stm32f303xc/adc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Analog to Digital Converter Peripheral
use crate::rcc;
use core::cell::Cell;
use kernel::hil;
use kernel::platform::chip::ClockInterface;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable};
use kernel::utilities::registers::{register_bitfields, ReadOnly, ReadWrite};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
#[repr(C)]
struct AdcRegisters {
isr: ReadWrite<u32, ISR::Register>,
ier: ReadWrite<u32, IER::Register>,
cr: ReadWrite<u32, CR::Register>,
cfgr: ReadWrite<u32, CFGR::Register>,
_reserved0: [u32; 1],
smpr1: ReadWrite<u32, SMPR1::Register>,
smpr2: ReadWrite<u32, SMPR2::Register>,
_reserved1: [u32; 1],
tr1: ReadWrite<u32, TR1::Register>,
tr2: ReadWrite<u32, TR2::Register>,
tr3: ReadWrite<u32, TR3::Register>,
_reserved2: [u32; 1],
sqr1: ReadWrite<u32, SQR1::Register>,
sqr2: ReadWrite<u32, SQR2::Register>,
sqr3: ReadWrite<u32, SQR3::Register>,
sqr4: ReadWrite<u32, SQR4::Register>,
dr: ReadOnly<u32, DR::Register>,
_reserved3: [u32; 2],
jsqr: ReadWrite<u32, JSQR::Register>,
_reserved4: [u32; 4],
ofr1: ReadWrite<u32, OFR::Register>,
ofr2: ReadWrite<u32, OFR::Register>,
ofr3: ReadWrite<u32, OFR::Register>,
ofr4: ReadWrite<u32, OFR::Register>,
_reserved5: [u32; 4],
jdr1: ReadOnly<u32, JDR::Register>,
jdr2: ReadOnly<u32, JDR::Register>,
jdr3: ReadOnly<u32, JDR::Register>,
jdr4: ReadOnly<u32, JDR::Register>,
_reserved6: [u32; 4],
awd2cr: ReadWrite<u32, AWD2CR::Register>,
awd3cr: ReadWrite<u32, AWD3CR::Register>,
_reserved7: [u32; 2],
difsel: ReadWrite<u32, DIFSEL::Register>,
calfact: ReadWrite<u32, CALFACT::Register>,
}
#[repr(C)]
struct AdcCommonRegisters {
csr: ReadOnly<u32, CSR::Register>,
_reserved0: [u32; 1],
ccr: ReadWrite<u32, CCR::Register>,
cdr: ReadOnly<u32, CDR::Register>,
}
register_bitfields![u32,
///interrupt and status register
ISR [
/// Injected context queue overflow
JQOVF OFFSET(10) NUMBITS(1) [],
/// Analog watchdog 3 flag
AWD3 OFFSET(9) NUMBITS(1) [],
/// Analog watchdog 2 flag
AWD2 OFFSET(8) NUMBITS(1) [],
/// Analog watchdog 1 flag
AWD1 OFFSET(7) NUMBITS(1) [],
/// Injected channel end of sequence flag
JEOS OFFSET(6) NUMBITS(1) [],
/// Injected channel end of conversion flag
JEOC OFFSET(5) NUMBITS(1) [],
/// ADC overrun
OVR OFFSET(4) NUMBITS(1) [],
/// End of regular sequence flag
EOS OFFSET(3) NUMBITS(1) [],
/// End of conversion flag
EOC OFFSET(2) NUMBITS(1) [],
/// End of sampling flag
EOSMP OFFSET(1) NUMBITS(1) [],
/// ADC ready
ADRDY OFFSET(0) NUMBITS(1) []
],
/// Interrupt enable register
IER [
/// Injected context queue overflow interrupt enable
JQOVFIE OFFSET(10) NUMBITS(1) [],
/// Analog watchdog 3 interrupt enable
AWD3IE OFFSET(9) NUMBITS(1) [],
/// Analog watchdog 2 interrupt enable
AWD2IE OFFSET(8) NUMBITS(1) [],
/// Analog watchdog 1 interrupt enable
AWD1IE OFFSET(7) NUMBITS(1) [],
/// End of injected sequence of conversions interrupt enable
JEOSIE OFFSET(6) NUMBITS(1) [],
/// End of injected conversion interrupt enable
JEOCIE OFFSET(5) NUMBITS(1) [],
/// Overrun interrupt enable
OVRIE OFFSET(4) NUMBITS(1) [],
/// End of regular sequence of conversions interrupt enable
EOSIE OFFSET(3) NUMBITS(1) [],
/// End of regular conversion interrupt enable
EOCIE OFFSET(2) NUMBITS(1) [],
/// End of sampling flag interrupt enable for regular conversions
EOSMPIE OFFSET(1) NUMBITS(1) [],
/// ADC ready interrupt enable
ADRDYIE OFFSET(0) NUMBITS(1) []
],
/// Control register
CR [
/// ADC calibration
ADCAL OFFSET(31) NUMBITS(1) [],
/// Differential mode for calibration
ADCALDIF OFFSET(30) NUMBITS(1) [],
/// ADC voltage regulator enable
ADVREGEN OFFSET(28) NUMBITS(2) [],
/// ADC stop of injected conversion command
JADSTP OFFSET(5) NUMBITS(1) [],
/// ADC stop of regular conversion command
ADSTP OFFSET(4) NUMBITS(1) [],
/// ADC start of injected conversion
JADSTART OFFSET(3) NUMBITS(1) [],
/// ADC start of regular conversion
ADSTART OFFSET(2) NUMBITS(1) [],
/// ADC disable command
ADDIS OFFSET(1) NUMBITS(1) [],
/// ADC enable control
ADEN OFFSET(0) NUMBITS(1) []
],
/// Configuration register
CFGR [
/// Analog watchdog 1 channel selection
AWD1CH OFFSET(26) NUMBITS(5) [],
/// Automatic injected group conversion
JAUTO OFFSET(25) NUMBITS(1) [],
/// Analog watchdog 1 enable on injected channels
JAWD1EN OFFSET(24) NUMBITS(1) [],
/// Analog watchdog 1 enable on regular channels
AWD1EN OFFSET(23) NUMBITS(1) [],
/// Enable the watchdog 1 on a single channel or on all channels
AWD1SGL OFFSET(22) NUMBITS(1) [],
/// JSQR queue mode
JQM OFFSET(21) NUMBITS(1) [],
/// Discontinuous mode on injected channels
JDISCEN OFFSET(20) NUMBITS(1) [],
/// Discontinuous mode channel count
DISCNUM OFFSET(17) NUMBITS(3) [],
/// Discontinuous mode for regular channels
DISCEN OFFSET(16) NUMBITS(1) [],
/// Delayed conversion mode
AUTDLY OFFSET(14) NUMBITS(1) [],
/// Single / continuous conversion mode for regular conversions
CONT OFFSET(13) NUMBITS(1) [],
/// Overrun Mode
OVRMOD OFFSET(12) NUMBITS(1) [],
/// External trigger enable and polarity selection for regular channels
EXTEN OFFSET(10) NUMBITS(2) [],
/// External trigger selection for regular group
EXTSEL OFFSET(6) NUMBITS(4) [],
/// Data alignment
ALIGN OFFSET(5) NUMBITS(1) [],
/// Data resolution
RES OFFSET(3) NUMBITS(2) [],
/// Direct memory access configuration
DMACFG OFFSET(1) NUMBITS(1) [],
/// Direct memory access enable
DMAEN OFFSET(0) NUMBITS(1) []
],
/// Sample time register 1
SMPR1 [
/// Channel x sampling time selection
SMP9 OFFSET(27) NUMBITS(3) [],
SMP8 OFFSET(24) NUMBITS(3) [],
SMP7 OFFSET(21) NUMBITS(3) [],
SMP6 OFFSET(18) NUMBITS(3) [],
SMP5 OFFSET(15) NUMBITS(3) [],
SMP4 OFFSET(12) NUMBITS(3) [],
SMP3 OFFSET(9) NUMBITS(3) [],
SMP2 OFFSET(6) NUMBITS(3) [],
SMP1 OFFSET(3) NUMBITS(3) []
],
/// Sample time register 2
SMPR2 [
/// Channel x sampling time selection
SMP18 OFFSET(24) NUMBITS(3) [],
SMP17 OFFSET(21) NUMBITS(3) [],
SMP16 OFFSET(18) NUMBITS(3) [],
SMP15 OFFSET(15) NUMBITS(3) [],
SMP14 OFFSET(12) NUMBITS(3) [],
SMP13 OFFSET(9) NUMBITS(3) [],
SMP12 OFFSET(6) NUMBITS(3) [],
SMP11 OFFSET(3) NUMBITS(3) [],
SMP10 OFFSET(0) NUMBITS(3) []
],
/// Watchdog threshold register 1
TR1 [
/// Analog watchdog 1 higher threshold
HT1 OFFSET(16) NUMBITS(12) [],
/// Analog watchdog 1 lower threshold
LT1 OFFSET(0) NUMBITS(12) []
],
/// Watchdog threshold register 2
TR2 [
/// Analog watchdog 2 higher threshold
HT2 OFFSET(16) NUMBITS(8) [],
/// Analog watchdog 2 lower threshold
LT2 OFFSET(0) NUMBITS(8) []
],
/// Watchdog threshold register 3
TR3 [
/// Analog watchdog 3 higher threshold
HT3 OFFSET(16) NUMBITS(8) [],
/// Analog watchdog 3 lower threshold
LT3 OFFSET(0) NUMBITS(8) []
],
/// Regular sequence register 1
SQR1 [
/// 4th conversion in regular sequence
SQ4 OFFSET(24) NUMBITS(5) [],
/// 3rd conversion in regular sequence
SQ3 OFFSET(18) NUMBITS(5) [],
/// 2nd conversion in regular sequence
SQ2 OFFSET(12) NUMBITS(5) [],
/// 1st conversion in regular sequence
SQ1 OFFSET(6) NUMBITS(5) [],
/// Regular channel sequence length
L OFFSET(0) NUMBITS(4) []
],
/// Regular sequence register 2
SQR2 [
SQ9 OFFSET(24) NUMBITS(5) [],
/// 9th conversion in regular sequence
SQ8 OFFSET(18) NUMBITS(5) [],
/// 8th conversion in regular sequence
SQ7 OFFSET(12) NUMBITS(5) [],
/// 7th conversion in regular sequence
SQ6 OFFSET(6) NUMBITS(5) [],
/// 6th conversion in regular sequence
SQ5 OFFSET(0) NUMBITS(5) []
],
/// Regular sequence register 3
SQR3 [
/// 14th conversion in regular sequence
SQ14 OFFSET(24) NUMBITS(5) [],
/// 13th conversion in regular sequence
SQ13 OFFSET(18) NUMBITS(5) [],
/// 12th conversion in regular sequence
SQ12 OFFSET(12) NUMBITS(5) [],
/// 11th conversion in regular sequence
SQ11 OFFSET(6) NUMBITS(5) [],
/// 10th conversion in regular sequence
SQ10 OFFSET(0) NUMBITS(5) []
],
/// Regular sequence register 4
SQR4 [
/// 16th conversion in regular sequence
SQ16 OFFSET(6) NUMBITS(5) [],
/// 15th conversion in regular sequence
SQ15 OFFSET(0) NUMBITS(5) []
],
/// Regular Data Register
DR [
/// Regular Data converted
RDATA OFFSET(0) NUMBITS(16) []
],
/// Injected sequence register
JSQR [
/// 4th conversion in the injected sequence
JSQ4 OFFSET(26) NUMBITS(5) [],
/// 3rd conversion in the injected sequence
JSQ3 OFFSET(20) NUMBITS(5) [],
/// 2nd conversion in the injected sequence
JSQ2 OFFSET(14) NUMBITS(5) [],
/// 1st conversion in the injected sequence
JSQ1 OFFSET(8) NUMBITS(5) [],
/// External Trigger Enable and Polarity Selection for injected channels
JEXTEN OFFSET(6) NUMBITS(2) [],
/// External Trigger Selection for injected group
JEXTSEL OFFSET(2) NUMBITS(4) [],
/// Injected channel sequence length
JL OFFSET(0) NUMBITS(2) []
],
/// Offset register
OFR [
/// Offset y Enable
OFFSET_EN OFFSET(31) NUMBITS(1) [],
/// Channel selection for the Data offset y
OFFSET_CH OFFSET(26) NUMBITS(5) [],
/// Data offset y for the channel programmed into bits OFFSET_CH[4:0]
OFFSETy OFFSET(0) NUMBITS(12) []
],
/// Injected data register
JDR [
/// Injected data
JDATA OFFSET(0) NUMBITS(16) []
],
/// Analog Watchdog 2 Configuration Register
AWD2CR [
/// Analog watchdog 2 channel selection
AWD2CH OFFSET(1) NUMBITS(18) []
],
/// Analog Watchdog 3 Configuration Register
AWD3CR [
/// Analog watchdog 3 channel selection
AWD3CH OFFSET(1) NUMBITS(18) []
],
/// Differential Mode Selection Register
DIFSEL [
/// Differential mode for channels 18 to 16 r
/// Differential mode for channels 15 to 1 r/w
DIFSEL OFFSET(1) NUMBITS(18) []
],
/// Calibration Factors
CALFACT [
/// Calibration Factors in differential mode
CALFACT_D OFFSET(16) NUMBITS(7) [],
/// Calibration Factors In Single-Ended mode
CALFACT_S OFFSET(0) NUMBITS(7) []
],
/// Common status register
CSR [
/// Injected Context Queue Overflow flag of the slave ADC
JQOVF_SLV OFFSET(26) NUMBITS(1) [],
/// Analog watchdog 3 flag of the slave ADC
AWD3_SLV OFFSET(25) NUMBITS(1) [],
/// Analog watchdog 2 flag of the slave ADC
AWD2_SLV OFFSET(24) NUMBITS(1) [],
/// Analog watchdog 1 flag of the slave ADC
AWD1_SLV OFFSET(23) NUMBITS(1) [],
/// End of injected sequence flag of the slave ADC
JEOS_SLV OFFSET(22) NUMBITS(1) [],
/// End of injected conversion flag of the slave ADC
JEOC_SLV OFFSET(21) NUMBITS(1) [],
/// Overrun flag of the slave ADC
OVR_SLV OFFSET(20) NUMBITS(1) [],
/// End of regular sequence flag of the slave ADC
EOS_SLV OFFSET(19) NUMBITS(1) [],
/// End of regular conversion of the slave ADC
EOC_SLV OFFSET(18) NUMBITS(1) [],
/// End of Sampling phase flag of the slave ADC
EOSMP_SLV OFFSET(17) NUMBITS(1) [],
/// Slave ADC ready
ADRDY_SLV OFFSET(16) NUMBITS(1) [],
/// Injected Context Queue Overflow flag of the master ADC
JQOVF_MST OFFSET(10) NUMBITS(1) [],
/// Analog watchdog 3 flag of the master ADC
AWD3_MST OFFSET(9) NUMBITS(1) [],
/// Analog watchdog 2 flag of the master ADC
AWD2_MST OFFSET(8) NUMBITS(1) [],
/// Analog watchdog 1 flag of the master ADC
AWD1_MST OFFSET(7) NUMBITS(1) [],
/// End of injected sequence flag of the master ADC
JEOS_MST OFFSET(6) NUMBITS(1) [],
/// End of injected conversion flag of the master ADC
JEOC_MST OFFSET(5) NUMBITS(1) [],
/// Overrun flag of the master ADC
OVR_MST OFFSET(4) NUMBITS(1) [],
/// End of regular sequence flag of the master ADC
EOS_MST OFFSET(3) NUMBITS(1) [],
/// End of regular conversion of the master ADC
EOC_MST OFFSET(2) NUMBITS(1) [],
/// End of Sampling phase flag of the master ADC
EOSMP_MST OFFSET(1) NUMBITS(1) [],
/// Master ADC ready
ADRDY_MST OFFSET(0) NUMBITS(1) []
],
/// Common control register
CCR [
/// VBAT enable
VBATEN OFFSET(24) NUMBITS(1) [],
/// Temperature sensor enable
TSEN OFFSET(23) NUMBITS(1) [],
/// VREFINT enable
VREFEN OFFSET(22) NUMBITS(1) [],
/// ADC clock mode
CKMODE OFFSET(16) NUMBITS(2) [],
/// Direct memory access mode for dual ADC mode
MDMA OFFSET(14) NUMBITS(2) [],
/// DMA configuration (for dual ADC mode)
DMACFG OFFSET(13) NUMBITS(1) [],
/// Delay between 2 sampling phases
DELAY OFFSET(8) NUMBITS(4) [],
/// Dual ADC mode selection
DUAL OFFSET(0) NUMBITS(5) []
],
/// Common regular data register for dual mode
CDR [
/// Regular data of the slave ADC
RDATA_SLV OFFSET(16) NUMBITS(16) [],
/// Regular data of the master ADC
RDATA_MST OFFSET(0) NUMBITS(16) []
]
];
const ADC1_BASE: StaticRef<AdcRegisters> =
unsafe { StaticRef::new(0x5000_0000 as *const AdcRegisters) };
const ADC12_COMMON_BASE: StaticRef<AdcCommonRegisters> =
unsafe { StaticRef::new(0x5000_0300 as *const AdcCommonRegisters) };
#[allow(dead_code)]
#[repr(u32)]
#[derive(Copy, Clone, PartialEq)]
pub enum Channel {
Channel0 = 0b00000,
Channel1 = 0b00001,
Channel2 = 0b00010,
Channel3 = 0b00011,
Channel4 = 0b00100,
Channel5 = 0b00101,
Channel6 = 0b00110,
Channel7 = 0b00111,
Channel8 = 0b01000,
Channel9 = 0b01001,
Channel10 = 0b01010,
Channel11 = 0b01011,
Channel12 = 0b01100,
Channel13 = 0b01101,
Channel14 = 0b01110,
Channel15 = 0b01111,
Channel16 = 0b10000,
Channel17 = 0b10001,
Channel18 = 0b10010,
}
#[allow(dead_code)]
#[repr(u32)]
enum DiscontinuousMode {
OneChannels = 0b000,
TwoChannels = 0b001,
ThreeChannels = 0b010,
FourChannels = 0b011,
FiveChannels = 0b100,
SixChannels = 0b101,
SevenChannels = 0b110,
EightChannels = 0b111,
}
#[allow(dead_code)]
#[repr(u32)]
enum ExternalTriggerDetection {
Disabled = 0b00,
RisingEdge = 0b01,
FallingEdge = 0b10,
RisingAndFalling = 0b11,
}
#[allow(dead_code)]
#[repr(u32)]
enum ExternalTriggerSelection {
Event0 = 0b0000,
Event1 = 0b0001,
Event2 = 0b0010,
Event3 = 0b0011,
Event4 = 0b0100,
Event5 = 0b0101,
Event6 = 0b0110,
Event7 = 0b0111,
Event8 = 0b1000,
Event9 = 0b1001,
Event10 = 0b1010,
Event11 = 0b1011,
Event12 = 0b1100,
Event13 = 0b1101,
Event14 = 0b1110,
Event15 = 0b1111,
}
#[allow(dead_code)]
#[repr(u32)]
enum DataResolution {
Bit12 = 0b00,
Bit10 = 0b01,
Bit8 = 0b10,
Bit6 = 0b11,
}
#[derive(Copy, Clone, PartialEq)]
enum ADCStatus {
Idle,
Off,
PoweringOn,
OneSample,
Continuous,
}
pub struct Adc<'a> {
registers: StaticRef<AdcRegisters>,
common_registers: StaticRef<AdcCommonRegisters>,
clock: AdcClock<'a>,
status: Cell<ADCStatus>,
client: OptionalCell<&'a dyn hil::adc::Client>,
requested: Cell<ADCStatus>,
requested_channel: Cell<u32>,
sc_enabled: Cell<bool>,
}
impl<'a> Adc<'a> {
pub const fn new(rcc: &'a rcc::Rcc) -> Self {
Self {
registers: ADC1_BASE,
common_registers: ADC12_COMMON_BASE,
clock: AdcClock(rcc::PeripheralClock::new(
rcc::PeripheralClockType::AHB(rcc::HCLK::ADC1),
rcc,
)),
status: Cell::new(ADCStatus::Off),
client: OptionalCell::empty(),
requested: Cell::new(ADCStatus::Idle),
requested_channel: Cell::new(0),
sc_enabled: Cell::new(false),
}
}
pub fn enable_temperature(&self) {
self.common_registers.ccr.modify(CCR::TSEN::SET);
}
pub fn enable(&self) {
self.status.set(ADCStatus::PoweringOn);
// Enable adc clock
self.enable_clock();
//Set Synchronous clock mode
self.common_registers.ccr.modify(CCR::CKMODE.val(0b01));
self.registers.cr.modify(CR::ADVREGEN.val(0b00));
self.registers.cr.modify(CR::ADVREGEN.val(0b01));
// Wait for ADVRGEN to enable
// This needs to be synchronous because there is no interrupt signaling
// when ADVRGEN becomes enabled
// we chose 720 because the frequency is 72MHz and it needs 10 us to become enabled
for _i in 0..720 {
cortexm4f::support::nop()
}
// Enable ADC Ready interrupt
self.registers.ier.modify(IER::ADRDYIE::SET);
// Clear registers
self.registers.isr.modify(ISR::ADRDY::CLEAR);
self.registers.cr.modify(CR::ADEN::CLEAR);
self.registers.cr.modify(CR::ADCALDIF::CLEAR);
self.registers.cr.modify(CR::ADCAL::SET);
// Wait for calibration
while self.registers.cr.is_set(CR::ADCAL) {}
// Enable ADC
self.registers.cr.modify(CR::ADEN::SET);
// Enable overrun to overwrite old datas
self.registers.cfgr.modify(CFGR::OVRMOD::SET);
}
pub fn handle_interrupt(&self) {
// Check if ADC is ready
if self.registers.isr.is_set(ISR::ADRDY) {
// Clear interrupt
self.registers.ier.modify(IER::ADRDYIE::CLEAR);
// Set Status
if self.status.get() == ADCStatus::PoweringOn {
self.status.set(ADCStatus::Idle);
match self.requested.get() {
ADCStatus::OneSample => {
let _ = self.sample_u32(self.requested_channel.get());
return;
}
_ => {}
}
}
}
// Check if regular group conversion ended
if self.registers.isr.is_set(ISR::EOC) {
// Clear interrupt
self.registers.ier.modify(IER::EOCIE::CLEAR);
let data = self.registers.dr.read(DR::RDATA);
self.client
.map(|client| client.sample_ready((data as u16) << 4));
if self.status.get() == ADCStatus::Continuous {
self.registers.ier.modify(IER::EOCIE::SET);
}
}
// Check if sequence of regular group conversion ended
if self.registers.isr.is_set(ISR::EOS) {
// Clear interrupt
self.registers.ier.modify(IER::EOSIE::CLEAR);
self.registers.isr.modify(ISR::EOS::SET);
if self.status.get() == ADCStatus::OneSample {
// stop adc
self.registers.cr.modify(CR::ADSTP::SET);
// set state
self.status.set(ADCStatus::Idle);
}
}
// Check if sampling ended
if self.registers.isr.is_set(ISR::EOSMP) {
// Clear interrupt
self.registers.ier.modify(IER::EOSMPIE::CLEAR);
self.registers.isr.modify(ISR::EOSMP::SET);
}
// Check if overrun occured
if self.registers.isr.is_set(ISR::OVR) {
// Clear interrupt
self.registers.ier.modify(IER::OVRIE::CLEAR);
self.registers.isr.modify(ISR::OVR::SET);
}
}
pub fn is_enabled_clock(&self) -> bool {
self.clock.is_enabled()
}
pub fn enable_clock(&self) {
self.clock.enable();
}
pub fn disable_clock(&self) {
self.clock.disable();
}
fn enable_special_channels(&self) {
// enabling temperature channel
if self.requested_channel.get() == 16 {
self.sc_enabled.set(true);
self.enable_temperature();
}
}
fn sample_u32(&self, channel: u32) -> Result<(), ErrorCode> {
if !self.sc_enabled.get() {
self.enable_special_channels();
}
if self.status.get() == ADCStatus::Idle {
self.requested.set(ADCStatus::Idle);
self.status.set(ADCStatus::OneSample);
self.registers.smpr2.modify(SMPR2::SMP16.val(0b100));
self.registers.sqr1.modify(SQR1::L.val(0b0000));
self.registers.sqr1.modify(SQR1::SQ1.val(channel));
self.registers.ier.modify(IER::EOSIE::SET);
self.registers.ier.modify(IER::EOCIE::SET);
self.registers.ier.modify(IER::EOSMPIE::SET);
self.registers.cr.modify(CR::ADSTART::SET);
Ok(())
} else {
Err(ErrorCode::BUSY)
}
}
}
struct AdcClock<'a>(rcc::PeripheralClock<'a>);
impl ClockInterface for AdcClock<'_> {
fn is_enabled(&self) -> bool {
self.0.is_enabled()
}
fn enable(&self) {
self.0.enable();
}
fn disable(&self) {
self.0.disable();
}
}
impl<'a> hil::adc::Adc<'a> for Adc<'a> {
type Channel = Channel;
fn sample(&self, channel: &Self::Channel) -> Result<(), ErrorCode> {
if self.status.get() == ADCStatus::Off {
self.requested.set(ADCStatus::OneSample);
self.requested_channel.set(*channel as u32);
self.enable();
Ok(())
} else {
self.sample_u32(*channel as u32)
}
}
fn sample_continuous(
&self,
_channel: &Self::Channel,
_frequency: u32,
) -> Result<(), ErrorCode> {
// Has to be implementer with timers because the frequency is too high
Err(ErrorCode::NOSUPPORT)
}
fn stop_sampling(&self) -> Result<(), ErrorCode> {
if self.status.get() != ADCStatus::Idle && self.status.get() != ADCStatus::Off {
self.registers.cr.modify(CR::ADSTP::SET);
if self.registers.cfgr.is_set(CFGR::CONT) {
self.registers.cfgr.modify(CFGR::CONT::CLEAR);
}
Ok(())
} else {
Err(ErrorCode::BUSY)
}
}
fn get_resolution_bits(&self) -> usize {
12
}
fn get_voltage_reference_mv(&self) -> Option<usize> {
Some(3300)
}
fn set_client(&self, client: &'a dyn hil::adc::Client) {
self.client.set(client);
}
}
/// Not yet supported
impl<'a> hil::adc::AdcHighSpeed<'a> for Adc<'a> {
/// Capture buffered samples from the ADC continuously at a given
/// frequency, calling the client whenever a buffer fills up. The client is
/// then expected to either stop sampling or provide an additional buffer
/// to sample into. Note that due to hardware constraints the maximum
/// frequency range of the ADC is from 187 kHz to 23 Hz (although its
/// precision is limited at higher frequencies due to aliasing).
///
/// - `channel`: the ADC channel to sample
/// - `frequency`: frequency to sample at
/// - `buffer1`: first buffer to fill with samples
/// - `length1`: number of samples to collect (up to buffer length)
/// - `buffer2`: second buffer to fill once the first is full
/// - `length2`: number of samples to collect (up to buffer length)
fn sample_highspeed(
&self,
_channel: &Self::Channel,
_frequency: u32,
buffer1: &'static mut [u16],
_length1: usize,
buffer2: &'static mut [u16],
_length2: usize,
) -> Result<(), (ErrorCode, &'static mut [u16], &'static mut [u16])> {
Err((ErrorCode::NOSUPPORT, buffer1, buffer2))
}
/// Provide a new buffer to send on-going buffered continuous samples to.
/// This is expected to be called after the `samples_ready` callback.
///
/// - `buf`: buffer to fill with samples
/// - `length`: number of samples to collect (up to buffer length)
fn provide_buffer(
&self,
buf: &'static mut [u16],
_length: usize,
) -> Result<(), (ErrorCode, &'static mut [u16])> {
Err((ErrorCode::NOSUPPORT, buf))
}
/// Reclaim buffers after the ADC is stopped.
/// This is expected to be called after `stop_sampling`.
fn retrieve_buffers(
&self,
) -> Result<(Option<&'static mut [u16]>, Option<&'static mut [u16]>), ErrorCode> {
Err(ErrorCode::NOSUPPORT)
}
fn set_highspeed_client(&self, _client: &'a dyn hil::adc::HighSpeedClient) {}
}