capsules_extra/usb_hid_driver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Provides userspace with access to USB HID devices with a simple syscall
//! interface.
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil::usb_hid;
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::{ErrorCode, ProcessId};
/// Ids for read-write allow buffers
mod rw_allow {
pub const RECV: usize = 0;
pub const SEND: usize = 1;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 2;
}
#[derive(Default)]
pub struct App {}
pub struct UsbHidDriver<'a, U: usb_hid::UsbHid<'a, [u8; 64]>> {
usb: &'a U,
app: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<{ rw_allow::COUNT }>>,
processid: OptionalCell<ProcessId>,
send_buffer: TakeCell<'static, [u8; 64]>,
recv_buffer: TakeCell<'static, [u8; 64]>,
}
impl<'a, U: usb_hid::UsbHid<'a, [u8; 64]>> UsbHidDriver<'a, U> {
pub fn new(
usb: &'a U,
send_buffer: &'static mut [u8; 64],
recv_buffer: &'static mut [u8; 64],
grant: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<{ rw_allow::COUNT }>>,
) -> UsbHidDriver<'a, U> {
UsbHidDriver {
usb,
app: grant,
processid: OptionalCell::empty(),
send_buffer: TakeCell::new(send_buffer),
recv_buffer: TakeCell::new(recv_buffer),
}
}
}
impl<'a, U: usb_hid::UsbHid<'a, [u8; 64]>> usb_hid::UsbHid<'a, [u8; 64]> for UsbHidDriver<'a, U> {
fn send_buffer(
&'a self,
send: &'static mut [u8; 64],
) -> Result<usize, (ErrorCode, &'static mut [u8; 64])> {
self.usb.send_buffer(send)
}
fn send_cancel(&'a self) -> Result<&'static mut [u8; 64], ErrorCode> {
self.usb.send_cancel()
}
fn receive_buffer(
&'a self,
recv: &'static mut [u8; 64],
) -> Result<(), (ErrorCode, &'static mut [u8; 64])> {
self.usb.receive_buffer(recv)
}
fn receive_cancel(&'a self) -> Result<&'static mut [u8; 64], ErrorCode> {
self.usb.receive_cancel()
}
}
impl<'a, U: usb_hid::UsbHid<'a, [u8; 64]>> usb_hid::Client<'a, [u8; 64]> for UsbHidDriver<'a, U> {
fn packet_received(
&'a self,
_result: Result<(), ErrorCode>,
buffer: &'static mut [u8; 64],
_endpoint: usize,
) {
self.processid.map(|id| {
let _ = self.app.enter(id, |_app, kernel_data| {
let _ = kernel_data
.get_readwrite_processbuffer(rw_allow::RECV)
.and_then(|recv| {
recv.mut_enter(|dest| {
dest.copy_from_slice(buffer);
})
});
kernel_data.schedule_upcall(0, (0, 0, 0)).ok();
});
});
self.recv_buffer.replace(buffer);
}
fn packet_transmitted(
&'a self,
_result: Result<(), ErrorCode>,
buffer: &'static mut [u8; 64],
_endpoint: usize,
) {
self.processid.map(|id| {
let _ = self.app.enter(id, |_app, kernel_data| {
kernel_data.schedule_upcall(0, (1, 0, 0)).ok();
});
});
// Save our send buffer so we can use it later
self.send_buffer.replace(buffer);
}
}
impl<'a, U: usb_hid::UsbHid<'a, [u8; 64]>> SyscallDriver for UsbHidDriver<'a, U> {
// Subscribe to UsbHidDriver events.
//
// ### `subscribe_num`
//
// - `0`: Subscribe to interrupts from HID events.
// The callback signature is `fn(direction: u32)`
// `fn(0)` indicates a packet was received
// `fn(1)` indicates a packet was transmitted
fn command(
&self,
command_num: usize,
_data1: usize,
_data2: usize,
processid: ProcessId,
) -> CommandReturn {
let can_access = self.processid.map_or_else(
|| {
self.processid.set(processid);
true
},
|owning_app| {
// Check if we own the HID device
owning_app == processid
},
);
if !can_access {
return CommandReturn::failure(ErrorCode::BUSY);
}
match command_num {
0 => CommandReturn::success(),
// Send data
1 => self
.app
.enter(processid, |_, kernel_data| {
self.processid.set(processid);
kernel_data
.get_readwrite_processbuffer(rw_allow::SEND)
.and_then(|send| {
send.enter(|data| {
self.send_buffer.take().map_or(
CommandReturn::failure(ErrorCode::BUSY),
|buf| {
// Copy the data into the static buffer
data.copy_to_slice(buf);
let _ = self.usb.send_buffer(buf);
CommandReturn::success()
},
)
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::RESERVE))
})
.unwrap_or_else(|err| err.into()),
// Allow receive
2 => self
.app
.enter(processid, |_app, _| {
self.processid.set(processid);
if let Some(buf) = self.recv_buffer.take() {
match self.usb.receive_buffer(buf) {
Ok(()) => CommandReturn::success(),
Err((err, buffer)) => {
self.recv_buffer.replace(buffer);
CommandReturn::failure(err)
}
}
} else {
CommandReturn::failure(ErrorCode::BUSY)
}
})
.unwrap_or_else(|err| err.into()),
// Cancel send
3 => self
.app
.enter(processid, |_app, _| {
self.processid.set(processid);
match self.usb.receive_cancel() {
Ok(buf) => {
self.recv_buffer.replace(buf);
CommandReturn::success()
}
Err(err) => CommandReturn::failure(err),
}
})
.unwrap_or_else(|err| err.into()),
// Cancel receive
4 => self
.app
.enter(processid, |_app, _| {
self.processid.set(processid);
match self.usb.receive_cancel() {
Ok(buf) => {
self.recv_buffer.replace(buf);
CommandReturn::success()
}
Err(err) => CommandReturn::failure(err),
}
})
.unwrap_or_else(|err| err.into()),
// Send or receive
// This command has two parts.
// Part 1: Receive
// This will allow receives, the same as the Allow
// receive command above. If data is ready to receive
// the `packet_received()` callback will be called.
// When this happens the client callback will be
// scheduled and no send event will occur.
// Part 2: Send
// If no receive occurs we will be left in a start where
// future recieves will be allowed. This is the same
// outcome as calling the Allow receive command.
// As well as that we will then send the data in the
// send buffer.
5 => self
.app
.enter(processid, |_app, kernel_data| {
// First we try to setup a receive. If there is already
// a receive we return `ErrorCode::ALREADY`. If the
// receive fails we return an error.
if let Some(buf) = self.recv_buffer.take() {
match self.usb.receive_buffer(buf) {
Ok(()) => {}
Err((err, buffer)) => {
self.recv_buffer.replace(buffer);
return CommandReturn::failure(err);
}
}
} else {
return CommandReturn::failure(ErrorCode::ALREADY);
};
// If we were able to setup a read then next we do the
// transmit.
kernel_data
.get_readwrite_processbuffer(rw_allow::SEND)
.and_then(|send| {
send.enter(|data| {
self.send_buffer.take().map_or(
CommandReturn::failure(ErrorCode::BUSY),
|buf| {
// Copy the data into the static buffer
data.copy_to_slice(buf);
let _ = self.usb.send_buffer(buf);
CommandReturn::success()
},
)
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::FAIL))
})
.unwrap_or_else(|err| err.into()),
// default
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.app.enter(processid, |_, _| {})
}
}