tock_registers/
macros.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Macros for cleanly defining peripheral registers.

#[macro_export]
macro_rules! register_fields {
    // Macro entry point.
    (@root $(#[$attr_struct:meta])* $vis_struct:vis $name:ident $(<$life:lifetime>)? { $($input:tt)* } ) => {
        $crate::register_fields!(
            @munch (
                $($input)*
            ) -> {
                $vis_struct struct $(#[$attr_struct])* $name $(<$life>)?
            }
        );
    };

    // Print the struct once all fields have been munched.
    (@munch
        (
            $(#[$attr_end:meta])*
            ($offset:expr => @END),
        )
        -> {$vis_struct:vis struct $(#[$attr_struct:meta])* $name:ident $(<$life:lifetime>)? $(
                $(#[$attr:meta])*
                ($vis:vis $id:ident: $ty:ty)
            )*}
    ) => {
        $(#[$attr_struct])*
        #[repr(C)]
        $vis_struct struct $name $(<$life>)? {
            $(
                $(#[$attr])*
                $vis $id: $ty
            ),*
        }
    };

    // Munch field.
    (@munch
        (
            $(#[$attr:meta])*
            ($offset_start:expr => $vis:vis $field:ident: $ty:ty),
            $($after:tt)*
        )
        -> {$($output:tt)*}
    ) => {
        $crate::register_fields!(
            @munch (
                $($after)*
            ) -> {
                $($output)*
                $(#[$attr])*
                ($vis $field: $ty)
            }
        );
    };

    // Munch padding.
    (@munch
        (
            $(#[$attr:meta])*
            ($offset_start:expr => $padding:ident),
            $(#[$attr_next:meta])*
            ($offset_end:expr => $($next:tt)*),
            $($after:tt)*
        )
        -> {$($output:tt)*}
    ) => {
        $crate::register_fields!(
            @munch (
                $(#[$attr_next])*
                ($offset_end => $($next)*),
                $($after)*
            ) -> {
                $($output)*
                $(#[$attr])*
                ($padding: [u8; $offset_end - $offset_start])
            }
        );
    };
}

// TODO: All of the rustdoc tests below use a `should_fail` attribute instead of
// `should_panic` because a const panic will result in a failure to evaluate a
// constant value, and thus a compiler error. However, this means that these
// examples could break for unrelated reasons, trigger a compiler error, but not
// test the desired assertion any longer. This should be switched to a
// `should_panic`-akin attribute which works for const panics, once that is
// available.
/// Statically validate the size and offsets of the fields defined
/// within the register struct through the `register_structs!()`
/// macro.
///
/// This macro expands to an expression which contains static
/// assertions about various parameters of the individual fields in
/// the register struct definition. It will test for:
///
/// - Proper start offset of padding fields. It will fail in cases
///   such as
///
///   ```should_fail
///   # #[macro_use]
///   # extern crate tock_registers;
///   # use tock_registers::register_structs;
///   # use tock_registers::registers::ReadWrite;
///   register_structs! {
///       UartRegisters {
///           (0x04 => _reserved),
///           (0x08 => foo: ReadWrite<u32>),
///           (0x0C => @END),
///       }
///   }
///   # // This is required for rustdoc to not place this code snipped into an
///   # // fn main() {...} function.
///   # fn main() { }
///   ```
///
///   In this example, the start offset of `_reserved` should have been `0x00`
///   instead of `0x04`.
///
/// - Correct start offset and end offset (start offset of next field) in actual
///   fields. It will fail in cases such as
///
///   ```should_fail
///   # #[macro_use]
///   # extern crate tock_registers;
///   # use tock_registers::register_structs;
///   # use tock_registers::registers::ReadWrite;
///   register_structs! {
///       UartRegisters {
///           (0x00 => foo: ReadWrite<u32>),
///           (0x05 => bar: ReadWrite<u32>),
///           (0x08 => @END),
///       }
///   }
///   # // This is required for rustdoc to not place this code snipped into an
///   # // fn main() {...} function.
///   # fn main() { }
///   ```
///
///   In this example, the start offset of `bar` and thus the end offset of
///   `foo` should have been `0x04` instead of `0x05`.
///
/// - Invalid alignment of fields.
///
/// - That the end marker matches the actual generated struct size. This will
///   fail in cases such as
///
///   ```should_fail
///   # #[macro_use]
///   # extern crate tock_registers;
///   # use tock_registers::register_structs;
///   # use tock_registers::registers::ReadWrite;
///   register_structs! {
///       UartRegisters {
///           (0x00 => foo: ReadWrite<u32>),
///           (0x04 => bar: ReadWrite<u32>),
///           (0x10 => @END),
///       }
///   }
///   # // This is required for rustdoc to not place this code snipped into an
///   # // fn main() {...} function.
///   # fn main() { }
///   ```
#[macro_export]
macro_rules! test_fields {
    // This macro works by iterating over all defined fields, until it hits an
    // ($size:expr => @END) field. Each iteration generates an expression which,
    // when evaluated, yields the current byte offset in the fields. Thus, when
    // reading a field or padding, the field or padding length must be added to
    // the returned size.
    //
    // By feeding this expression recursively into the macro, deeper invocations
    // can continue validating fields through knowledge of the current offset
    // and the remaining fields.
    //
    // The nested expression returned by this macro is guaranteed to be
    // const-evaluable.

    // Macro entry point.
    (@root $struct:ident $(<$life:lifetime>)? { $($input:tt)* } ) => {
        // Start recursion at offset 0.
        $crate::test_fields!(@munch $struct $(<$life>)? ($($input)*) : (0, 0));
    };

    // Consume the ($size:expr => @END) field, which MUST be the last field in
    // the register struct.
    (@munch $struct:ident $(<$life:lifetime>)?
        (
            $(#[$attr_end:meta])*
            ($size:expr => @END),
        )
        : $stmts:expr
    ) => {
        const _: () = {
            // We've reached the end! Normally it is sufficient to compare the
            // struct's size to the reported end offet. However, we must
            // evaluate the previous iterations' expressions for them to have an
            // effect anyways, so we can perform an internal sanity check on
            // this value as well.
            const SUM_MAX_ALIGN: (usize, usize) = $stmts;
            const SUM: usize = SUM_MAX_ALIGN.0;
            const MAX_ALIGN: usize = SUM_MAX_ALIGN.1;

            // Internal sanity check. If we have reached this point and
            // correctly iterated over the struct's fields, the current offset
            // and the claimed end offset MUST be equal.
            assert!(SUM == $size);

            const STRUCT_SIZE: usize = core::mem::size_of::<$struct $(<$life>)?>();
            const ALIGNMENT_CORRECTED_SIZE: usize = if $size % MAX_ALIGN != 0 { $size + (MAX_ALIGN - ($size % MAX_ALIGN)) } else { $size };

            assert!(
                STRUCT_SIZE == ALIGNMENT_CORRECTED_SIZE,
                "{}",
                concat!(
                    "Invalid size for struct ",
                    stringify!($struct),
                    " (expected ",
                    stringify!($size),
                    ", actual struct size differs)",
                ),
            );
        };
    };

    // Consume a proper ($offset:expr => $field:ident: $ty:ty) field.
    (@munch $struct:ident $(<$life:lifetime>)?
        (
            $(#[$attr:meta])*
            ($offset_start:expr => $vis:vis $field:ident: $ty:ty),
            $(#[$attr_next:meta])*
            ($offset_end:expr => $($next:tt)*),
            $($after:tt)*
        )
        : $output:expr
    ) => {
        $crate::test_fields!(
            @munch $struct $(<$life>)? (
                $(#[$attr_next])*
                ($offset_end => $($next)*),
                $($after)*
            ) : {
                // Evaluate the previous iterations' expression to determine the
                // current offset.
                const SUM_MAX_ALIGN: (usize, usize) = $output;
                const SUM: usize = SUM_MAX_ALIGN.0;
                const MAX_ALIGN: usize = SUM_MAX_ALIGN.1;

                // Validate the start offset of the current field. This check is
                // mostly relevant for when this is the first field in the
                // struct, as any subsequent start offset error will be detected
                // by an end offset error of the previous field.
                assert!(
                    SUM == $offset_start,
                    "{}",
                    concat!(
                        "Invalid start offset for field ",
                        stringify!($field),
                        " (expected ",
                        stringify!($offset_start),
                        " but actual value differs)",
                    ),
                );

                // Validate that the start offset of the current field within
                // the struct matches the type's minimum alignment constraint.
                const ALIGN: usize = core::mem::align_of::<$ty>();
                // Clippy can tell that (align - 1) is zero for some fields, so
                // we allow this lint and further encapsule the assert! as an
                // expression, such that the allow attr can apply.
                #[allow(clippy::bad_bit_mask)]
                {
                    assert!(
                        SUM & (ALIGN - 1) == 0,
                        "{}",
                        concat!(
                            "Invalid alignment for field ",
                            stringify!($field),
                            " (offset differs from expected)",
                        ),
                    );
                }

                // Add the current field's length to the offset and validate the
                // end offset of the field based on the next field's claimed
                // start offset.
                const NEW_SUM: usize = SUM + core::mem::size_of::<$ty>();
                assert!(
                    NEW_SUM == $offset_end,
                    "{}",
                    concat!(
                        "Invalid end offset for field ",
                        stringify!($field),
                        " (expected ",
                        stringify!($offset_end),
                        " but actual value differs)",
                    ),
                );

                // Determine the new maximum alignment. core::cmp::max(ALIGN,
                // MAX_ALIGN) does not work here, as the function is not const.
                const NEW_MAX_ALIGN: usize = if ALIGN > MAX_ALIGN { ALIGN } else { MAX_ALIGN };

                // Provide the updated offset and alignment to the next
                // iteration.
                (NEW_SUM, NEW_MAX_ALIGN)
            }
        );
    };

    // Consume a padding ($offset:expr => $padding:ident) field.
    (@munch $struct:ident $(<$life:lifetime>)?
        (
            $(#[$attr:meta])*
            ($offset_start:expr => $padding:ident),
            $(#[$attr_next:meta])*
            ($offset_end:expr => $($next:tt)*),
            $($after:tt)*
        )
        : $output:expr
    ) => {
        $crate::test_fields!(
            @munch $struct $(<$life>)? (
                $(#[$attr_next])*
                ($offset_end => $($next)*),
                $($after)*
            ) : {
                // Evaluate the previous iterations' expression to determine the
                // current offset.
                const SUM_MAX_ALIGN: (usize, usize) = $output;
                const SUM: usize = SUM_MAX_ALIGN.0;
                const MAX_ALIGN: usize = SUM_MAX_ALIGN.1;

                // Validate the start offset of the current padding field. This
                // check is mostly relevant for when this is the first field in
                // the struct, as any subsequent start offset error will be
                // detected by an end offset error of the previous field.
                assert!(
                    SUM == $offset_start,
                    concat!(
                        "Invalid start offset for padding ",
                        stringify!($padding),
                        " (expected ",
                        stringify!($offset_start),
                        " but actual value differs)",
                    ),
                );

                // The padding field is automatically sized. Provide the start
                // offset of the next field to the next iteration.
                ($offset_end, MAX_ALIGN)
            }
        );
    };
}

/// Define a peripheral memory map containing registers.
///
/// Implementations of memory-mapped registers can use this macro to define the
/// individual registers in the peripheral and their relative address offset
/// from the start of the peripheral's mapped address. An example use for a
/// hypothetical UART driver might look like:
///
/// ```rust,ignore
/// register_structs! {
///     pub UartRegisters {
///         (0x00 => control: ReadWrite<u32, CONTROL::Register>),
///         (0x04 => write_byte: ReadWrite<u32, BYTE::Register>),
///         (0x08 => _reserved1),
///         (0x20 => interrupt_enable: ReadWrite<u32, INTERRUPT::Register>),
///         (0x24 => interrupt_status: ReadWrite<u32, INTERRUPT::Register>),
///         (0x28 => @END),
///     }
/// }
/// ```
///
/// By convention, gaps in the register memory map are named `_reserved`. The
/// macro will automatically compute the size of the reserved field so that the
/// next register is at the correct address.
///
/// The size of the register is denoted by the first parameter in the
/// [`ReadWrite`](crate::registers::ReadWrite) type. The second parameter in the
/// [`ReadWrite`](crate::registers::ReadWrite) type is a register definition
/// which is specified with the
/// [`register_bitfields!()`](crate::register_bitfields) macro.
#[macro_export]
macro_rules! register_structs {
    {
        $(
            $(#[$attr:meta])*
            $vis_struct:vis $name:ident $(<$life:lifetime>)? {
                $( $fields:tt )*
            }
        ),*
    } => {
        $( $crate::register_fields!(@root $(#[$attr])* $vis_struct $name $(<$life>)? { $($fields)* } ); )*
        $( $crate::test_fields!(@root $name $(<$life>)? { $($fields)* } ); )*
    };
}