stm32f4xx/
usart.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

use core::cell::Cell;
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil;
use kernel::platform::chip::ClockInterface;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::registers::{register_bitfields, ReadWrite};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;

use crate::clocks::{phclk, Stm32f4Clocks};
use crate::dma;

/// Universal synchronous asynchronous receiver transmitter
#[repr(C)]
pub struct UsartRegisters {
    /// Status register
    sr: ReadWrite<u32, SR::Register>,
    /// Data register
    dr: ReadWrite<u32>,
    /// Baud rate register
    brr: ReadWrite<u32, BRR::Register>,
    /// Control register 1
    cr1: ReadWrite<u32, CR1::Register>,
    /// Control register 2
    cr2: ReadWrite<u32, CR2::Register>,
    /// Control register 3
    cr3: ReadWrite<u32, CR3::Register>,
    /// Guard time and prescaler register
    gtpr: ReadWrite<u32, GTPR::Register>,
}

register_bitfields![u32,
    SR [
        /// CTS flag
        CTS OFFSET(9) NUMBITS(1) [],
        /// LIN break detection flag
        LBD OFFSET(8) NUMBITS(1) [],
        /// Transmit data register empty
        TXE OFFSET(7) NUMBITS(1) [],
        /// Transmission complete
        TC OFFSET(6) NUMBITS(1) [],
        /// Read data register not empty
        RXNE OFFSET(5) NUMBITS(1) [],
        /// IDLE line detected
        IDLE OFFSET(4) NUMBITS(1) [],
        /// Overrun error
        ORE OFFSET(3) NUMBITS(1) [],
        /// Noise detected flag
        NF OFFSET(2) NUMBITS(1) [],
        /// Framing error
        FE OFFSET(1) NUMBITS(1) [],
        /// Parity error
        PE OFFSET(0) NUMBITS(1) []
    ],
    BRR [
        /// mantissa of USARTDIV
        DIV_Mantissa OFFSET(4) NUMBITS(12) [],
        /// fraction of USARTDIV
        DIV_Fraction OFFSET(0) NUMBITS(4) []
    ],
    CR1 [
        /// Oversampling mode
        OVER8 OFFSET(15) NUMBITS(1) [],
        /// USART enable
        UE OFFSET(13) NUMBITS(1) [],
        /// Word length
        M OFFSET(12) NUMBITS(1) [],
        /// Wakeup method
        WAKE OFFSET(11) NUMBITS(1) [],
        /// Parity control enable
        PCE OFFSET(10) NUMBITS(1) [],
        /// Parity selection
        PS OFFSET(9) NUMBITS(1) [],
        /// PE interrupt enable
        PEIE OFFSET(8) NUMBITS(1) [],
        /// TXE interrupt enable
        TXEIE OFFSET(7) NUMBITS(1) [],
        /// Transmission complete interrupt enable
        TCIE OFFSET(6) NUMBITS(1) [],
        /// RXNE interrupt enable
        RXNEIE OFFSET(5) NUMBITS(1) [],
        /// IDLE interrupt enable
        IDLEIE OFFSET(4) NUMBITS(1) [],
        /// Transmitter enable
        TE OFFSET(3) NUMBITS(1) [],
        /// Receiver enable
        RE OFFSET(2) NUMBITS(1) [],
        /// Receiver wakeup
        RWU OFFSET(1) NUMBITS(1) [],
        /// Send break
        SBK OFFSET(0) NUMBITS(1) []
    ],
    CR2 [
        /// LIN mode enable
        LINEN OFFSET(14) NUMBITS(1) [],
        /// STOP bits
        STOP OFFSET(12) NUMBITS(2) [],
        /// Clock enable
        CLKEN OFFSET(11) NUMBITS(1) [],
        /// Clock polarity
        CPOL OFFSET(10) NUMBITS(1) [],
        /// Clock phase
        CPHA OFFSET(9) NUMBITS(1) [],
        /// Last bit clock pulse
        LBCL OFFSET(8) NUMBITS(1) [],
        /// LIN break detection interrupt enable
        LBDIE OFFSET(6) NUMBITS(1) [],
        /// lin break detection length
        LBDL OFFSET(5) NUMBITS(1) [],
        /// Address of the USART node
        ADD OFFSET(0) NUMBITS(4) []
    ],
    CR3 [
        /// One sample bit method enable
        ONEBIT OFFSET(11) NUMBITS(1) [],
        /// CTS interrupt enable
        CTSIE OFFSET(10) NUMBITS(1) [],
        /// CTS enable
        CTSE OFFSET(9) NUMBITS(1) [],
        /// RTS enable
        RTSE OFFSET(8) NUMBITS(1) [],
        /// DMA enable transmitter
        DMAT OFFSET(7) NUMBITS(1) [],
        /// DMA enable receiver
        DMAR OFFSET(6) NUMBITS(1) [],
        /// Smartcard mode enable
        SCEN OFFSET(5) NUMBITS(1) [],
        /// Smartcard NACK enable
        NACK OFFSET(4) NUMBITS(1) [],
        /// Half-duplex selection
        HDSEL OFFSET(3) NUMBITS(1) [],
        /// IrDA low-power
        IRLP OFFSET(2) NUMBITS(1) [],
        /// IrDA mode enable
        IREN OFFSET(1) NUMBITS(1) [],
        /// Error interrupt enable
        EIE OFFSET(0) NUMBITS(1) []
    ],
    GTPR [
        /// Guard time value
        GT OFFSET(8) NUMBITS(8) [],
        /// Prescaler value
        PSC OFFSET(0) NUMBITS(8) []
    ]
];

// See Table 13. STM32F427xx and STM32F429xx register boundary addresses
// of the STM32F429zi datasheet
pub const USART1_BASE: StaticRef<UsartRegisters> =
    unsafe { StaticRef::new(0x40011000 as *const UsartRegisters) };
pub const USART2_BASE: StaticRef<UsartRegisters> =
    unsafe { StaticRef::new(0x40004400 as *const UsartRegisters) };
pub const USART3_BASE: StaticRef<UsartRegisters> =
    unsafe { StaticRef::new(0x40004800 as *const UsartRegisters) };

// for use by dma1
pub(crate) fn get_address_dr(regs: StaticRef<UsartRegisters>) -> u32 {
    core::ptr::addr_of!(regs.dr) as u32
}

#[allow(non_camel_case_types)]
#[derive(Copy, Clone, PartialEq)]
enum USARTStateRX {
    Idle,
    DMA_Receiving,
    Aborted(Result<(), ErrorCode>, hil::uart::Error),
}

#[allow(non_camel_case_types)]
#[derive(Copy, Clone, PartialEq)]
enum USARTStateTX {
    Idle,
    DMA_Transmitting,
    Aborted(Result<(), ErrorCode>),
    Transfer_Completing, // DMA finished, but not all bytes sent
}

pub struct Usart<'a, DMA: dma::StreamServer<'a>> {
    registers: StaticRef<UsartRegisters>,
    clock: UsartClock<'a>,

    tx_client: OptionalCell<&'a dyn hil::uart::TransmitClient>,
    rx_client: OptionalCell<&'a dyn hil::uart::ReceiveClient>,

    tx_dma: OptionalCell<&'a dma::Stream<'a, DMA>>,
    tx_dma_pid: DMA::Peripheral,
    rx_dma: OptionalCell<&'a dma::Stream<'a, DMA>>,
    rx_dma_pid: DMA::Peripheral,

    tx_len: Cell<usize>,
    rx_len: Cell<usize>,

    usart_tx_state: Cell<USARTStateTX>,
    usart_rx_state: Cell<USARTStateRX>,

    partial_tx_buffer: TakeCell<'static, [u8]>,
    partial_tx_len: Cell<usize>,

    partial_rx_buffer: TakeCell<'static, [u8]>,
    partial_rx_len: Cell<usize>,

    deferred_call: DeferredCall,
}

// for use by `set_dma`
pub struct TxDMA<'a, DMA: dma::StreamServer<'a>>(pub &'a dma::Stream<'a, DMA>);
pub struct RxDMA<'a, DMA: dma::StreamServer<'a>>(pub &'a dma::Stream<'a, DMA>);

impl<'a> Usart<'a, dma::Dma1<'a>> {
    pub fn new_usart2(clocks: &'a dyn Stm32f4Clocks) -> Self {
        Self::new(
            USART2_BASE,
            UsartClock(phclk::PeripheralClock::new(
                phclk::PeripheralClockType::APB1(phclk::PCLK1::USART2),
                clocks,
            )),
            dma::Dma1Peripheral::USART2_TX,
            dma::Dma1Peripheral::USART2_RX,
        )
    }

    pub fn new_usart3(clocks: &'a dyn Stm32f4Clocks) -> Self {
        Self::new(
            USART3_BASE,
            UsartClock(phclk::PeripheralClock::new(
                phclk::PeripheralClockType::APB1(phclk::PCLK1::USART3),
                clocks,
            )),
            dma::Dma1Peripheral::USART3_TX,
            dma::Dma1Peripheral::USART3_RX,
        )
    }
}

impl<'a> Usart<'a, dma::Dma2<'a>> {
    pub fn new_usart1(clocks: &'a dyn Stm32f4Clocks) -> Self {
        Self::new(
            USART1_BASE,
            UsartClock(phclk::PeripheralClock::new(
                phclk::PeripheralClockType::APB2(phclk::PCLK2::USART1),
                clocks,
            )),
            dma::Dma2Peripheral::USART1_TX,
            dma::Dma2Peripheral::USART1_RX,
        )
    }
}

impl<'a, DMA: dma::StreamServer<'a>> Usart<'a, DMA> {
    fn new(
        base_addr: StaticRef<UsartRegisters>,
        clock: UsartClock<'a>,
        tx_dma_pid: DMA::Peripheral,
        rx_dma_pid: DMA::Peripheral,
    ) -> Usart<'a, DMA> {
        Usart {
            registers: base_addr,
            clock,

            tx_client: OptionalCell::empty(),
            rx_client: OptionalCell::empty(),

            tx_dma: OptionalCell::empty(),
            tx_dma_pid,
            rx_dma: OptionalCell::empty(),
            rx_dma_pid,

            tx_len: Cell::new(0),
            rx_len: Cell::new(0),

            usart_tx_state: Cell::new(USARTStateTX::Idle),
            usart_rx_state: Cell::new(USARTStateRX::Idle),

            partial_tx_buffer: TakeCell::empty(),
            partial_tx_len: Cell::new(0),

            partial_rx_buffer: TakeCell::empty(),
            partial_rx_len: Cell::new(0),

            deferred_call: DeferredCall::new(),
        }
    }

    pub fn is_enabled_clock(&self) -> bool {
        self.clock.is_enabled()
    }

    pub fn enable_clock(&self) {
        self.clock.enable();
    }

    pub fn disable_clock(&self) {
        self.clock.disable();
    }

    pub fn set_dma(&self, tx_dma: TxDMA<'a, DMA>, rx_dma: RxDMA<'a, DMA>) {
        self.tx_dma.set(tx_dma.0);
        self.rx_dma.set(rx_dma.0);
    }

    // According to section 25.4.13, we need to make sure that USART TC flag is
    // set before disabling the DMA TX on the peripheral side.
    pub fn handle_interrupt(&self) {
        if self.registers.sr.is_set(SR::TC) {
            self.clear_transmit_complete();
            self.disable_transmit_complete_interrupt();

            // Ignore if USARTStateTX is in some other state other than
            // Transfer_Completing.
            if self.usart_tx_state.get() == USARTStateTX::Transfer_Completing {
                self.disable_tx();
                self.usart_tx_state.set(USARTStateTX::Idle);

                // get buffer
                let buffer = self.tx_dma.map_or(None, |tx_dma| tx_dma.return_buffer());
                let len = self.tx_len.get();
                self.tx_len.set(0);

                // alert client
                self.tx_client.map(|client| {
                    buffer.map(|buf| {
                        let buf = buf.take();
                        client.transmitted_buffer(buf, len, Ok(()));
                    });
                });
            }
        }

        if self.is_enabled_error_interrupt() && self.registers.sr.is_set(SR::ORE) {
            let _ = self.registers.dr.get(); // clear overrun error
            if self.usart_rx_state.get() == USARTStateRX::DMA_Receiving {
                self.usart_rx_state.set(USARTStateRX::Idle);

                self.disable_rx();
                self.disable_error_interrupt();

                // get buffer
                let (buffer, len) = self.rx_dma.map_or((None, 0), |rx_dma| {
                    // `abort_transfer` also disables the stream
                    rx_dma.abort_transfer()
                });

                // The number actually received is the difference between
                // the requested number and the number remaining in DMA transfer.
                let count = self.rx_len.get() - len as usize;
                self.rx_len.set(0);

                // alert client
                self.rx_client.map(|client| {
                    buffer.map(|buf| {
                        let buf = buf.take();
                        client.received_buffer(
                            buf,
                            count,
                            Err(ErrorCode::CANCEL),
                            hil::uart::Error::OverrunError,
                        );
                    })
                });
            }
        }
    }

    // for use by panic in io.rs
    pub fn send_byte(&self, byte: u8) {
        // loop till TXE (Transmit data register empty) becomes 1
        while !self.registers.sr.is_set(SR::TXE) {}

        self.registers.dr.set(byte.into());
    }

    // enable DMA TX from the peripheral side
    fn enable_tx(&self) {
        self.registers.cr3.modify(CR3::DMAT::SET);
    }

    // disable DMA TX from the peripheral side
    fn disable_tx(&self) {
        self.registers.cr3.modify(CR3::DMAT::CLEAR);
    }

    // enable DMA RX from the peripheral side
    fn enable_rx(&self) {
        self.registers.cr3.modify(CR3::DMAR::SET);
    }

    // disable DMA RX from the peripheral side
    fn disable_rx(&self) {
        self.registers.cr3.modify(CR3::DMAR::CLEAR);
    }

    // enable interrupts for framing, overrun and noise errors
    fn enable_error_interrupt(&self) {
        self.registers.cr3.modify(CR3::EIE::SET);
    }

    // disable interrupts for framing, overrun and noise errors
    fn disable_error_interrupt(&self) {
        self.registers.cr3.modify(CR3::EIE::CLEAR);
    }

    // check if interrupts for framing, overrun and noise errors are enbaled
    fn is_enabled_error_interrupt(&self) -> bool {
        self.registers.cr3.is_set(CR3::EIE)
    }

    fn abort_tx(&self, rcode: Result<(), ErrorCode>) {
        self.disable_tx();

        // get buffer
        let (mut buffer, len) = self.tx_dma.map_or((None, 0), |tx_dma| {
            // `abort_transfer` also disables the stream
            tx_dma.abort_transfer()
        });

        // The number actually transmitted is the difference between
        // the requested number and the number remaining in DMA transfer.
        let count = self.tx_len.get() - len as usize;
        self.tx_len.set(0);

        if let Some(buf) = buffer.take() {
            let buf = buf.take();
            self.partial_tx_buffer.replace(buf);
            self.partial_tx_len.set(count);

            self.usart_tx_state.set(USARTStateTX::Aborted(rcode));

            self.deferred_call.set();
        } else {
            self.usart_tx_state.set(USARTStateTX::Idle);
        }
    }

    fn abort_rx(&self, rcode: Result<(), ErrorCode>, error: hil::uart::Error) {
        self.disable_rx();
        self.disable_error_interrupt();

        // get buffer
        let (mut buffer, len) = self.rx_dma.map_or((None, 0), |rx_dma| {
            // `abort_transfer` also disables the stream
            rx_dma.abort_transfer()
        });

        // The number actually received is the difference between
        // the requested number and the number remaining in DMA transfer.
        let count = self.rx_len.get() - len as usize;
        self.rx_len.set(0);

        if let Some(buf) = buffer.take() {
            let buf = buf.take();
            self.partial_rx_buffer.replace(buf);
            self.partial_rx_len.set(count);

            self.usart_rx_state.set(USARTStateRX::Aborted(rcode, error));

            self.deferred_call.set();
        } else {
            self.usart_rx_state.set(USARTStateRX::Idle);
        }
    }

    fn enable_transmit_complete_interrupt(&self) {
        self.registers.cr1.modify(CR1::TCIE::SET);
    }

    fn disable_transmit_complete_interrupt(&self) {
        self.registers.cr1.modify(CR1::TCIE::CLEAR);
    }

    fn clear_transmit_complete(&self) {
        self.registers.sr.modify(SR::TC::CLEAR);
    }

    fn transfer_done(&self, pid: DMA::Peripheral) {
        if pid == self.tx_dma_pid {
            self.usart_tx_state.set(USARTStateTX::Transfer_Completing);
            self.enable_transmit_complete_interrupt();
        } else if pid == self.rx_dma_pid {
            // In case of RX, we can call the client directly without having
            // to trigger an interrupt.
            if self.usart_rx_state.get() == USARTStateRX::DMA_Receiving {
                self.disable_rx();
                self.disable_error_interrupt();
                self.usart_rx_state.set(USARTStateRX::Idle);

                // get buffer
                let buffer = self.rx_dma.map_or(None, |rx_dma| rx_dma.return_buffer());

                let length = self.rx_len.get();
                self.rx_len.set(0);

                // alert client
                self.rx_client.map(|client| {
                    buffer.map(|buf| {
                        let buf = buf.take();
                        client.received_buffer(buf, length, Ok(()), hil::uart::Error::None);
                    });
                });
            }
        }
    }

    fn set_baud_rate(&self, baud_rate: u32) -> Result<(), ErrorCode> {
        // USARTDIV calculation based on stm32-rs stm32f4xx-hal:
        // https://github.com/stm32-rs/stm32f4xx-hal/blob/v0.20.0/src/serial/uart_impls.rs#L145
        //
        // The equation to calculate USARTDIV is this:
        //
        // (Taken from STM32F411xC/E Reference Manual, Section 19.3.4, Equation 1)
        //
        // 16 bit oversample: OVER8 = 0
        // 8 bit oversample:  OVER8 = 1
        //
        // USARTDIV =          (pclk)
        //            ------------------------
        //            8 x (2 - OVER8) x (baud)
        //
        // BUT, the USARTDIV has 4 "fractional" bits, which effectively means that we need to
        // "correct" the equation as follows:
        //
        // USARTDIV =      (pclk) * 16
        //            ------------------------
        //            8 x (2 - OVER8) x (baud)
        //
        // When OVER8 is enabled, we can only use the lowest three fractional bits, so we'll need
        // to shift those last four bits right one bit

        let pclk_freq = self.clock.0.get_frequency();

        let (mantissa, fraction) = if (pclk_freq / 16) >= baud_rate {
            // We have the ability to oversample to 16 bits, take advantage of it.
            //
            // We also add `baud / 2` to the `pclk_freq` to ensure rounding of values to the
            // closest scale, rather than the floored behavior of normal integer division.
            let div = (pclk_freq + (baud_rate / 2)) / baud_rate;

            self.registers.cr1.modify(CR1::OVER8::CLEAR);

            (div >> 4, div & 0x0F)
        } else if (pclk_freq / 8) >= baud_rate {
            // We are close enough to pclk where we can only
            // oversample 8.

            // See note above regarding `baud` and rounding.
            let div = ((pclk_freq * 2) + (baud_rate / 2)) / baud_rate;

            self.registers.cr1.modify(CR1::OVER8::SET);

            // Ensure the the fractional bits (only 3) are right-aligned.
            (div >> 4, (div & 0x0F) >> 1)
        } else {
            return Err(ErrorCode::INVAL);
        };

        self.registers.brr.modify(BRR::DIV_Mantissa.val(mantissa));
        self.registers.brr.modify(BRR::DIV_Fraction.val(fraction));
        Ok(())
    }
}

impl<'a, DMA: dma::StreamServer<'a>> DeferredCallClient for Usart<'a, DMA> {
    fn register(&'static self) {
        self.deferred_call.register(self);
    }

    fn handle_deferred_call(&self) {
        if let USARTStateTX::Aborted(rcode) = self.usart_tx_state.get() {
            // alert client
            self.tx_client.map(|client| {
                self.partial_tx_buffer.take().map(|buf| {
                    client.transmitted_buffer(buf, self.partial_tx_len.get(), rcode);
                });
            });
            self.usart_tx_state.set(USARTStateTX::Idle);
        }

        if let USARTStateRX::Aborted(rcode, error) = self.usart_rx_state.get() {
            // alert client
            self.rx_client.map(|client| {
                self.partial_rx_buffer.take().map(|buf| {
                    client.received_buffer(buf, self.partial_rx_len.get(), rcode, error);
                });
            });
            self.usart_rx_state.set(USARTStateRX::Idle);
        }
    }
}

impl<'a, DMA: dma::StreamServer<'a>> hil::uart::Transmit<'a> for Usart<'a, DMA> {
    fn set_transmit_client(&self, client: &'a dyn hil::uart::TransmitClient) {
        self.tx_client.set(client);
    }

    fn transmit_buffer(
        &self,
        tx_data: &'static mut [u8],
        tx_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        // In virtual_uart.rs, transmit is only called when inflight is None. So
        // if the state machine is working correctly, transmit should never
        // abort.

        if self.usart_tx_state.get() != USARTStateTX::Idle {
            // there is an ongoing transmission, quit it
            return Err((ErrorCode::BUSY, tx_data));
        }

        // setup and enable dma stream
        self.tx_dma.map(move |dma| {
            self.tx_len.set(tx_len);
            let mut tx_data: SubSliceMut<u8> = tx_data.into();
            tx_data.slice(..tx_len);
            dma.do_transfer(tx_data);
        });

        self.usart_tx_state.set(USARTStateTX::DMA_Transmitting);

        // enable dma tx on peripheral side
        self.enable_tx();
        Ok(())
    }

    fn transmit_word(&self, _word: u32) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }

    fn transmit_abort(&self) -> Result<(), ErrorCode> {
        if self.usart_tx_state.get() != USARTStateTX::Idle {
            self.abort_tx(Err(ErrorCode::CANCEL));
            Err(ErrorCode::BUSY)
        } else {
            Ok(())
        }
    }
}

impl<'a, DMA: dma::StreamServer<'a>> hil::uart::Configure for Usart<'a, DMA> {
    fn configure(&self, params: hil::uart::Parameters) -> Result<(), ErrorCode> {
        if params.stop_bits != hil::uart::StopBits::One
            || params.parity != hil::uart::Parity::None
            || params.hw_flow_control
            || params.width != hil::uart::Width::Eight
        {
            panic!("Currently we only support uart setting of 8N1, no hardware flow control");
        }

        // Configure the word length - 0: 1 Start bit, 8 Data bits, n Stop bits
        self.registers.cr1.modify(CR1::M::CLEAR);

        // Set the stop bit length - 00: 1 Stop bits
        self.registers.cr2.modify(CR2::STOP.val(0b00_u32));

        // Set no parity
        self.registers.cr1.modify(CR1::PCE::CLEAR);

        self.set_baud_rate(params.baud_rate)?;

        // Enable transmit block
        self.registers.cr1.modify(CR1::TE::SET);

        // Enable receive block
        self.registers.cr1.modify(CR1::RE::SET);

        // Enable USART
        self.registers.cr1.modify(CR1::UE::SET);

        Ok(())
    }
}

impl<'a, DMA: dma::StreamServer<'a>> hil::uart::Receive<'a> for Usart<'a, DMA> {
    fn set_receive_client(&self, client: &'a dyn hil::uart::ReceiveClient) {
        self.rx_client.set(client);
    }

    fn receive_buffer(
        &self,
        rx_buffer: &'static mut [u8],
        rx_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        if self.usart_rx_state.get() != USARTStateRX::Idle {
            return Err((ErrorCode::BUSY, rx_buffer));
        }

        if rx_len > rx_buffer.len() {
            return Err((ErrorCode::SIZE, rx_buffer));
        }

        // setup and enable dma stream
        self.rx_dma.map(move |dma| {
            self.rx_len.set(rx_len);
            let mut rx_buffer: SubSliceMut<u8> = rx_buffer.into();
            rx_buffer.slice(..rx_len);
            dma.do_transfer(rx_buffer);
        });

        self.usart_rx_state.set(USARTStateRX::DMA_Receiving);

        self.enable_error_interrupt();

        // enable dma rx on the peripheral side
        self.enable_rx();
        Ok(())
    }

    fn receive_word(&self) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }

    fn receive_abort(&self) -> Result<(), ErrorCode> {
        self.abort_rx(Err(ErrorCode::CANCEL), hil::uart::Error::Aborted);
        Err(ErrorCode::BUSY)
    }
}

impl<'a> dma::StreamClient<'a, dma::Dma1<'a>> for Usart<'a, dma::Dma1<'a>> {
    fn transfer_done(&self, pid: dma::Dma1Peripheral) {
        self.transfer_done(pid);
    }
}

impl<'a> dma::StreamClient<'a, dma::Dma2<'a>> for Usart<'a, dma::Dma2<'a>> {
    fn transfer_done(&self, pid: dma::Dma2Peripheral) {
        self.transfer_done(pid);
    }
}

struct UsartClock<'a>(phclk::PeripheralClock<'a>);

impl ClockInterface for UsartClock<'_> {
    fn is_enabled(&self) -> bool {
        self.0.is_enabled()
    }

    fn enable(&self) {
        self.0.enable();
    }

    fn disable(&self) {
        self.0.disable();
    }
}