rp2040/
adc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

use core::cell::Cell;
use kernel::hil;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable};
use kernel::utilities::registers::{register_bitfields, register_structs, ReadWrite};
use kernel::utilities::{cells::OptionalCell, StaticRef};
use kernel::ErrorCode;

register_structs! {
    /// Control and data interface to SAR ADC
    AdcRegisters {
        /// ADC Control and Status
        (0x000 => cs: ReadWrite<u32, CS::Register>),
        /// Result of most recent ADC conversion
        (0x004 => result: ReadWrite<u32, RESULT::Register>),
        /// FIFO control and status
        (0x008 => fcs: ReadWrite<u32, FCS::Register>),
        /// Conversion result FIFO
        (0x00C => fifo: ReadWrite<u32, FIFO::Register>),
        /// Clock divider. If non-zero, CS_START_MANY will start conversions
        /// at regular intervals rather than back-to-back.
        /// The divider is reset when either of these fields are written.
        /// Total period is 1 + INT + FRAC / 256
        (0x010 => div: ReadWrite<u32, DIV::Register>),
        /// Raw Interrupts
        (0x014 => intr: ReadWrite<u32, INTR::Register>),
        /// Interrupt Enable
        (0x018 => inte: ReadWrite<u32, INTE::Register>),
        /// Interrupt Force
        (0x01C => intf: ReadWrite<u32, INTE::Register>),
        /// Interrupt status after masking & forcing
        (0x020 => ints: ReadWrite<u32, INTE::Register>),
        (0x024 => @END),
    }
}
register_bitfields![u32,
CS [
    /// Round-robin sampling. 1 bit per channel. Set all bits to 0 to disable.
    /// Otherwise, the ADC will cycle through each enabled channel in a
    /// The first channel to be sampled will be the one currently indica
    /// AINSEL will be updated after each conversion with the newly-sele
    RROBIN OFFSET(16) NUMBITS(5) [],
    /// Select analog mux input. Updated automatically in round-robin mode.
    AINSEL OFFSET(12) NUMBITS(3) [],
    /// Some past ADC conversion encountered an error. Write 1 to clear.
    ERR_STICKY OFFSET(10) NUMBITS(1) [],
    /// The most recent ADC conversion encountered an error; result is undefined or nois
    ERR OFFSET(9) NUMBITS(1) [],
    /// 1 if the ADC is ready to start a new conversion. Implies any previous conversion
    /// 0 whilst conversion in progress.
    READY OFFSET(8) NUMBITS(1) [],
    /// Continuously perform conversions whilst this bit is 1. A new conversion will sta
    START_MANY OFFSET(3) NUMBITS(1) [],
    /// Start a single conversion. Self-clearing. Ignored if start_many is asserted.
    START_ONCE OFFSET(2) NUMBITS(1) [],
    /// Power on temperature sensor. 1 - enabled. 0 - disabled.
    TS_EN OFFSET(1) NUMBITS(1) [],
    /// Power on ADC and enable its clock.
    /// 1 - enabled. 0 - disabled.
    EN OFFSET(0) NUMBITS(1) []
],
RESULT [

    RESULT OFFSET(0) NUMBITS(12) []
],
FCS [
    /// DREQ/IRQ asserted when level >= threshold
    THRESH OFFSET(24) NUMBITS(4) [],
    /// The number of conversion results currently waiting in the FIFO
    LEVEL OFFSET(16) NUMBITS(4) [],
    /// 1 if the FIFO has been overflowed. Write 1 to clear.
    OVER OFFSET(11) NUMBITS(1) [],
    /// 1 if the FIFO has been underflowed. Write 1 to clear.
    UNDER OFFSET(10) NUMBITS(1) [],

    FULL OFFSET(9) NUMBITS(1) [],

    EMPTY OFFSET(8) NUMBITS(1) [],
    /// If 1: assert DMA requests when FIFO contains data
    DREQ_EN OFFSET(3) NUMBITS(1) [],
    /// If 1: conversion error bit appears in the FIFO alongside the result
    ERR OFFSET(2) NUMBITS(1) [],
    /// If 1: FIFO results are right-shifted to be one byte in size. Enables DMA to byte
    SHIFT OFFSET(1) NUMBITS(1) [],
    /// If 1: write result to the FIFO after each conversion.
    EN OFFSET(0) NUMBITS(1) []
],
FIFO [
    /// 1 if this particular sample experienced a conversion error. Remains in the same
    ERR OFFSET(15) NUMBITS(1) [],

    VAL OFFSET(0) NUMBITS(12) []
],
DIV [
    /// Integer part of clock divisor.
    INT OFFSET(8) NUMBITS(16) [],
    /// Fractional part of clock divisor. First-order delta-sigma.
    FRAC OFFSET(0) NUMBITS(8) []
],
INTR [
    /// Triggered when the sample FIFO reaches a certain level.
    /// This level can be programmed via the FCS_THRESH field.
    FIFO OFFSET(0) NUMBITS(1) []
],
INTE [
    /// Triggered when the sample FIFO reaches a certain level.
    /// This level can be programmed via the FCS_THRESH field.
    FIFO OFFSET(0) NUMBITS(1) []
],
INTF [
    /// Triggered when the sample FIFO reaches a certain level.
    /// This level can be programmed via the FCS_THRESH field.
    FIFO OFFSET(0) NUMBITS(1) []
],
INTS [
    /// Triggered when the sample FIFO reaches a certain level.
    /// This level can be programmed via the FCS_THRESH field.
    FIFO OFFSET(0) NUMBITS(1) []
]
];
const ADC_BASE: StaticRef<AdcRegisters> =
    unsafe { StaticRef::new(0x4004C000 as *const AdcRegisters) };

#[allow(dead_code)]
#[repr(u32)]
#[derive(Copy, Clone, PartialEq)]
pub enum Channel {
    Channel0 = 0b00000,
    Channel1 = 0b00001,
    Channel2 = 0b00010,
    Channel3 = 0b00011,
    Channel4 = 0b00100,
}

#[derive(Copy, Clone, PartialEq)]
enum ADCStatus {
    Idle,
    OneSample,
}

pub struct Adc<'a> {
    registers: StaticRef<AdcRegisters>,
    status: Cell<ADCStatus>,
    channel: Cell<Channel>,
    client: OptionalCell<&'a dyn hil::adc::Client>,
}

impl Adc<'_> {
    pub const fn new() -> Self {
        Self {
            registers: ADC_BASE,
            status: Cell::new(ADCStatus::Idle),
            channel: Cell::new(Channel::Channel0),
            client: OptionalCell::empty(),
        }
    }

    pub fn init(&self) {
        self.registers.cs.modify(CS::EN::SET);
        while !self.registers.cs.is_set(CS::READY) {}
    }

    pub fn disable(&self) {
        self.registers.cs.modify(CS::EN::CLEAR);
    }

    fn enable_interrupt(&self) {
        self.registers.inte.modify(INTE::FIFO::SET);
    }

    fn disable_interrupt(&self) {
        self.registers.inte.modify(INTE::FIFO::CLEAR);
    }

    fn enable_temperature(&self) {
        self.registers.cs.modify(CS::TS_EN::SET);
    }

    pub fn handle_interrupt(&self) {
        if self.registers.cs.is_set(CS::READY) {
            if self.status.get() == ADCStatus::OneSample {
                self.status.set(ADCStatus::Idle);
            }
            self.client.map(|client| {
                self.disable_interrupt();
                client.sample_ready((self.registers.fifo.read(FIFO::VAL) << 4) as u16)
            });
        }
    }
}

impl<'a> hil::adc::Adc<'a> for Adc<'a> {
    type Channel = Channel;

    fn sample(&self, channel: &Self::Channel) -> Result<(), ErrorCode> {
        if self.status.get() == ADCStatus::Idle {
            if *channel as u32 == 4 {
                self.enable_temperature();
            }
            self.status.set(ADCStatus::OneSample);
            self.channel.set(*channel);
            self.registers.cs.modify(CS::AINSEL.val(*channel as u32));
            self.registers
                .fcs
                .modify(FCS::THRESH.val(1_u32) + FCS::EN::SET);
            self.enable_interrupt();
            self.registers.cs.modify(CS::START_ONCE::SET);
            Ok(())
        } else {
            Err(ErrorCode::BUSY)
        }
    }

    fn sample_continuous(
        &self,
        _channel: &Self::Channel,
        _frequency: u32,
    ) -> Result<(), ErrorCode> {
        Err(ErrorCode::NOSUPPORT)
    }

    fn stop_sampling(&self) -> Result<(), ErrorCode> {
        Err(ErrorCode::NOSUPPORT)
    }

    fn get_resolution_bits(&self) -> usize {
        12
    }

    fn get_voltage_reference_mv(&self) -> Option<usize> {
        Some(3300)
    }

    fn set_client(&self, client: &'a dyn hil::adc::Client) {
        self.client.set(client);
    }
}