capsules_extra/
lpm013m126.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Frame buffer driver for the Japan Display LPM013M126 display
//!
//! Used in Bangle.js 2 and [Jazda](https://jazda.org).
//! The driver is configured for the above devices:
//! EXTCOM inversion is driven with EXTCOMIN.
//!
//! This driver supports monochrome mode only.
//!
//! Written by Dorota <gihu.dcz@porcupinefactory.org>

use core::cell::Cell;
use core::cmp;
use kernel::debug;
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil::gpio::Pin;
use kernel::hil::screen::{Screen, ScreenClient, ScreenPixelFormat, ScreenRotation, ScreenSetup};
use kernel::hil::spi::{SpiMasterClient, SpiMasterDevice};
use kernel::hil::time::{Alarm, AlarmClient, ConvertTicks};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::ErrorCode;

/// 4-bit frame buffer bytes.
///
/// 176 rows, of 176 4-bit pixels and a 2-byte command header, plus a
/// trailing 2 byte transfer period
const ROWS: usize = 176;
const COLS: usize = 176;
const ROW_BYTES: usize = COLS / 2;
const LINE_LEN: usize = ROW_BYTES + 2;
pub const BUF_LEN: usize = ROWS * LINE_LEN + 2;

struct InputBuffer<'a, const PIXEL_BITS: usize> {
    data: &'a [u8],
    frame: &'a WriteFrame,
}

impl<const PIXEL_BITS: usize> InputBuffer<'_, PIXEL_BITS> {
    fn rows(&self) -> impl Iterator<Item = Row> {
        let chunk_width = if PIXEL_BITS < 8 {
            self.frame.width as usize / (8 / PIXEL_BITS)
        } else {
            self.frame.width as usize * (PIXEL_BITS / 8)
        };
        self.data.chunks(chunk_width).map(|data| Row { data })
    }
}

struct Pixel<'a> {
    data: &'a u8,
    top: bool,
}

impl Pixel<'_> {
    fn get(&self) -> u8 {
        if self.top {
            (*self.data >> 4) & 0xf
        } else {
            *self.data & 0xf
        }
    }
}

struct PixelMut<'a> {
    data: &'a Cell<u8>,
    top: bool,
}

impl PixelMut<'_> {
    fn transform<F>(&self, f: F)
    where
        F: FnOnce(&mut u8),
    {
        let mut data = if self.top {
            (self.data.get() & 0xf0) >> 4
        } else {
            self.data.get() & 0x0f
        };

        f(&mut data);

        if self.top {
            self.data.set(self.data.get() & 0x0f | ((data << 4) & 0xf0));
        } else {
            self.data.set(self.data.get() & 0xf0 | (data & 0x0f));
        }
    }
}

struct Row<'a> {
    data: &'a [u8],
}

impl<'a> Row<'a> {
    fn iter<'b>(&'b self) -> impl Iterator<Item = Pixel<'a>> {
        self.data
            .iter()
            .flat_map(|data| [Pixel { data, top: true }, Pixel { data, top: false }])
    }
}

struct RowMut<'a> {
    data: &'a [Cell<u8>],
}

impl RowMut<'_> {
    fn iter_mut(&self) -> impl Iterator<Item = PixelMut> {
        self.data
            .iter()
            .flat_map(|data| [PixelMut { data, top: true }, PixelMut { data, top: false }])
    }
}

/// Arranges frame data in a buffer
/// whose portions can be sent directly to the device.
struct FrameBuffer<'a> {
    data: SubSliceMut<'a, u8>,
}

impl<'a> FrameBuffer<'a> {
    /// Turns a regular buffer (back) into a FrameBuffer.
    /// If the buffer is fresh, and the display is initialized,
    /// this *MUST* be initialized after the call to `new`.
    fn new(mut frame_buffer: SubSliceMut<'a, u8>) -> Self {
        frame_buffer.reset();
        Self { data: frame_buffer }
    }

    /// Initialize header bytes for each line.
    fn initialize(&mut self) {
        for i in 0..ROWS {
            self.set_line_header(
                i,
                &CommandHeader {
                    mode: Mode::Input4Bit,
                    gate_line: (i + 1) as u16,
                },
            );
        }
    }

    /// Copy pixels from the buffer. The buffer may be shorter than frame.
    fn blit_rgb565(&mut self, buffer: InputBuffer<16>) {
        let frame_rows = self
            .rows()
            .skip(buffer.frame.row as usize)
            .take(buffer.frame.height as usize);
        let buf_rows = buffer.rows();

        for (frame_row, buf_row) in frame_rows.zip(buf_rows) {
            for (frame_pixel, buf_pixel) in frame_row
                .iter_mut()
                .skip(buffer.frame.column as usize)
                .zip(buf_row.data.chunks_exact(2))
            {
                let buf_pixel = [buf_pixel[0], buf_pixel[1]];
                let buf_p = u16::from_le_bytes(buf_pixel);
                frame_pixel.transform(|pixel| {
                    let red = if (buf_p >> 11) & 0b11111 >= 32 / 2 {
                        // are red five bits more than 50%?
                        0b1000
                    } else {
                        0
                    };

                    let green = if (buf_p >> 5) & 0b111111 >= 64 / 2 {
                        // green 6 bits more than 50%?
                        0b0100
                    } else {
                        0
                    };

                    let blue = if buf_p & 0b11111 >= 32 / 2 {
                        // blue five bits more than 50%?
                        0b0010
                    } else {
                        0
                    };

                    *pixel = red | green | blue;
                });
            }
        }
    }

    /// Copy pixels from the buffer. The buffer may be shorter than frame.
    fn blit_rgb332(&mut self, buffer: InputBuffer<8>) {
        let frame_rows = self
            .rows()
            .skip(buffer.frame.row as usize)
            .take(buffer.frame.height as usize);
        let buf_rows = buffer.rows();

        for (frame_row, buf_row) in frame_rows.zip(buf_rows) {
            for (frame_pixel, buf_pixel) in frame_row
                .iter_mut()
                .skip(buffer.frame.column as usize)
                .zip(buf_row.data.iter())
            {
                let buf_p: u8 = *buf_pixel;
                frame_pixel.transform(|pixel| {
                    let red = if (buf_p >> 5) & 0b111 >= 7 / 2 {
                        // are red three bits more than 50%?
                        0b1000
                    } else {
                        0
                    };

                    let green = if (buf_p >> 2) & 0b111 >= 7 / 2 {
                        // green three bits more than 50%?
                        0b0100
                    } else {
                        0
                    };

                    let blue = if buf_p & 0b11 >= 3 / 2 {
                        // blue two bits more than 50%?
                        0b0010
                    } else {
                        0
                    };

                    *pixel = red | green | blue;
                });
            }
        }
    }

    /// Copy pixels from the buffer. The buffer may be shorter than frame.
    fn blit_4bit_srgb(&mut self, buffer: InputBuffer<4>) {
        let frame_rows = self
            .rows()
            .skip(buffer.frame.row as usize)
            .take(buffer.frame.height as usize);
        let buf_rows = buffer.rows();

        for (frame_row, buf_row) in frame_rows.zip(buf_rows) {
            for (frame_pixel, buf_pixel) in frame_row
                .iter_mut()
                .skip(buffer.frame.column as usize)
                .zip(buf_row.iter())
            {
                let buf_p: u8 = buf_pixel.get();
                if buf_p & 0b1 != 0 {
                    frame_pixel.transform(|pixel| {
                        // transform from sRGB to the LPM native 4-bit format.
                        //
                        // 4-bit sRGB is encoded as `| B | G | R | s |`, where
                        // `s` is something like intensity.  We'll interpret
                        // intensity `0` to mean transparent, and intensity
                        // `1` to mean opaque.  Meanwhile LPM native 4-bit is
                        // encoded as `| R | G | B | x |`, where `x` is
                        // ignored.  So we need to swap the R & B bits, and
                        // only apply the pixel if `s` is 1.
                        *pixel = ((buf_p & 0b10) << 2) | (buf_p & 0b100) | ((buf_p & 0b1000) >> 2);
                    });
                }
            }
        }
    }

    fn set_line_header(&mut self, index: usize, header: &CommandHeader) {
        const CMD: usize = 2;
        if let Some(buf) = self.data[(LINE_LEN * index)..].first_chunk_mut::<CMD>() {
            *buf = header.encode();
        }
    }

    fn rows(&mut self) -> impl Iterator<Item = RowMut> {
        self.data.as_slice().chunks_mut(LINE_LEN).map_while(|c| {
            c.get_mut(2..).map(|data| RowMut {
                data: Cell::from_mut(data).as_slice_of_cells(),
            })
        })
    }
}

/// Modes are 6-bit, network order.
/// They use a tree-ish encoding, so only the ones in use are listed here.
#[allow(dead_code)]
#[derive(Clone, Copy)]
enum Mode {
    /// Clear memory
    /// bits: 0 Function, X, 1 Clear, 0 Blink off, X, X
    AllClear = 0b001000,
    /// Input 1-bit data
    /// bits: 1 No function, X, 0 Data Update, 01 1-bit, X
    Input1Bit = 0b100_01_0,
    Input4Bit = 0b100100,
    NoUpdate = 0b101000,
}

/// Command header is composed of a 6-bit mode and 10 bits of address,
/// network bit order.
struct CommandHeader {
    mode: Mode,
    gate_line: u16,
}

impl CommandHeader {
    /// Formats header for transfer
    fn encode(&self) -> [u8; 2] {
        ((self.gate_line & 0b1111111111) | ((self.mode as u16) << 10)).to_be_bytes()
    }
}

/// Area of the screen to which data is written
#[derive(Debug, Copy, Clone)]
struct WriteFrame {
    row: u16,
    column: u16,
    width: u16,
    height: u16,
}

/// Internal state of the driver.
/// Each state can lead to the next one in order of appearance.
#[derive(Debug, Copy, Clone)]
enum State {
    /// Data structures not ready, call `setup`
    Uninitialized,

    /// Display hardware is off, uninitialized.
    Off,
    InitializingPixelMemory,
    /// COM polarity and internal latch circuits
    InitializingRest,

    // Normal operation
    Idle,
    AllClearing,
    Writing,

    /// This driver is buggy. Turning off and on will try to recover it.
    Bug,
}

#[derive(Debug)]
pub enum InitError {
    BufferTooSmall,
}

pub struct Lpm013m126<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> {
    spi: &'a S,
    extcomin: &'a P,
    disp: &'a P,

    state: Cell<State>,

    pixel_format: Cell<ScreenPixelFormat>,
    frame: Cell<WriteFrame>,

    /// Fields responsible for sending callbacks
    /// for actions completed in software.
    ready_callback: DeferredCall,
    ready_callback_handler: ReadyCallbackHandler<'a, A, P, S>,
    command_complete_callback: DeferredCall,
    command_complete_callback_handler: CommandCompleteCallbackHandler<'a, A, P, S>,

    /// The HIL requires updates to arbitrary rectangles.
    /// The display supports only updating entire rows,
    /// so edges need to be cached.
    frame_buffer: OptionalCell<FrameBuffer<'static>>,

    client: OptionalCell<&'a dyn ScreenClient>,
    /// Buffer for incoming pixel data, coming from the client.
    /// It's not submitted directly anywhere.
    buffer: TakeCell<'static, [u8]>,

    /// Needed for init and to flip the EXTCOMIN pin at regular intervals
    alarm: &'a A,
}

impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> Lpm013m126<'a, A, P, S>
where
    Self: 'static,
{
    pub fn new(
        spi: &'a S,
        extcomin: &'a P,
        disp: &'a P,
        alarm: &'a A,
        frame_buffer: &'static mut [u8; BUF_LEN],
    ) -> Result<Self, InitError> {
        Ok(Self {
            spi,
            alarm,
            disp,
            extcomin,
            ready_callback: DeferredCall::new(),
            ready_callback_handler: ReadyCallbackHandler::new(),
            command_complete_callback: DeferredCall::new(),
            command_complete_callback_handler: CommandCompleteCallbackHandler::new(),
            frame_buffer: OptionalCell::new(FrameBuffer::new((frame_buffer as &mut [u8]).into())),
            pixel_format: Cell::new(ScreenPixelFormat::RGB_565),
            buffer: TakeCell::empty(),
            client: OptionalCell::empty(),
            state: Cell::new(State::Uninitialized),
            frame: Cell::new(WriteFrame {
                row: 0,
                column: 0,
                width: COLS as u16,
                height: ROWS as u16,
            }),
        })
    }

    /// Set up internal data structures.
    /// Does not touch the hardware.
    /// Idempotent.
    pub fn setup(&'static self) -> Result<(), ErrorCode> {
        // Needed this way to avoid exposing accessors to deferred callers.
        // That would be unnecessary, no external data is needed.
        // At the same time, self must be static for client registration.
        match self.state.get() {
            State::Uninitialized => {
                self.ready_callback_handler.lpm.set(self);
                self.ready_callback.register(&self.ready_callback_handler);
                self.command_complete_callback_handler.lpm.set(self);
                self.command_complete_callback
                    .register(&self.command_complete_callback_handler);

                self.state.set(State::Off);
                Ok(())
            }
            _ => Err(ErrorCode::ALREADY),
        }
    }

    fn initialize(&self) -> Result<(), ErrorCode> {
        match self.state.get() {
            State::Off | State::Bug => {
                // Even if we took Pin type that implements Output,
                // it's still possible that it is *not configured as a output*
                // at the moment.
                // To ensure outputness, output must be configured at runtime,
                // even though this eliminates pins
                // which don't implement Configure due to being
                // simple, unconfigurable outputs.
                self.extcomin.make_output();
                self.extcomin.clear();
                self.disp.make_output();
                self.disp.clear();

                match self.frame_buffer.take() {
                    None => Err(ErrorCode::NOMEM),
                    Some(mut frame_buffer) => {
                        // Cheating a little:
                        // the frame buffer does not yet contain pixels,
                        // so use its beginning to send the clear command.
                        frame_buffer.set_line_header(
                            0,
                            &CommandHeader {
                                mode: Mode::AllClear,
                                gate_line: 0,
                            },
                        );
                        let mut l = frame_buffer.data;
                        l.slice(0..2);
                        let res = self.spi.read_write_bytes(l, None);

                        let (res, new_state) = match res {
                            Ok(()) => (Ok(()), State::InitializingPixelMemory),
                            Err((e, buf, _)) => {
                                self.frame_buffer.replace(FrameBuffer::new(buf));
                                (Err(e), State::Bug)
                            }
                        };
                        self.state.set(new_state);
                        res
                    }
                }
            }
            _ => Err(ErrorCode::ALREADY),
        }
    }

    fn uninitialize(&self) -> Result<(), ErrorCode> {
        match self.state.get() {
            State::Off => Err(ErrorCode::ALREADY),
            _ => {
                // TODO: investigate clearing pixels asynchronously,
                // like the datasheet asks.
                // It seems to turn off fine without clearing, but
                // perhaps the state of the buffer affects power draw when off.

                // The following stops extcomin timer.
                self.alarm.disarm()?;
                self.disp.clear();
                self.state.set(State::Off);

                self.ready_callback.set();
                Ok(())
            }
        }
    }

    fn arm_alarm(&self) {
        // Datasheet says 2Hz or more often flipping is required
        // for transmissive mode.
        let delay = self.alarm.ticks_from_ms(100);
        self.alarm.set_alarm(self.alarm.now(), delay);
    }

    fn handle_ready_callback(&self) {
        self.client.map(|client| client.screen_is_ready());
    }

    fn handle_command_complete_callback(&self) {
        // Thankfully, this is the only command that results in the callback,
        // so there's no danger that this will get attributed
        // to a command that's not finished yet.
        self.client.map(|client| client.command_complete(Ok(())));
    }
}

impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> Screen<'a> for Lpm013m126<'a, A, P, S>
where
    Self: 'static,
{
    fn get_resolution(&self) -> (usize, usize) {
        (ROWS, COLS)
    }

    fn get_pixel_format(&self) -> ScreenPixelFormat {
        self.pixel_format.get()
    }

    fn get_rotation(&self) -> ScreenRotation {
        ScreenRotation::Normal
    }

    fn set_write_frame(
        &self,
        x: usize,
        y: usize,
        width: usize,
        height: usize,
    ) -> Result<(), ErrorCode> {
        let (columns, rows) = self.get_resolution();
        if y >= rows || y + height > rows || x >= columns || x + width > columns {
            //return Err(ErrorCode::INVAL);
        }

        let frame = WriteFrame {
            row: y as u16,
            column: x as u16,
            width: width as u16,
            height: height as u16,
        };
        self.frame.set(frame);

        self.command_complete_callback.set();

        Ok(())
    }

    fn write(
        &self,
        data: SubSliceMut<'static, u8>,
        _continue_write: bool,
    ) -> Result<(), ErrorCode> {
        let len = data.len();
        let buffer = data.take();

        let ret = match self.state.get() {
            State::Uninitialized | State::Off => Err(ErrorCode::OFF),
            State::InitializingPixelMemory | State::InitializingRest => Err(ErrorCode::BUSY),
            State::Idle => {
                self.frame_buffer
                    .take()
                    .map_or(Err(ErrorCode::NOMEM), |mut frame_buffer| {
                        match self.pixel_format.get() {
                            ScreenPixelFormat::RGB_332 => {
                                frame_buffer.blit_rgb332(InputBuffer {
                                    data: &buffer[..cmp::min(buffer.len(), len)],
                                    frame: &self.frame.get(),
                                });
                            }
                            ScreenPixelFormat::RGB_565 => {
                                frame_buffer.blit_rgb565(InputBuffer {
                                    data: &buffer[..cmp::min(buffer.len(), len)],
                                    frame: &self.frame.get(),
                                });
                            }
                            _ => frame_buffer.blit_4bit_srgb(InputBuffer {
                                data: &buffer[..cmp::min(buffer.len(), len)],
                                frame: &self.frame.get(),
                            }),
                        }

                        frame_buffer.set_line_header(
                            0,
                            &CommandHeader {
                                mode: Mode::NoUpdate,
                                gate_line: 0,
                            },
                        );
                        let mut l = frame_buffer.data;
                        l.slice(0..2);
                        let sent = self.spi.read_write_bytes(l, None);

                        let (ret, new_state) = match sent {
                            Ok(()) => (Ok(()), State::AllClearing),
                            Err((e, buf, _)) => {
                                self.frame_buffer.replace(FrameBuffer::new(buf));
                                (Err(e), State::Idle)
                            }
                        };
                        self.state.set(new_state);
                        ret
                    })
            }
            State::AllClearing | State::Writing => Err(ErrorCode::BUSY),
            State::Bug => Err(ErrorCode::FAIL),
        };

        self.buffer.replace(buffer);

        ret
    }

    fn set_client(&self, client: &'a dyn ScreenClient) {
        self.client.set(client);
    }

    fn set_power(&self, enable: bool) -> Result<(), ErrorCode> {
        let ret = if enable {
            self.initialize()
        } else {
            self.uninitialize()
        };

        // If the device is in the desired state by now,
        // then a callback needs to be sent manually.
        if let Err(ErrorCode::ALREADY) = ret {
            self.ready_callback.set();
            Ok(())
        } else {
            ret
        }
    }

    fn set_brightness(&self, _brightness: u16) -> Result<(), ErrorCode> {
        // TODO: add LED PWM
        Err(ErrorCode::NOSUPPORT)
    }

    fn set_invert(&self, _inverted: bool) -> Result<(), ErrorCode> {
        Err(ErrorCode::NOSUPPORT)
    }
}

impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> ScreenSetup<'a> for Lpm013m126<'a, A, P, S> {
    fn set_client(&self, _client: &'a dyn kernel::hil::screen::ScreenSetupClient) {
        todo!()
    }

    fn set_resolution(&self, resolution: (usize, usize)) -> Result<(), ErrorCode> {
        if resolution == (ROWS, COLS) {
            Ok(())
        } else {
            Err(ErrorCode::NOSUPPORT)
        }
    }

    fn set_pixel_format(&self, format: ScreenPixelFormat) -> Result<(), ErrorCode> {
        match format {
            ScreenPixelFormat::RGB_4BIT | ScreenPixelFormat::RGB_332 => {
                self.pixel_format.set(format);
                Ok(())
            }
            _ => Err(ErrorCode::NOSUPPORT),
        }
    }

    fn set_rotation(&self, _rotation: ScreenRotation) -> Result<(), ErrorCode> {
        todo!()
    }

    fn get_num_supported_resolutions(&self) -> usize {
        1
    }

    fn get_supported_resolution(&self, index: usize) -> Option<(usize, usize)> {
        match index {
            0 => Some((ROWS, COLS)),
            _ => None,
        }
    }

    fn get_num_supported_pixel_formats(&self) -> usize {
        3
    }

    fn get_supported_pixel_format(&self, index: usize) -> Option<ScreenPixelFormat> {
        match index {
            0 => Some(ScreenPixelFormat::RGB_4BIT),
            1 => Some(ScreenPixelFormat::RGB_332),
            2 => Some(ScreenPixelFormat::RGB_565),
            _ => None,
        }
    }
}

impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> AlarmClient for Lpm013m126<'a, A, P, S>
where
    Self: 'static,
{
    fn alarm(&self) {
        match self.state.get() {
            State::InitializingRest => {
                // Better flip it once too many than go out of spec
                // by stretching the flip period.
                self.extcomin.set();
                self.disp.set();
                self.arm_alarm();
                let new_state = self.frame_buffer.take().map_or_else(
                    || {
                        debug!(
                            "LPM013M126 driver lost its frame buffer in state {:?}",
                            self.state.get()
                        );
                        State::Bug
                    },
                    |mut buffer| {
                        buffer.initialize();
                        self.frame_buffer.replace(buffer);
                        State::Idle
                    },
                );

                self.state.set(new_state);

                if let State::Idle = new_state {
                    self.client.map(|client| client.screen_is_ready());
                }
            }
            _ => {
                self.extcomin.toggle();
            }
        };
    }
}

impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> SpiMasterClient for Lpm013m126<'a, A, P, S> {
    fn read_write_done(
        &self,
        write_buffer: SubSliceMut<'static, u8>,
        _read_buffer: Option<SubSliceMut<'static, u8>>,
        status: Result<usize, ErrorCode>,
    ) {
        self.frame_buffer.replace(FrameBuffer::new(write_buffer));
        self.state.set(match self.state.get() {
            State::InitializingPixelMemory => {
                // Rather than initialize them separately, wait longer and do both
                // for 2 reasons:
                // 1. the upper limit of waiting is only specified for both,
                // 2. and state flipping code is annoying and bug-friendly.
                let delay = self.alarm.ticks_from_us(150);
                self.alarm.set_alarm(self.alarm.now(), delay);
                State::InitializingRest
            }
            State::AllClearing => {
                if let Some(mut fb) = self.frame_buffer.take() {
                    fb.set_line_header(
                        0,
                        &CommandHeader {
                            mode: Mode::Input4Bit,
                            gate_line: 1,
                        },
                    );
                    let mut send_buf = fb.data;

                    let first_row = cmp::min(ROWS as u16, self.frame.get().row);
                    let offset = first_row as usize * LINE_LEN;
                    let len = cmp::min(ROWS as u16 - first_row, self.frame.get().height) as usize
                        * LINE_LEN;
                    send_buf.slice(offset..(offset + len + 2));

                    let _ = self.spi.read_write_bytes(send_buf, None);
                }
                State::Writing
            }
            State::Writing => {
                if let Some(mut fb) = self.frame_buffer.take() {
                    fb.initialize();
                    self.frame_buffer.set(fb);
                }
                State::Idle
            }
            // can't get more buggy than buggy
            other => {
                debug!(
                    "LPM013M126 received unexpected SPI complete in state {:?}",
                    other
                );
                State::Bug
            }
        });

        if let State::Idle = self.state.get() {
            // Device frame buffer is now up to date, return pixel buffer to client.
            self.client.map(|client| {
                self.buffer.take().map(|buf| {
                    let data = SubSliceMut::new(buf);
                    client.write_complete(data, status.map(|_| ()))
                })
            });
        }
    }
}

// DeferredCall requires a unique client for each DeferredCall so that different callbacks
// can be distinguished.
struct ReadyCallbackHandler<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> {
    lpm: OptionalCell<&'a Lpm013m126<'a, A, P, S>>,
}

impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> ReadyCallbackHandler<'a, A, P, S> {
    fn new() -> Self {
        Self {
            lpm: OptionalCell::empty(),
        }
    }
}

impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> DeferredCallClient
    for ReadyCallbackHandler<'a, A, P, S>
where
    Self: 'static,
{
    fn handle_deferred_call(&self) {
        self.lpm.map(|l| l.handle_ready_callback());
    }

    fn register(&'static self) {
        self.lpm.map(|l| l.ready_callback.register(self));
    }
}

struct CommandCompleteCallbackHandler<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> {
    lpm: OptionalCell<&'a Lpm013m126<'a, A, P, S>>,
}

impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> CommandCompleteCallbackHandler<'a, A, P, S> {
    fn new() -> Self {
        Self {
            lpm: OptionalCell::empty(),
        }
    }
}

impl<'a, A: Alarm<'a>, P: Pin, S: SpiMasterDevice<'a>> DeferredCallClient
    for CommandCompleteCallbackHandler<'a, A, P, S>
where
    Self: 'static,
{
    fn handle_deferred_call(&self) {
        self.lpm.map(|l| l.handle_command_complete_callback());
    }

    fn register(&'static self) {
        self.lpm.map(|l| l.command_complete_callback.register(self));
    }
}