capsules_extra/ieee802154/phy_driver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2024.
//! IEEE 802.15.4 userspace interface for configuration and transmit/receive.
//!
//! Implements a userspace interface for sending and receiving raw IEEE 802.15.4
//! frames.
//!
//! Sending - Userspace fully forms the 15.4 frame and passes it to the driver.
//!
//! Receiving - The driver receives 15.4 frames and passes them to the process.
//! To accomplish this, the process must first `allow` a read/write ring buffer
//! to the kernel. The kernel will then fill this buffer with received frames
//! and schedule an upcall upon receipt of the first packet.
//!
//! The ring buffer provided by the process must be of the form:
//!
//! ```text
//! | read index | write index | user_frame 0 | user_frame 1 | ... | user_frame n |
//! ```
//!
//! `user_frame` denotes the 15.4 frame in addition to the relevant 3 bytes of
//! metadata (offset to data payload, length of data payload, and the MIC len).
//! The capsule assumes that this is the form of the buffer. Errors or deviation
//! in the form of the provided buffer will likely result in incomplete or
//! dropped packets.
//!
//! Because the scheduled receive upcall must be handled by the process, there
//! is no guarantee as to when this will occur and if additional packets will be
//! received prior to the upcall being handled. Without a ring buffer (or some
//! equivalent data structure), the original packet will be lost. The ring
//! buffer allows for the upcall to be scheduled and for all received packets to
//! be passed to the process. The ring buffer is designed to overwrite old
//! packets if the buffer becomes full. If the process notices a high number of
//! "dropped" packets, this may be the cause. The process can mitigate this
//! issue by increasing the size of the ring buffer provided to the capsule.
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil;
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::{ErrorCode, ProcessId};
/// IDs for subscribed upcalls.
mod upcall {
/// Frame is received
pub const FRAME_RECEIVED: usize = 0;
/// Frame is transmitted
pub const FRAME_TRANSMITTED: usize = 1;
/// Number of upcalls.
pub const COUNT: u8 = 2;
}
/// Ids for read-only allow buffers
mod ro_allow {
/// Write buffer. Contains the frame payload to be transmitted.
pub const WRITE: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Ids for read-write allow buffers
mod rw_allow {
/// Read buffer. Will contain the received frame.
pub const READ: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::Ieee802154 as usize;
#[derive(Default)]
pub struct App {
pending_tx: bool,
}
pub struct RadioDriver<'a, R: hil::radio::Radio<'a>> {
/// Underlying radio.
radio: &'a R,
/// Grant of apps that use this radio driver.
apps: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
/// ID of app whose transmission request is being processed.
current_app: OptionalCell<ProcessId>,
/// Buffer that stores the IEEE 802.15.4 frame to be transmitted.
kernel_tx: TakeCell<'static, [u8]>,
}
impl<'a, R: hil::radio::Radio<'a>> RadioDriver<'a, R> {
pub fn new(
radio: &'a R,
grant: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
kernel_tx: &'static mut [u8],
) -> Self {
Self {
radio,
apps: grant,
current_app: OptionalCell::empty(),
kernel_tx: TakeCell::new(kernel_tx),
}
}
/// Performs `processid`'s pending transmission. Assumes that the driver is
/// currently idle and the app has a pending transmission.
fn perform_tx(&self, processid: ProcessId) -> Result<(), ErrorCode> {
self.apps.enter(processid, |app, kernel_data| {
app.pending_tx = false;
self.kernel_tx.take().map_or(Err(ErrorCode::NOMEM), |kbuf| {
kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.and_then(|write| {
write.enter(|payload| {
let frame_len = payload.len();
let dst_start = hil::radio::PSDU_OFFSET;
let dst_end = dst_start + frame_len;
payload.copy_to_slice(&mut kbuf[dst_start..dst_end]);
self.radio.transmit(kbuf, frame_len).map_or_else(
|(errorcode, error_buf)| {
self.kernel_tx.replace(error_buf);
Err(errorcode)
},
|()| {
self.current_app.set(processid);
Ok(())
},
)
})
})?
})
})?
}
/// If the driver is currently idle and there are pending transmissions,
/// pick an app with a pending transmission and return its `ProcessId`.
fn get_next_tx_if_idle(&self) -> Option<ProcessId> {
if self.current_app.is_some() {
return None;
}
let mut pending_app = None;
for app in self.apps.iter() {
let processid = app.processid();
app.enter(|app, _| {
if app.pending_tx {
pending_app = Some(processid);
}
});
if pending_app.is_some() {
break;
}
}
pending_app
}
/// Schedule the next transmission if there is one pending.
fn do_next_tx(&self) {
self.get_next_tx_if_idle()
.map(|processid| match self.perform_tx(processid) {
Ok(()) => {}
Err(e) => {
let _ = self.apps.enter(processid, |_app, upcalls| {
let _ = upcalls.schedule_upcall(
upcall::FRAME_TRANSMITTED,
(kernel::errorcode::into_statuscode(Err(e)), 0, 0),
);
});
}
});
}
}
impl<'a, R: hil::radio::Radio<'a>> SyscallDriver for RadioDriver<'a, R> {
/// IEEE 802.15.4 low-level control.
///
/// ### `command_num`
///
/// - `0`: Driver existence check.
/// - `1`: Return radio status. Ok(())/OFF = on/off.
/// - `2`: Set short address.
/// - `4`: Set PAN ID.
/// - `5`: Set channel.
/// - `6`: Set transmission power.
/// - `7`: Commit any configuration changes.
/// - `8`: Get the short MAC address.
/// - `10`: Get the PAN ID.
/// - `11`: Get the channel.
/// - `12`: Get the transmission power.
/// - `27`: Transmit a frame. The frame must be stored in the write RO allow
/// buffer 0. The allowed buffer must be the length of the frame. The
/// frame includes the PDSU (i.e., the MAC payload) _without_ the MFR
/// (i.e., CRC) bytes.
/// - `28`: Set long address.
/// - `29`: Get the long MAC address.
/// - `30`: Turn the radio on.
/// - `31`: Turn the radio off.
fn command(
&self,
command_number: usize,
arg1: usize,
arg2: usize,
processid: ProcessId,
) -> CommandReturn {
match command_number {
0 => CommandReturn::success(),
1 => {
if self.radio.is_on() {
CommandReturn::success()
} else {
CommandReturn::failure(ErrorCode::OFF)
}
}
2 => {
self.radio.set_address(arg1 as u16);
CommandReturn::success()
}
4 => {
self.radio.set_pan(arg1 as u16);
CommandReturn::success()
}
5 => {
let channel = (arg1 as u8).try_into();
channel.map_or(CommandReturn::failure(ErrorCode::INVAL), |chan| {
self.radio.set_channel(chan);
CommandReturn::success()
})
}
6 => self.radio.set_tx_power(arg1 as i8).into(),
7 => {
self.radio.config_commit();
CommandReturn::success()
}
8 => {
// Guarantee that address is positive by adding 1
let addr = self.radio.get_address();
CommandReturn::success_u32(addr as u32 + 1)
}
10 => {
// Guarantee that the PAN is positive by adding 1
let pan = self.radio.get_pan();
CommandReturn::success_u32(pan as u32 + 1)
}
11 => {
let channel = self.radio.get_channel();
CommandReturn::success_u32(channel as u32)
}
12 => {
let txpower = self.radio.get_tx_power();
CommandReturn::success_u32(txpower as u32)
}
27 => {
self.apps
.enter(processid, |app, _| {
if app.pending_tx {
// Cannot support more than one pending TX per process.
return Err(ErrorCode::BUSY);
}
app.pending_tx = true;
Ok(())
})
.map_or_else(
|err| CommandReturn::failure(err.into()),
|_| {
self.do_next_tx();
CommandReturn::success()
},
)
}
28 => {
let addr_upper: u64 = arg2 as u64;
let addr_lower: u64 = arg1 as u64;
let addr = addr_upper << 32 | addr_lower;
self.radio.set_address_long(addr.to_be_bytes());
CommandReturn::success()
}
29 => {
let addr = u64::from_be_bytes(self.radio.get_address_long());
CommandReturn::success_u64(addr)
}
30 => self.radio.start().into(),
31 => self.radio.stop().into(),
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.apps.enter(processid, |_, _| {})
}
}
impl<'a, R: hil::radio::Radio<'a>> hil::radio::TxClient for RadioDriver<'a, R> {
fn send_done(&self, spi_buf: &'static mut [u8], acked: bool, result: Result<(), ErrorCode>) {
self.kernel_tx.replace(spi_buf);
self.current_app.take().map(|processid| {
let _ = self.apps.enter(processid, |_app, upcalls| {
upcalls
.schedule_upcall(
upcall::FRAME_TRANSMITTED,
(kernel::errorcode::into_statuscode(result), acked.into(), 0),
)
.ok();
});
});
self.do_next_tx();
}
}
impl<'a, R: hil::radio::Radio<'a>> hil::radio::RxClient for RadioDriver<'a, R> {
fn receive<'b>(
&self,
buf: &'static mut [u8],
frame_len: usize,
lqi: u8,
crc_valid: bool,
result: Result<(), ErrorCode>,
) {
// Drop invalid packets or packets that had errors during reception.
if !crc_valid || result.is_err() {
// Replace the RX buffer and drop the packet.
self.radio.set_receive_buffer(buf);
return;
}
self.apps.each(|_, _, kernel_data| {
let read_present = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.and_then(|read| {
read.mut_enter(|rbuf| {
////////////////////////////////////////////////////////
// NOTE: context for the ring buffer and assumptions
// regarding the ring buffer format and usage can be
// found in the detailed comment at the top of this
// file.
//
// Ring buffer format:
// | read | write | user_frame | user_frame |...| user_frame |
// | index | index | 0 | 1 | | n |
//
// user_frame format:
// | header_len | payload_len | mic_len | 15.4 frame |
//
////////////////////////////////////////////////////////
// 2 bytes for the readwrite buffer metadata (read and
// write index).
const RING_BUF_METADATA_SIZE: usize = 2;
/// 3 byte metadata (offset, len, mic_len)
const USER_FRAME_METADATA_SIZE: usize = 3;
/// 3 byte metadata + 127 byte max payload
const USER_FRAME_MAX_SIZE: usize =
USER_FRAME_METADATA_SIZE + hil::radio::MAX_FRAME_SIZE;
// Confirm the availability of the buffer. A buffer of
// len 0 is indicative of the userprocess not allocating
// a readwrite buffer. We must also confirm that the
// userprocess correctly formatted the buffer to be of
// length 2 + n * USER_FRAME_MAX_SIZE, where n is the
// number of user frames that the buffer can store. We
// combine checking the buffer's non-zero length and the
// case of the buffer being shorter than the
// `RING_BUF_METADATA_SIZE` as an invalid buffer (e.g.
// of length 1) may otherwise errantly pass the second
// conditional check (due to unsigned integer
// arithmetic).
if rbuf.len() <= RING_BUF_METADATA_SIZE
|| (rbuf.len() - RING_BUF_METADATA_SIZE) % USER_FRAME_MAX_SIZE != 0
{
return false;
}
let mut read_index = rbuf[0].get() as usize;
let mut write_index = rbuf[1].get() as usize;
let max_pending_rx =
(rbuf.len() - RING_BUF_METADATA_SIZE) / USER_FRAME_MAX_SIZE;
// Confirm user modifiable metadata is valid (i.e.
// within bounds of the provided buffer).
if read_index >= max_pending_rx || write_index >= max_pending_rx {
return false;
}
// We don't parse the received packet, so we don't know
// how long all of the pieces are.
let mic_len = 0;
let header_len = 0;
// Start in the buffer where we are going to write this
// incoming packet.
let offset = RING_BUF_METADATA_SIZE + (write_index * USER_FRAME_MAX_SIZE);
// Copy the entire frame over to userland, preceded by
// three metadata bytes: the header length, the data
// length, and the MIC length.
let dst_start = offset + USER_FRAME_METADATA_SIZE;
let dst_end = dst_start + frame_len;
let src_start = hil::radio::PSDU_OFFSET;
let src_end = src_start + frame_len;
rbuf[dst_start..dst_end].copy_from_slice(&buf[src_start..src_end]);
rbuf[offset].set(header_len as u8);
rbuf[offset + 1].set(frame_len as u8);
rbuf[offset + 2].set(mic_len as u8);
// Prepare the ring buffer for the next write. The
// current design favors newness; newly received packets
// will begin to overwrite the oldest data in the event
// of the buffer becoming full. The read index must
// always point to the "oldest" data. If we have
// overwritten the oldest data, the next oldest data is
// now at the read index + 1. We must update the read
// index to reflect this.
write_index = (write_index + 1) % max_pending_rx;
if write_index == read_index {
read_index = (read_index + 1) % max_pending_rx;
rbuf[0].set(read_index as u8);
}
// Update write index metadata since we have added a
// frame.
rbuf[1].set(write_index as u8);
true
})
})
.unwrap_or(false);
if read_present {
// Place lqi as argument to be included in upcall.
kernel_data
.schedule_upcall(upcall::FRAME_RECEIVED, (lqi as usize, 0, 0))
.ok();
}
});
self.radio.set_receive_buffer(buf);
}
}
impl<'a, R: hil::radio::Radio<'a>> hil::radio::ConfigClient for RadioDriver<'a, R> {
fn config_done(&self, _result: Result<(), ErrorCode>) {}
}
impl<'a, R: hil::radio::Radio<'a>> hil::radio::PowerClient for RadioDriver<'a, R> {
fn changed(&self, _on: bool) {}
}