capsules_extra/ieee802154/driver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! IEEE 802.15.4 userspace interface for configuration and transmit/receive.
//!
//! Implements a userspace interface for sending and receiving IEEE 802.15.4
//! frames. Also provides a minimal list-based interface for managing keys and
//! known link neighbors, which is needed for 802.15.4 security.
//!
//! The driver functionality can be divided into three aspects: sending
//! packets, receiving packets, and managing the 15.4 state (i.e. keys, neighbors,
//! buffers, addressing, etc). The general design and procedure for sending and
//! receiving is discussed below.
//!
//! Sending - The driver supports two modes of sending: Raw and Parse. In Raw mode,
//! the userprocess fully forms the 15.4 frame and passes it to the driver. In Parse
//! mode, the userprocess provides the payload and relevant metadata. From this
//! the driver forms the 15.4 header and secures the payload. To send a packet,
//! the userprocess issues the respective send command syscall (corresponding to
//! raw or parse mode of sending). The 15.4 capsule will then schedule an upcall,
//! upon completion of the transmission, to notify the process.
//!
//! Receiving - The driver receives 15.4 frames and passes them to the userprocess.
//! To accomplish this, the userprocess must first `allow` a read/write ring buffer
//! to the kernel. The kernel will then fill this buffer with received frames and
//! schedule an upcall upon receipt of the first packet. When handling the upcall
//! the userprocess must first `unallow` the buffer as described in section 4.4 of
//! TRD104-syscalls. After unallowing the buffer, the userprocess must then immediately
//! clear all pending/scheduled receive upcalls. This is done by either unsubscribing
//! the receive upcall or subscribing a new receive upcall. Because the userprocess
//! provides the buffer, it is responsible for adhering to this procedure. Failure
//! to comply may result in dropped or malformed packets.
//!
//! The ring buffer provided by the userprocess must be of the form:
//!
//! ```text
//! | read index | write index | user_frame 0 | user_frame 1 | ... | user_frame n |
//! ```
//!
//! `user_frame` denotes the 15.4 frame in addition to the relevant 3 bytes of
//! metadata (offset to data payload, length of data payload, and the MIC len). The
//! capsule assumes that this is the form of the buffer. Errors or deviation in
//! the form of the provided buffer will likely result in incomplete or dropped packets.
//!
//! Because the scheduled receive upcall must be handled by the userprocess, there is
//! no guarantee as to when this will occur and if additional packets will be received
//! prior to the upcall being handled. Without a ring buffer (or some equivalent data
//! structure), the original packet will be lost. The ring buffer allows for the upcall
//! to be scheduled and for all received packets to be passed to the process. The ring
//! buffer is designed to overwrite old packets if the buffer becomes full. If the
//! userprocess notices a high number of "dropped" packets, this may be the cause. The
//! userproceess can mitigate this issue by increasing the size of the ring buffer
//! provided to the capsule.
use crate::ieee802154::{device, framer};
use crate::net::ieee802154::{Header, KeyId, MacAddress, SecurityLevel};
use crate::net::stream::{decode_bytes, decode_u8, encode_bytes, encode_u8, SResult};
use core::cell::Cell;
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil::radio;
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{MapCell, OptionalCell, TakeCell};
use kernel::{ErrorCode, ProcessId};
const MAX_NEIGHBORS: usize = 4;
const MAX_KEYS: usize = 4;
const USER_FRAME_METADATA_SIZE: usize = 3; // 3B metadata (offset, len, mic_len)
const USER_FRAME_MAX_SIZE: usize = USER_FRAME_METADATA_SIZE + radio::MAX_FRAME_SIZE; // 3B metadata + 127B max payload
/// IDs for subscribed upcalls.
mod upcall {
/// Frame is received
pub const FRAME_RECEIVED: usize = 0;
/// Frame is transmitted
pub const FRAME_TRANSMITTED: usize = 1;
/// Number of upcalls.
pub const COUNT: u8 = 2;
}
/// Ids for read-only allow buffers
mod ro_allow {
/// Write buffer. Contains the frame payload to be transmitted.
pub const WRITE: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Ids for read-write allow buffers
mod rw_allow {
/// Read buffer. Will contain the received frame.
pub const READ: usize = 0;
/// Config buffer.
///
/// Used to contain miscellaneous data associated with some commands because
/// the system call parameters / return codes are not enough to convey the
/// desired information.
pub const CFG: usize = 1;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 2;
}
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::Ieee802154 as usize;
#[derive(Copy, Clone, Eq, PartialEq, Debug, Default)]
struct DeviceDescriptor {
short_addr: u16,
long_addr: [u8; 8],
}
/// The Key ID mode mapping expected by the userland driver
#[repr(u8)]
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
enum KeyIdModeUserland {
Implicit = 0,
Index = 1,
Source4Index = 2,
Source8Index = 3,
}
impl KeyIdModeUserland {
pub fn from_u8(byte: u8) -> Option<KeyIdModeUserland> {
match byte {
0 => Some(KeyIdModeUserland::Implicit),
1 => Some(KeyIdModeUserland::Index),
2 => Some(KeyIdModeUserland::Source4Index),
3 => Some(KeyIdModeUserland::Source8Index),
_ => None,
}
}
}
/// Encodes a key ID into a buffer in the format expected by the userland driver.
fn encode_key_id(key_id: &KeyId, buf: &mut [u8]) -> SResult {
let off = enc_consume!(buf; encode_u8, KeyIdModeUserland::from(key_id) as u8);
let off = match *key_id {
KeyId::Implicit => 0,
KeyId::Index(index) => enc_consume!(buf, off; encode_u8, index),
KeyId::Source4Index(ref src, index) => {
let off = enc_consume!(buf, off; encode_bytes, src);
enc_consume!(buf, off; encode_u8, index)
}
KeyId::Source8Index(ref src, index) => {
let off = enc_consume!(buf, off; encode_bytes, src);
enc_consume!(buf, off; encode_u8, index)
}
};
stream_done!(off);
}
/// Decodes a key ID that is in the format produced by the userland driver.
fn decode_key_id(buf: &[u8]) -> SResult<KeyId> {
stream_len_cond!(buf, 1);
let mode = stream_from_option!(KeyIdModeUserland::from_u8(buf[0]));
match mode {
KeyIdModeUserland::Implicit => stream_done!(0, KeyId::Implicit),
KeyIdModeUserland::Index => {
let (off, index) = dec_try!(buf; decode_u8);
stream_done!(off, KeyId::Index(index));
}
KeyIdModeUserland::Source4Index => {
let mut src = [0u8; 4];
let off = dec_consume!(buf; decode_bytes, &mut src);
let (off, index) = dec_try!(buf, off; decode_u8);
stream_done!(off, KeyId::Source4Index(src, index));
}
KeyIdModeUserland::Source8Index => {
let mut src = [0u8; 8];
let off = dec_consume!(buf; decode_bytes, &mut src);
let (off, index) = dec_try!(buf, off; decode_u8);
stream_done!(off, KeyId::Source8Index(src, index));
}
}
}
impl From<&KeyId> for KeyIdModeUserland {
fn from(key_id: &KeyId) -> Self {
match *key_id {
KeyId::Implicit => KeyIdModeUserland::Implicit,
KeyId::Index(_) => KeyIdModeUserland::Index,
KeyId::Source4Index(_, _) => KeyIdModeUserland::Source4Index,
KeyId::Source8Index(_, _) => KeyIdModeUserland::Source8Index,
}
}
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
struct KeyDescriptor {
level: SecurityLevel,
key_id: KeyId,
key: [u8; 16],
}
impl Default for KeyDescriptor {
fn default() -> Self {
KeyDescriptor {
level: SecurityLevel::None,
key_id: KeyId::Implicit,
key: [0; 16],
}
}
}
impl KeyDescriptor {
fn decode(buf: &[u8]) -> SResult<KeyDescriptor> {
stream_len_cond!(buf, 27);
let level = stream_from_option!(SecurityLevel::from_scf(buf[0]));
let (_, key_id) = dec_try!(buf, 1; decode_key_id);
let mut key = [0u8; 16];
let off = dec_consume!(buf, 11; decode_bytes, &mut key);
stream_done!(off, KeyDescriptor { level, key_id, key });
}
}
#[derive(Default)]
pub struct App {
pending_tx: Option<(u16, Option<(SecurityLevel, KeyId)>)>,
}
pub struct RadioDriver<'a, M: device::MacDevice<'a>> {
/// Underlying MAC device, possibly multiplexed
mac: &'a M,
/// List of (short address, long address) pairs representing IEEE 802.15.4
/// neighbors.
neighbors: MapCell<[DeviceDescriptor; MAX_NEIGHBORS]>,
/// Actual number of neighbors in the fixed size array of neighbors.
num_neighbors: Cell<usize>,
/// List of (security level, key_id, key) tuples representing IEEE 802.15.4
/// key descriptors.
keys: MapCell<[KeyDescriptor; MAX_KEYS]>,
/// Actual number of keys in the fixed size array of keys.
num_keys: Cell<usize>,
/// Grant of apps that use this radio driver.
apps: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
/// ID of app whose transmission request is being processed.
current_app: OptionalCell<ProcessId>,
/// Buffer that stores the IEEE 802.15.4 frame to be transmitted.
kernel_tx: TakeCell<'static, [u8]>,
/// Used to ensure callbacks are delivered during upcalls
deferred_call: DeferredCall,
/// Used to deliver callbacks to the correct app during deferred calls
saved_processid: OptionalCell<ProcessId>,
/// Used to save result for passing a callback from a deferred call.
saved_result: OptionalCell<Result<(), ErrorCode>>,
/// Used to allow Thread to specify a key procedure for 15.4 to use for link layer encryption
backup_key_procedure: OptionalCell<&'a dyn framer::KeyProcedure>,
/// Used to allow Thread to specify the 15.4 device procedure as used in nonce generation
backup_device_procedure: OptionalCell<&'a dyn framer::DeviceProcedure>,
}
impl<'a, M: device::MacDevice<'a>> RadioDriver<'a, M> {
pub fn new(
mac: &'a M,
grant: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
kernel_tx: &'static mut [u8],
) -> Self {
Self {
mac,
neighbors: MapCell::new(Default::default()),
num_neighbors: Cell::new(0),
keys: MapCell::new(Default::default()),
num_keys: Cell::new(0),
apps: grant,
current_app: OptionalCell::empty(),
kernel_tx: TakeCell::new(kernel_tx),
deferred_call: DeferredCall::new(),
saved_processid: OptionalCell::empty(),
saved_result: OptionalCell::empty(),
backup_key_procedure: OptionalCell::empty(),
backup_device_procedure: OptionalCell::empty(),
}
}
pub fn set_key_procedure(&self, key_procedure: &'a dyn framer::KeyProcedure) {
self.backup_key_procedure.set(key_procedure);
}
pub fn set_device_procedure(&self, device_procedure: &'a dyn framer::DeviceProcedure) {
self.backup_device_procedure.set(device_procedure);
}
// Neighbor management functions
/// Add a new neighbor to the end of the list if there is still space
/// for one, returning its new index. If the neighbor already exists,
/// returns the index of the existing neighbor. Returns `None` if there is
/// no remaining space.
fn add_neighbor(&self, new_neighbor: DeviceDescriptor) -> Option<usize> {
self.neighbors.and_then(|neighbors| {
let num_neighbors = self.num_neighbors.get();
let position = neighbors[..num_neighbors]
.iter()
.position(|neighbor| *neighbor == new_neighbor);
match position {
Some(index) => Some(index),
None => {
if num_neighbors == MAX_NEIGHBORS {
None
} else {
neighbors[num_neighbors] = new_neighbor;
self.num_neighbors.set(num_neighbors + 1);
Some(num_neighbors)
}
}
}
})
}
/// Deletes the neighbor at `index` if `index` is valid, returning
/// `Ok()`. Otherwise, returns `Err(ErrorCode::INVAL)`. Ensures
/// that the `neighbors` list is compact by shifting forward any elements
/// after the index.
fn remove_neighbor(&self, index: usize) -> Result<(), ErrorCode> {
let num_neighbors = self.num_neighbors.get();
if index < num_neighbors {
self.neighbors.map(|neighbors| {
for i in index..(num_neighbors - 1) {
neighbors[i] = neighbors[i + 1];
}
});
self.num_neighbors.set(num_neighbors - 1);
Ok(())
} else {
Err(ErrorCode::INVAL)
}
}
/// Gets the `DeviceDescriptor` corresponding to the neighbor at a
/// particular `index`, if the `index` is valid. Otherwise, returns `None`
fn get_neighbor(&self, index: usize) -> Option<DeviceDescriptor> {
if index < self.num_neighbors.get() {
self.neighbors.map(|neighbors| neighbors[index])
} else {
None
}
}
// Key management functions
/// Add a new key to the end of the list if there is still space
/// for one, returning its new index. If the key already exists,
/// returns the index of the existing key. Returns `None` if there
/// is no remaining space.
fn add_key(&self, new_key: KeyDescriptor) -> Option<usize> {
self.keys.and_then(|keys| {
let num_keys = self.num_keys.get();
let position = keys[..num_keys].iter().position(|key| *key == new_key);
match position {
Some(index) => Some(index),
None => {
if num_keys == MAX_KEYS {
None
} else {
keys[num_keys] = new_key;
self.num_keys.set(num_keys + 1);
Some(num_keys)
}
}
}
})
}
/// Deletes the key at `index` if `index` is valid, returning
/// `Ok(())`. Otherwise, returns `Err(ErrorCode::INVAL)`. Ensures
/// that the `keys` list is compact by shifting forward any elements
/// after the index.
fn remove_key(&self, index: usize) -> Result<(), ErrorCode> {
let num_keys = self.num_keys.get();
if index < num_keys {
self.keys.map(|keys| {
for i in index..(num_keys - 1) {
keys[i] = keys[i + 1];
}
});
self.num_keys.set(num_keys - 1);
Ok(())
} else {
Err(ErrorCode::INVAL)
}
}
/// Gets the `DeviceDescriptor` corresponding to the key at a
/// particular `index`, if the `index` is valid. Otherwise, returns `None`
fn get_key(&self, index: usize) -> Option<KeyDescriptor> {
if index < self.num_keys.get() {
self.keys.map(|keys| keys[index])
} else {
None
}
}
/// If the driver is currently idle and there are pending transmissions,
/// pick an app with a pending transmission and return its `ProcessId`.
fn get_next_tx_if_idle(&self) -> Option<ProcessId> {
if self.current_app.is_some() {
return None;
}
let mut pending_app = None;
for app in self.apps.iter() {
let processid = app.processid();
app.enter(|app, _| {
if app.pending_tx.is_some() {
pending_app = Some(processid);
}
});
if pending_app.is_some() {
break;
}
}
pending_app
}
/// Performs `processid`'s pending transmission asynchronously. If the
/// transmission is not successful, the error is returned to the app via its
/// `tx_callback`. Assumes that the driver is currently idle and the app has
/// a pending transmission.
#[inline]
fn perform_tx_async(&self, processid: ProcessId) {
let result = self.perform_tx_sync(processid);
if result != Ok(()) {
self.saved_processid.set(processid);
self.saved_result.set(result);
self.deferred_call.set();
}
}
/// Performs `processid`'s pending transmission synchronously. The result is
/// returned immediately to the app. Assumes that the driver is currently
/// idle and the app has a pending transmission.
#[inline]
fn perform_tx_sync(&self, processid: ProcessId) -> Result<(), ErrorCode> {
self.apps.enter(processid, |app, kerel_data| {
let (dst_addr, security_needed) = match app.pending_tx.take() {
Some(pending_tx) => pending_tx,
None => {
return Ok(());
}
};
let result = self.kernel_tx.take().map_or(Err(ErrorCode::NOMEM), |kbuf| {
// Prepare the frame headers
let pan = self.mac.get_pan();
let dst_addr = MacAddress::Short(dst_addr);
let src_addr = MacAddress::Short(self.mac.get_address());
let mut frame = match self.mac.prepare_data_frame(
kbuf,
pan,
dst_addr,
pan,
src_addr,
security_needed,
) {
Ok(frame) => frame,
Err(kbuf) => {
self.kernel_tx.replace(kbuf);
return Err(ErrorCode::FAIL);
}
};
// Append the payload: there must be one
let result = kerel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.and_then(|write| write.enter(|payload| frame.append_payload_process(payload)))
.unwrap_or(Err(ErrorCode::INVAL));
if result != Ok(()) {
return result;
}
// Finally, transmit the frame
match self.mac.transmit(frame) {
Ok(()) => Ok(()),
Err((ecode, buf)) => {
self.kernel_tx.put(Some(buf));
Err(ecode)
}
}
});
if result == Ok(()) {
self.current_app.set(processid);
}
result
})?
}
/// Schedule the next transmission if there is one pending. Performs the
/// transmission asynchronously, returning any errors via callbacks.
#[inline]
fn do_next_tx_async(&self) {
self.get_next_tx_if_idle()
.map(|processid| self.perform_tx_async(processid));
}
/// Schedule the next transmission if there is one pending. If the next
/// transmission happens to be the one that was just queued, then the
/// transmission is synchronous. Hence, errors must be returned immediately.
/// On the other hand, if it is some other app, then return any errors via
/// callbacks.
#[inline]
fn do_next_tx_sync(&self, new_processid: ProcessId) -> Result<(), ErrorCode> {
self.get_next_tx_if_idle().map_or(Ok(()), |processid| {
if processid == new_processid {
self.perform_tx_sync(processid)
} else {
self.perform_tx_async(processid);
Ok(())
}
})
}
}
impl<'a, M: device::MacDevice<'a>> DeferredCallClient for RadioDriver<'a, M> {
fn handle_deferred_call(&self) {
let _ = self
.apps
.enter(self.saved_processid.unwrap_or_panic(), |_app, upcalls| {
// Unwrap fail = missing processid
upcalls
.schedule_upcall(
upcall::FRAME_TRANSMITTED,
(
kernel::errorcode::into_statuscode(
self.saved_result.unwrap_or_panic(), // Unwrap fail = missing result
),
0,
0,
),
)
.ok();
});
}
fn register(&'static self) {
self.deferred_call.register(self);
}
}
impl<'a, M: device::MacDevice<'a>> framer::DeviceProcedure for RadioDriver<'a, M> {
/// Gets the long address corresponding to the neighbor that matches the given
/// MAC address. If no such neighbor exists, returns `None`.
fn lookup_addr_long(&self, addr: MacAddress) -> Option<[u8; 8]> {
self.neighbors
.and_then(|neighbors| {
neighbors[..self.num_neighbors.get()]
.iter()
.find(|neighbor| match addr {
MacAddress::Short(addr) => addr == neighbor.short_addr,
MacAddress::Long(addr) => addr == neighbor.long_addr,
})
.map(|neighbor| neighbor.long_addr)
})
.map_or_else(
// This serves the same purpose as the KeyProcedure lookup (see comment).
// This is kept as a remnant of 15.4, but should potentially be removed moving forward
// as Thread does not have a use to add a Device procedure.
|| {
self.backup_device_procedure
.and_then(|procedure| procedure.lookup_addr_long(addr))
},
|res| Some(res),
)
}
}
impl<'a, M: device::MacDevice<'a>> framer::KeyProcedure for RadioDriver<'a, M> {
/// Gets the key corresponding to the key that matches the given security
/// level `level` and key ID `key_id`. If no such key matches, returns
/// `None`.
fn lookup_key(&self, level: SecurityLevel, key_id: KeyId) -> Option<[u8; 16]> {
self.keys
.and_then(|keys| {
keys[..self.num_keys.get()]
.iter()
.find(|key| key.level == level && key.key_id == key_id)
.map(|key| key.key)
})
.map_or_else(
// Thread needs to add a MAC key to the 15.4 network keys so that the 15.4 framer
// can decrypt incoming Thread 15.4 frames. The backup_device_procedure was added
// so that if the lookup procedure failed to find a key here, it would check a
// "backup" procedure (Thread in this case). This is somewhat clunky and removing
// the network keys being stored in the 15.4 driver is a longer term TODO.
|| {
self.backup_key_procedure.and_then(|procedure| {
// TODO: security_level / keyID are hardcoded for now
procedure.lookup_key(SecurityLevel::EncMic32, KeyId::Index(2))
})
},
|res| Some(res),
)
}
}
impl<'a, M: device::MacDevice<'a>> SyscallDriver for RadioDriver<'a, M> {
/// IEEE 802.15.4 MAC device control.
///
/// For some of the below commands, one 32-bit argument is not enough to
/// contain the desired input parameters or output data. For those commands,
/// the config slice `app_cfg` (RW allow num 1) is used as a channel to shuffle information
/// between kernel space and user space. The expected size of the slice
/// varies by command, and acts essentially like a custom FFI. That is, the
/// userspace library MUST `allow()` a buffer of the correct size, otherwise
/// the call is INVAL. When used, the expected format is described below.
///
/// ### `command_num`
///
/// - `0`: Driver existence check.
/// - `1`: Return radio status. Ok(())/OFF = on/off.
/// - `2`: Set short MAC address.
/// - `3`: Set long MAC address.
/// app_cfg (in): 8 bytes: the long MAC address.
/// - `4`: Set PAN ID.
/// - `5`: Set channel.
/// - `6`: Set transmission power.
/// - `7`: Commit any configuration changes.
/// - `8`: Get the short MAC address.
/// - `9`: Get the long MAC address.
/// app_cfg (out): 8 bytes: the long MAC address.
/// - `10`: Get the PAN ID.
/// - `11`: Get the channel.
/// - `12`: Get the transmission power.
/// - `13`: Get the maximum number of neighbors.
/// - `14`: Get the current number of neighbors.
/// - `15`: Get the short address of the neighbor at an index.
/// - `16`: Get the long address of the neighbor at an index.
/// app_cfg (out): 8 bytes: the long MAC address.
/// - `17`: Add a new neighbor with the given short and long address.
/// app_cfg (in): 8 bytes: the long MAC address.
/// - `18`: Remove the neighbor at an index.
/// - `19`: Get the maximum number of keys.
/// - `20`: Get the current number of keys.
/// - `21`: Get the security level of the key at an index.
/// - `22`: Get the key id of the key at an index.
/// app_cfg (out): 1 byte: the key ID mode +
/// up to 9 bytes: the key ID.
/// - `23`: Get the key at an index.
/// app_cfg (out): 16 bytes: the key.
/// - `24`: Add a new key with the given description.
/// app_cfg (in): 1 byte: the security level +
/// 1 byte: the key ID mode +
/// 9 bytes: the key ID (might not use all bytes) +
/// 16 bytes: the key.
/// - `25`: Remove the key at an index.
/// - `26`: Transmit a frame (parse required). Take the provided payload and
/// parameters to encrypt, form headers, and transmit the frame.
/// - `28`: Set long address.
/// - `29`: Get the long MAC address.
/// - `30`: Turn the radio on.
fn command(
&self,
command_number: usize,
arg1: usize,
arg2: usize,
processid: ProcessId,
) -> CommandReturn {
match command_number {
0 => CommandReturn::success(),
1 => {
if self.mac.is_on() {
CommandReturn::success()
} else {
CommandReturn::failure(ErrorCode::OFF)
}
}
2 => {
self.mac.set_address(arg1 as u16);
CommandReturn::success()
}
3 => self
.apps
.enter(processid, |_, kernel_data| {
kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.enter(|cfg| {
if cfg.len() != 8 {
return CommandReturn::failure(ErrorCode::SIZE);
}
let mut addr_long = [0u8; 8];
cfg.copy_to_slice(&mut addr_long);
self.mac.set_address_long(addr_long);
CommandReturn::success()
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::INVAL))
})
.unwrap_or_else(|err| CommandReturn::failure(err.into())),
4 => {
self.mac.set_pan(arg1 as u16);
CommandReturn::success()
}
// XXX: Setting channel DEPRECATED by MAC layer channel control
5 => CommandReturn::failure(ErrorCode::NOSUPPORT),
// XXX: Setting tx power DEPRECATED by MAC layer tx power control
6 => CommandReturn::failure(ErrorCode::NOSUPPORT),
7 => {
self.mac.config_commit();
CommandReturn::success()
}
8 => {
// Guarantee that address is positive by adding 1
let addr = self.mac.get_address();
CommandReturn::success_u32(addr as u32 + 1)
}
9 => self
.apps
.enter(processid, |_, kernel_data| {
kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.mut_enter(|cfg| {
if cfg.len() != 8 {
return CommandReturn::failure(ErrorCode::SIZE);
}
cfg.copy_from_slice(&self.mac.get_address_long());
CommandReturn::success()
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::INVAL))
})
.unwrap_or_else(|err| CommandReturn::failure(err.into())),
10 => {
// Guarantee that the PAN is positive by adding 1
let pan = self.mac.get_pan();
CommandReturn::success_u32(pan as u32 + 1)
}
// XXX: Getting channel DEPRECATED by MAC layer channel control
11 => CommandReturn::failure(ErrorCode::NOSUPPORT),
// XXX: Getting tx power DEPRECATED by MAC layer tx power control
12 => CommandReturn::failure(ErrorCode::NOSUPPORT),
13 => {
// Guarantee that it is positive by adding 1
CommandReturn::success_u32(MAX_NEIGHBORS as u32 + 1)
}
14 => {
// Guarantee that it is positive by adding 1
CommandReturn::success_u32(self.num_neighbors.get() as u32 + 1)
}
15 => self
.get_neighbor(arg1)
.map_or(CommandReturn::failure(ErrorCode::INVAL), |neighbor| {
CommandReturn::success_u32(neighbor.short_addr as u32 + 1)
}),
16 => self
.apps
.enter(processid, |_, kernel_data| {
kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.mut_enter(|cfg| {
if cfg.len() != 8 {
return CommandReturn::failure(ErrorCode::SIZE);
}
self.get_neighbor(arg1).map_or(
CommandReturn::failure(ErrorCode::INVAL),
|neighbor| {
cfg.copy_from_slice(&neighbor.long_addr);
CommandReturn::success()
},
)
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::INVAL))
})
.unwrap_or_else(|err| CommandReturn::failure(err.into())),
17 => self
.apps
.enter(processid, |_, kernel_data| {
kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.enter(|cfg| {
if cfg.len() != 8 {
return CommandReturn::failure(ErrorCode::SIZE);
}
let mut new_neighbor: DeviceDescriptor =
DeviceDescriptor::default();
new_neighbor.short_addr = arg1 as u16;
cfg.copy_to_slice(&mut new_neighbor.long_addr);
self.add_neighbor(new_neighbor)
.map_or(CommandReturn::failure(ErrorCode::INVAL), |index| {
CommandReturn::success_u32(index as u32 + 1)
})
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::INVAL))
})
.unwrap_or_else(|err| CommandReturn::failure(err.into())),
18 => match self.remove_neighbor(arg1) {
Ok(()) => CommandReturn::success(),
Err(e) => CommandReturn::failure(e),
},
19 => {
// Guarantee that it is positive by adding 1
CommandReturn::success_u32(MAX_KEYS as u32 + 1)
}
20 => {
// Guarantee that it is positive by adding 1
CommandReturn::success_u32(self.num_keys.get() as u32 + 1)
}
21 => self
.get_key(arg1)
.map_or(CommandReturn::failure(ErrorCode::INVAL), |key| {
CommandReturn::success_u32(key.level as u32 + 1)
}),
22 => self
.apps
.enter(processid, |_, kernel_data| {
kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.mut_enter(|cfg| {
if cfg.len() != 10 {
return CommandReturn::failure(ErrorCode::SIZE);
}
let mut tmp_cfg: [u8; 10] = [0; 10];
let res = self
.get_key(arg1)
.and_then(|key| encode_key_id(&key.key_id, &mut tmp_cfg).done())
.map_or(CommandReturn::failure(ErrorCode::INVAL), |_| {
CommandReturn::success()
});
cfg.copy_from_slice(&tmp_cfg);
res
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::INVAL))
})
.unwrap_or_else(|err| CommandReturn::failure(err.into())),
23 => self
.apps
.enter(processid, |_, kernel_data| {
kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.mut_enter(|cfg| {
if cfg.len() != 16 {
return CommandReturn::failure(ErrorCode::SIZE);
}
self.get_key(arg1).map_or(
CommandReturn::failure(ErrorCode::INVAL),
|key| {
cfg.copy_from_slice(&key.key);
CommandReturn::success()
},
)
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::INVAL))
})
.unwrap_or_else(|err| CommandReturn::failure(err.into())),
24 => self
.apps
.enter(processid, |_, kernel_data| {
kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.mut_enter(|cfg| {
if cfg.len() != 27 {
return CommandReturn::failure(ErrorCode::SIZE);
}
// The cfg userspace buffer is exactly 27
// bytes long, copy it into a proper slice
// for decoding
let mut tmp_cfg: [u8; 27] = [0; 27];
cfg.copy_to_slice(&mut tmp_cfg);
KeyDescriptor::decode(&tmp_cfg)
.done()
.and_then(|(_, new_key)| self.add_key(new_key))
.map_or(CommandReturn::failure(ErrorCode::INVAL), |index| {
CommandReturn::success_u32(index as u32 + 1)
})
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::INVAL))
})
.unwrap_or_else(|err| CommandReturn::failure(err.into())),
25 => self.remove_key(arg1).into(),
26 => {
self.apps
.enter(processid, |app, kernel_data| {
if app.pending_tx.is_some() {
// Cannot support more than one pending tx per process.
return Err(ErrorCode::BUSY);
}
let next_tx = kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.enter(|cfg| {
if cfg.len() != 11 {
return None;
}
let dst_addr = arg1 as u16;
let level = match SecurityLevel::from_scf(cfg[0].get()) {
Some(level) => level,
None => {
return None;
}
};
if level == SecurityLevel::None {
Some((dst_addr, None))
} else {
let mut tmp_key_id_buffer: [u8; 10] = [0; 10];
cfg[1..].copy_to_slice(&mut tmp_key_id_buffer);
let key_id = match decode_key_id(&tmp_key_id_buffer).done()
{
Some((_, key_id)) => key_id,
None => {
return None;
}
};
Some((dst_addr, Some((level, key_id))))
}
})
})
.unwrap_or(None);
if next_tx.is_none() {
return Err(ErrorCode::INVAL);
}
app.pending_tx = next_tx;
Ok(())
})
.map_or_else(
|err| CommandReturn::failure(err.into()),
|setup_tx| match setup_tx {
Ok(()) => self.do_next_tx_sync(processid).into(),
Err(e) => CommandReturn::failure(e),
},
)
}
28 => {
let addr_upper: u64 = arg2 as u64;
let addr_lower: u64 = arg1 as u64;
let addr = addr_upper << 32 | addr_lower;
self.mac.set_address_long(addr.to_be_bytes());
CommandReturn::success()
}
29 => {
let addr = u64::from_be_bytes(self.mac.get_address_long());
CommandReturn::success_u64(addr)
}
30 => self.mac.start().into(),
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.apps.enter(processid, |_, _| {})
}
}
impl<'a, M: device::MacDevice<'a>> device::TxClient for RadioDriver<'a, M> {
fn send_done(&self, spi_buf: &'static mut [u8], acked: bool, result: Result<(), ErrorCode>) {
self.kernel_tx.replace(spi_buf);
self.current_app.take().map(|processid| {
let _ = self.apps.enter(processid, |_app, upcalls| {
upcalls
.schedule_upcall(
upcall::FRAME_TRANSMITTED,
(
kernel::errorcode::into_statuscode(result),
acked as usize,
0,
),
)
.ok();
});
});
self.do_next_tx_async();
}
}
impl<'a, M: device::MacDevice<'a>> device::RxClient for RadioDriver<'a, M> {
fn receive<'b>(
&self,
buf: &'b [u8],
header: Header<'b>,
lqi: u8,
data_offset: usize,
data_len: usize,
) {
self.apps.each(|_, _, kernel_data| {
let read_present = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.and_then(|read| {
read.mut_enter(|rbuf| {
///////////////////////////////////////////////////////////////////////////////////////////
// NOTE: context for the ring buffer and assumptions regarding the ring buffer
// format and usage can be found in the detailed comment at the top of this file.
// Ring buffer format:
// | read index | write index | user_frame 0 | user_frame 1 | ... | user_frame n |
// user_frame format:
// | header_len | payload_len | mic_len | 15.4 frame |
///////////////////////////////////////////////////////////////////////////////////////////
// 2 bytes for the readwrite buffer metadata (read / write index)
const RING_BUF_METADATA_SIZE: usize = 2;
// Confirm the availability of the buffer. A buffer of len 0 is indicative
// of the userprocess not allocating a readwrite buffer. We must also
// confirm that the userprocess correctly formatted the buffer to be of length
// 2 + n * USER_FRAME_MAX_SIZE, where n is the number of user frames that the
// buffer can store. We combine checking the buffer's non-zero length and the
// case of the buffer being shorter than the `RING_BUF_METADATA_SIZE` as an
// invalid buffer (e.g. of length 1) may otherwise errantly pass the second
// conditional check (due to unsigned integer arithmetic).
if rbuf.len() <= RING_BUF_METADATA_SIZE
|| (rbuf.len() - RING_BUF_METADATA_SIZE) % USER_FRAME_MAX_SIZE != 0
{
// kernel::debug!("[15.4 Driver] Error - improperly formatted readwrite buffer provided");
return false;
}
let mic_len = header.security.map_or(0, |sec| sec.level.mic_len());
let frame_len = data_offset + data_len + mic_len;
let mut read_index = rbuf[0].get() as usize;
let mut write_index = rbuf[1].get() as usize;
let max_pending_rx =
(rbuf.len() - RING_BUF_METADATA_SIZE) / USER_FRAME_MAX_SIZE;
// confirm user modifiable metadata is valid (i.e. within bounds of the provided buffer)
if read_index >= max_pending_rx || write_index >= max_pending_rx {
// kernel::debug!("[15.4 driver] Invalid read or write index");
return false;
}
let offset = RING_BUF_METADATA_SIZE + (write_index * USER_FRAME_MAX_SIZE);
// Copy the entire frame over to userland, preceded by three metadata bytes:
// the header length, the data length, and the MIC length.
rbuf[(offset + USER_FRAME_METADATA_SIZE)
..(offset + frame_len + USER_FRAME_METADATA_SIZE)]
.copy_from_slice(&buf[..frame_len]);
rbuf[offset].set(data_offset as u8);
rbuf[offset + 1].set(data_len as u8);
rbuf[offset + 2].set(mic_len as u8);
// Prepare the ring buffer for the next write. The current design favors newness;
// newly received packets will begin to overwrite the oldest data in the event
// of the buffer becoming full. The read index must always point to the "oldest"
// data. If we have overwritten the oldest data, the next oldest data is now at
// the read index + 1. We must update the read index to reflect this.
write_index = (write_index + 1) % max_pending_rx;
if write_index == read_index {
read_index = (read_index + 1) % max_pending_rx;
rbuf[0].set(read_index as u8);
// kernel::debug!("[15.4 driver] Provided RX buffer is full");
}
// update write index metadata (we do not modify the read index
// in the recv functionality so we do not need to update this metadata)
rbuf[1].set(write_index as u8);
true
})
})
.unwrap_or(false);
if read_present {
// Place lqi as argument to be included in upcall.
kernel_data
.schedule_upcall(upcall::FRAME_RECEIVED, (lqi as usize, 0, 0))
.ok();
}
});
}
}