kernel/utilities/peripheral_management.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Peripheral Management
//!
//! Most peripherals are implemented as memory mapped I/O (MMIO). Intrinsically,
//! this means that accessing a peripheral requires dereferencing a raw pointer
//! that points to the peripheral's memory.
//!
//! Generally, Tock peripherals are modeled by two structures, such as:
//!
//! ```rust
//! # use kernel::utilities::cells::VolatileCell;
//! # use kernel::utilities::StaticRef;
//! # struct ChipSpecificPeripheralClock {};
//! /// The MMIO Structure.
//! #[repr(C)]
//! #[allow(dead_code)]
//! pub struct PeripheralRegisters {
//! control: VolatileCell<u32>,
//! interrupt_mask: VolatileCell<u32>,
//! }
//!
//! /// The Tock object that holds all information for this peripheral.
//! pub struct PeripheralHardware<'a> {
//! mmio_address: StaticRef<PeripheralRegisters>,
//! clock: &'a ChipSpecificPeripheralClock,
//! }
//! ```
//!
//! The first structure mirrors the MMIO specification. The second structure
//! holds a pointer to the actual address in memory. It also holds other
//! information for the peripheral. Kernel traits will be implemented for this
//! peripheral hardware structure. As the peripheral cannot derefence the raw
//! MMIO pointer safely, Tock provides the PeripheralManager interface:
//!
//! ```rust
//! # use kernel::utilities::cells::VolatileCell;
//! # use kernel::utilities::peripheral_management::PeripheralManager;
//! # use kernel::utilities::StaticRef;
//! # use kernel::ErrorCode;
//! # use kernel::hil;
//! # struct PeripheralRegisters { control: VolatileCell<u32> };
//! # struct PeripheralHardware { mmio_address: StaticRef<PeripheralRegisters> };
//! impl hil::uart::Configure for PeripheralHardware {
//! fn configure(&self, params: hil::uart::Parameters) -> Result<(), ErrorCode> {
//! let peripheral = &PeripheralManager::new(self);
//! peripheral.registers.control.set(0x0);
//! // ^^^^^^^^^-- This is type &PeripheralRegisters
//! Ok(())
//! }
//! }
//! # use kernel::utilities::peripheral_management::PeripheralManagement;
//! # use kernel::platform::chip::NoClockControl;
//! # impl PeripheralManagement<NoClockControl> for PeripheralHardware {
//! # type RegisterType = PeripheralRegisters;
//!
//! # fn get_registers(&self) -> &PeripheralRegisters {
//! # &*self.mmio_address
//! # }
//! # fn get_clock(&self) -> &NoClockControl { unsafe { &kernel::platform::chip::NO_CLOCK_CONTROL } }
//! # fn before_peripheral_access(&self, _c: &NoClockControl, _r: &Self::RegisterType) {}
//! # fn after_peripheral_access(&self, _c: &NoClockControl, _r: &Self::RegisterType) {}
//! # }
//! ```
//!
//! Each peripheral must tell the kernel where its registers live in memory:
//!
//! ```rust
//! # use kernel::utilities::peripheral_management::PeripheralManagement;
//! # use kernel::utilities::StaticRef;
//! # pub struct PeripheralRegisters {};
//! # pub struct PeripheralHardware { mmio_address: StaticRef<PeripheralRegisters> };
//! /// Teaching the kernel how to create PeripheralRegisters.
//! use kernel::platform::chip::NoClockControl;
//! impl PeripheralManagement<NoClockControl> for PeripheralHardware {
//! type RegisterType = PeripheralRegisters;
//!
//! fn get_registers(&self) -> &PeripheralRegisters {
//! &*self.mmio_address
//! }
//! # fn get_clock(&self) -> &NoClockControl { unsafe { &kernel::platform::chip::NO_CLOCK_CONTROL } }
//! # fn before_peripheral_access(&self, _c: &NoClockControl, _r: &Self::RegisterType) {}
//! # fn after_peripheral_access(&self, _c: &NoClockControl, _r: &Self::RegisterType) {}
//! }
//! ```
//!
//! Note, this example kept the `mmio_address` in the `PeripheralHardware`
//! structure, which is useful when there are multiple copies of the same
//! peripheral (e.g. multiple UARTs). For single-instance peripherals, it's fine
//! to simply return the address directly from `get_registers`.
//!
//! Peripheral Clocks
//! -----------------
//!
//! To facilitate low-power operation, PeripheralManager captures the
//! peripheral's clock upon instantiation. The intention is to exploit
//! [Ownership Based Resource
//! Management](https://doc.rust-lang.org/beta/nomicon/obrm.html) to capture
//! peripheral power state.
//!
//! To enable this, peripherals must inform the kernel which clock they use, and
//! when the clock should be enabled and disabled. Implementations of the
//! `before/after_mmio_access` methods must take care to not access hardware
//! without enabling clocks if needed if they use hardware for bookkeeping.
//!
//! ```rust
//! use kernel::utilities::peripheral_management::PeripheralManagement;
//! use kernel::utilities::StaticRef;
//! use kernel::platform::chip::ClockInterface;
//! // A dummy clock for this example.
//! // Real peripherals that do not have clocks should use NoClockControl from this module.
//! struct ExampleClock {};
//! impl ClockInterface for ExampleClock {
//! fn is_enabled(&self) -> bool { true }
//! fn enable(&self) { }
//! fn disable(&self) { }
//! }
//!
//! // Dummy hardware for this example.
//! struct SpiRegisters {};
//! struct SpiHw<'a> {
//! mmio_address: StaticRef<SpiRegisters>,
//! clock: &'a ExampleClock,
//! busy: bool,
//! };
//!
//! /// Teaching the kernel which clock controls SpiHw.
//! impl<'a> PeripheralManagement<ExampleClock> for SpiHw<'a> {
//! type RegisterType = SpiRegisters;
//!
//! fn get_registers(&self) -> &SpiRegisters { &*self.mmio_address }
//!
//! fn get_clock(&self) -> &ExampleClock { self.clock }
//!
//! fn before_peripheral_access(&self, clock: &ExampleClock, _registers: &SpiRegisters) {
//! clock.enable();
//! }
//!
//! fn after_peripheral_access(&self, clock: &ExampleClock, _registers: &SpiRegisters) {
//! if !self.busy {
//! clock.disable();
//! }
//! }
//! }
//! ```
use crate::platform::chip::ClockInterface;
/// A structure encapsulating a peripheral should implement this trait.
pub trait PeripheralManagement<C>
where
C: ClockInterface,
{
type RegisterType;
/// How to get a reference to the physical hardware registers (the MMIO
/// struct).
fn get_registers(&self) -> &Self::RegisterType;
/// Which clock feeds this peripheral.
///
/// For peripherals with no clock, use
/// `&::kernel::platform::chip::NO_CLOCK_CONTROL`.
fn get_clock(&self) -> &C;
/// Called before peripheral access.
///
/// Responsible for ensure the peripheral can be safely accessed, e.g. that
/// its clock is powered on.
fn before_peripheral_access(&self, _: &C, _: &Self::RegisterType);
/// Called after peripheral access.
///
/// Currently used primarily for power management to check whether the
/// peripheral can be powered off.
fn after_peripheral_access(&self, _: &C, _: &Self::RegisterType);
}
/// Object used to access memory mapped registers with the
/// [`PeripheralManagement`] interface.
///
/// Structures encapsulating peripheral hardware (those implementing the
/// [`PeripheralManagement`] trait) should instantiate an instance of this
/// object.
///
/// ```
/// # use kernel::utilities::cells::VolatileCell;
/// # use kernel::utilities::peripheral_management::PeripheralManager;
/// # use kernel::utilities::StaticRef;
/// # pub struct PeripheralRegisters { control: VolatileCell<u32> };
/// # pub struct PeripheralHardware { mmio_address: StaticRef<PeripheralRegisters> };
/// impl PeripheralHardware {
/// fn example(&self) {
/// let peripheral = &PeripheralManager::new(self);
/// peripheral.registers.control.set(0x1);
/// }
/// }
/// # use kernel::utilities::peripheral_management::PeripheralManagement;
/// # use kernel::platform::chip::NoClockControl;
/// # impl PeripheralManagement<NoClockControl> for PeripheralHardware {
/// # type RegisterType = PeripheralRegisters;
///
/// # fn get_registers(&self) -> &PeripheralRegisters {
/// # &*self.mmio_address
/// # }
/// # fn get_clock(&self) -> &NoClockControl { unsafe { &kernel::platform::chip::NO_CLOCK_CONTROL } }
/// # fn before_peripheral_access(&self, _c: &NoClockControl, _r: &Self::RegisterType) {}
/// # fn after_peripheral_access(&self, _c: &NoClockControl, _r: &Self::RegisterType) {}
/// # }
/// ```
pub struct PeripheralManager<'a, H, C>
where
H: 'a + PeripheralManagement<C>,
C: 'a + ClockInterface,
{
pub registers: &'a H::RegisterType,
peripheral_hardware: &'a H,
clock: &'a C,
}
impl<'a, H, C> PeripheralManager<'a, H, C>
where
H: 'a + PeripheralManagement<C>,
C: 'a + ClockInterface,
{
pub fn new(peripheral_hardware: &'a H) -> PeripheralManager<'a, H, C> {
let registers = peripheral_hardware.get_registers();
let clock = peripheral_hardware.get_clock();
peripheral_hardware.before_peripheral_access(clock, registers);
PeripheralManager {
registers,
peripheral_hardware,
clock,
}
}
}
impl<'a, H, C> Drop for PeripheralManager<'a, H, C>
where
H: 'a + PeripheralManagement<C>,
C: 'a + ClockInterface,
{
fn drop(&mut self) {
self.peripheral_hardware
.after_peripheral_access(self.clock, self.registers);
}
}