height: height as u16,
};
self.frame.set(frame);
self.command_complete_callback.set();
Ok(())
}
fn write(
&self,
data: SubSliceMut<'static, u8>,
_continue_write: bool,
) -> Result<(), ErrorCode> {
let len = data.len();
let buffer = data.take();
let ret = match self.state.get() {
State::Uninitialized | State::Off => Err(ErrorCode::OFF),
State::InitializingPixelMemory | State::InitializingRest => Err(ErrorCode::BUSY),
State::Idle => {
self.frame_buffer
.take()
.map_or(Err(ErrorCode::NOMEM), |mut frame_buffer| {
match self.pixel_format.get() {
ScreenPixelFormat::RGB_332 => {
frame_buffer.blit_rgb332(InputBuffer {
data: &buffer[..cmp::min(buffer.len(), len)],
frame: &self.frame.get(),
});
}
ScreenPixelFormat::RGB_565 => {
frame_buffer.blit_rgb565(InputBuffer {
data: &buffer[..cmp::min(buffer.len(), len)],
frame: &self.frame.get(),
});
}
_ => frame_buffer.blit_4bit_srgb(InputBuffer {
data: &buffer[..cmp::min(buffer.len(), len)],
frame: &self.frame.get(),
}),
}
frame_buffer.set_line_header(
0,
&CommandHeader {
mode: Mode::NoUpdate,
gate_line: 0,
},
);
let mut l = frame_buffer.data;
l.slice(0..2);
let sent = self.spi.read_write_bytes(l, None);
let (ret, new_state) = match sent {
Ok(()) => (Ok(()), State::AllClearing),
Err((e, buf, _)) => {
self.frame_buffer.replace(FrameBuffer::new(buf));
(Err(e), State::Idle)
}
};
self.state.set(new_state);
ret
})
}
State::AllClearing | State::Writing => Err(ErrorCode::BUSY),
State::Bug => Err(ErrorCode::FAIL),
};
self.buffer.replace(buffer);
ret
}
fn set_client(&self, client: &'a dyn ScreenClient) {
self.client.set(client);
}
fn set_power(&self, enable: bool) -> Result<(), ErrorCode> {
let ret = if enable {
self.initialize()
} else {
self.uninitialize()
};
// If the device is in the desired state by now,
// then a callback needs to be sent manually.
if let Err(ErrorCode::ALREADY) = ret {
self.ready_callback.set();
Ok(())
} else {
ret
}
}
fn set_brightness(&self, _brightness: u16) -> Result<(), ErrorCode> {
// TODO: add LED PWM
Err(ErrorCode::NOSUPPORT)
}
fn set_invert(&self, _inverted: bool) -> Result<(), ErrorCode> {
Err(ErrorCode::NOSUPPORT)
}
}
impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> ScreenSetup<'a> for Lpm013m126<'a, A, P, S> {
fn set_client(&self, _client: &'a dyn kernel::hil::screen::ScreenSetupClient) {
todo!()
}
fn set_resolution(&self, resolution: (usize, usize)) -> Result<(), ErrorCode> {
if resolution == (ROWS, COLS) {
Ok(())
} else {
Err(ErrorCode::NOSUPPORT)
}
}
fn set_pixel_format(&self, format: ScreenPixelFormat) -> Result<(), ErrorCode> {
match format {
ScreenPixelFormat::RGB_4BIT | ScreenPixelFormat::RGB_332 => {
self.pixel_format.set(format);
Ok(())
}
_ => Err(ErrorCode::NOSUPPORT),
}
}
fn set_rotation(&self, _rotation: ScreenRotation) -> Result<(), ErrorCode> {
todo!()
}
fn get_num_supported_resolutions(&self) -> usize {
1
}
fn get_supported_resolution(&self, index: usize) -> Option<(usize, usize)> {
match index {
0 => Some((ROWS, COLS)),
_ => None,
}
}
fn get_num_supported_pixel_formats(&self) -> usize {
3
}
fn get_supported_pixel_format(&self, index: usize) -> Option<ScreenPixelFormat> {
match index {
0 => Some(ScreenPixelFormat::RGB_4BIT),
1 => Some(ScreenPixelFormat::RGB_332),
2 => Some(ScreenPixelFormat::RGB_565),
_ => None,
}
}
}
impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> AlarmClient for Lpm013m126<'a, A, P, S>
where
Self: 'static,
{
fn alarm(&self) {
match self.state.get() {
State::InitializingRest => {
// Better flip it once too many than go out of spec
// by stretching the flip period.
self.extcomin.set();
self.disp.set();
self.arm_alarm();
let new_state = self.frame_buffer.take().map_or_else(
|| {
debug!(
"LPM013M126 driver lost its frame buffer in state {:?}",
self.state.get()
);
State::Bug
},
|mut buffer| {
buffer.initialize();
self.frame_buffer.replace(buffer);
State::Idle
},
);
self.state.set(new_state);
if let State::Idle = new_state {
self.client.map(|client| client.screen_is_ready());
}
}
_ => {
self.extcomin.toggle();
}
};
}
}
impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> SpiMasterClient for Lpm013m126<'a, A, P, S> {
fn read_write_done(
&self,
write_buffer: SubSliceMut<'static, u8>,
_read_buffer: Option<SubSliceMut<'static, u8>>,
status: Result<usize, ErrorCode>,
) {
self.frame_buffer.replace(FrameBuffer::new(write_buffer));
self.state.set(match self.state.get() {
State::InitializingPixelMemory => {
// Rather than initialize them separately, wait longer and do both
// for 2 reasons:
// 1. the upper limit of waiting is only specified for both,
// 2. and state flipping code is annoying and bug-friendly.
let delay = self.alarm.ticks_from_us(150);
self.alarm.set_alarm(self.alarm.now(), delay);
State::InitializingRest
}
State::AllClearing => {
if let Some(mut fb) = self.frame_buffer.take() {
fb.set_line_header(
0,
&CommandHeader {
mode: Mode::Input4Bit,
gate_line: 1,
},
);
let mut send_buf = fb.data;
let first_row = cmp::min(ROWS as u16, self.frame.get().row);
let offset = first_row as usize * LINE_LEN;
let len = cmp::min(ROWS as u16 - first_row, self.frame.get().height) as usize
* LINE_LEN;
send_buf.slice(offset..(offset + len + 2));
let _ = self.spi.read_write_bytes(send_buf, None);
}
State::Writing
}
State::Writing => {
if let Some(mut fb) = self.frame_buffer.take() {
fb.initialize();
self.frame_buffer.set(fb);
}
State::Idle
}
// can't get more buggy than buggy
other => {
debug!(
"LPM013M126 received unexpected SPI complete in state {:?}",
other
);
State::Bug
}
});
if let State::Idle = self.state.get() {
// Device frame buffer is now up to date, return pixel buffer to client.
self.client.map(|client| {
self.buffer.take().map(|buf| {
let data = SubSliceMut::new(buf);
client.write_complete(data, status.map(|_| ()))
})
});
}
}
}
// DeferredCall requires a unique client for each DeferredCall so that different callbacks
// can be distinguished.
struct ReadyCallbackHandler<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> {
lpm: OptionalCell<&'a Lpm013m126<'a, A, P, S>>,
}
impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> ReadyCallbackHandler<'a, A, P, S> {
fn new() -> Self {
Self {
lpm: OptionalCell::empty(),
}
}
}
impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> DeferredCallClient
for ReadyCallbackHandler<'a, A, P, S>
where
Self: 'static,
{
fn handle_deferred_call(&self) {
self.lpm.map(|l| l.handle_ready_callback());
}
fn register(&'static self) {
self.lpm.map(|l| l.ready_callback.register(self));
}
}
struct CommandCompleteCallbackHandler<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> {
lpm: OptionalCell<&'a Lpm013m126<'a, A, P, S>>,
}
impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> CommandCompleteCallbackHandler<'a, A, P, S> {
fn new() -> Self {
Self {
lpm: OptionalCell::empty(),
}
}
}
impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> DeferredCallClient
for CommandCompleteCallbackHandler<'a, A, P, S>
where
Self: 'static,
{
fn handle_deferred_call(&self) {
self.lpm.map(|l| l.handle_command_complete_callback());
}
fn register(&'static self) {
self.lpm.map(|l| l.command_complete_callback.register(self));
}
}