tock_registers/macros.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Macros for cleanly defining peripheral registers.
#[macro_export]
macro_rules! register_fields {
// Macro entry point.
(@root $(#[$attr_struct:meta])* $vis_struct:vis $name:ident $(<$life:lifetime>)? { $($input:tt)* } ) => {
$crate::register_fields!(
@munch (
$($input)*
) -> {
$vis_struct struct $(#[$attr_struct])* $name $(<$life>)?
}
);
};
// Print the struct once all fields have been munched.
(@munch
(
$(#[$attr_end:meta])*
($offset:expr => @END),
)
-> {$vis_struct:vis struct $(#[$attr_struct:meta])* $name:ident $(<$life:lifetime>)? $(
$(#[$attr:meta])*
($vis:vis $id:ident: $ty:ty)
)*}
) => {
$(#[$attr_struct])*
#[repr(C)]
$vis_struct struct $name $(<$life>)? {
$(
$(#[$attr])*
$vis $id: $ty
),*
}
};
// Munch field.
(@munch
(
$(#[$attr:meta])*
($offset_start:expr => $vis:vis $field:ident: $ty:ty),
$($after:tt)*
)
-> {$($output:tt)*}
) => {
$crate::register_fields!(
@munch (
$($after)*
) -> {
$($output)*
$(#[$attr])*
($vis $field: $ty)
}
);
};
// Munch padding.
(@munch
(
$(#[$attr:meta])*
($offset_start:expr => $padding:ident),
$(#[$attr_next:meta])*
($offset_end:expr => $($next:tt)*),
$($after:tt)*
)
-> {$($output:tt)*}
) => {
$crate::register_fields!(
@munch (
$(#[$attr_next])*
($offset_end => $($next)*),
$($after)*
) -> {
$($output)*
$(#[$attr])*
($padding: [u8; $offset_end - $offset_start])
}
);
};
}
// TODO: All of the rustdoc tests below use a `should_fail` attribute instead of
// `should_panic` because a const panic will result in a failure to evaluate a
// constant value, and thus a compiler error. However, this means that these
// examples could break for unrelated reasons, trigger a compiler error, but not
// test the desired assertion any longer. This should be switched to a
// `should_panic`-akin attribute which works for const panics, once that is
// available.
/// Statically validate the size and offsets of the fields defined
/// within the register struct through the `register_structs!()`
/// macro.
///
/// This macro expands to an expression which contains static
/// assertions about various parameters of the individual fields in
/// the register struct definition. It will test for:
///
/// - Proper start offset of padding fields. It will fail in cases
/// such as
///
/// ```should_fail
/// # #[macro_use]
/// # extern crate tock_registers;
/// # use tock_registers::register_structs;
/// # use tock_registers::registers::ReadWrite;
/// register_structs! {
/// UartRegisters {
/// (0x04 => _reserved),
/// (0x08 => foo: ReadWrite<u32>),
/// (0x0C => @END),
/// }
/// }
/// # // This is required for rustdoc to not place this code snipped into an
/// # // fn main() {...} function.
/// # fn main() { }
/// ```
///
/// In this example, the start offset of `_reserved` should have been `0x00`
/// instead of `0x04`.
///
/// - Correct start offset and end offset (start offset of next field) in actual
/// fields. It will fail in cases such as
///
/// ```should_fail
/// # #[macro_use]
/// # extern crate tock_registers;
/// # use tock_registers::register_structs;
/// # use tock_registers::registers::ReadWrite;
/// register_structs! {
/// UartRegisters {
/// (0x00 => foo: ReadWrite<u32>),
/// (0x05 => bar: ReadWrite<u32>),
/// (0x08 => @END),
/// }
/// }
/// # // This is required for rustdoc to not place this code snipped into an
/// # // fn main() {...} function.
/// # fn main() { }
/// ```
///
/// In this example, the start offset of `bar` and thus the end offset of
/// `foo` should have been `0x04` instead of `0x05`.
///
/// - Invalid alignment of fields.
///
/// - That the end marker matches the actual generated struct size. This will
/// fail in cases such as
///
/// ```should_fail
/// # #[macro_use]
/// # extern crate tock_registers;
/// # use tock_registers::register_structs;
/// # use tock_registers::registers::ReadWrite;
/// register_structs! {
/// UartRegisters {
/// (0x00 => foo: ReadWrite<u32>),
/// (0x04 => bar: ReadWrite<u32>),
/// (0x10 => @END),
/// }
/// }
/// # // This is required for rustdoc to not place this code snipped into an
/// # // fn main() {...} function.
/// # fn main() { }
/// ```
#[macro_export]
macro_rules! test_fields {
// This macro works by iterating over all defined fields, until it hits an
// ($size:expr => @END) field. Each iteration generates an expression which,
// when evaluated, yields the current byte offset in the fields. Thus, when
// reading a field or padding, the field or padding length must be added to
// the returned size.
//
// By feeding this expression recursively into the macro, deeper invocations
// can continue validating fields through knowledge of the current offset
// and the remaining fields.
//
// The nested expression returned by this macro is guaranteed to be
// const-evaluable.
// Macro entry point.
(@root $struct:ident $(<$life:lifetime>)? { $($input:tt)* } ) => {
// Start recursion at offset 0.
$crate::test_fields!(@munch $struct $(<$life>)? ($($input)*) : (0, 0));
};
// Consume the ($size:expr => @END) field, which MUST be the last field in
// the register struct.
(@munch $struct:ident $(<$life:lifetime>)?
(
$(#[$attr_end:meta])*
($size:expr => @END),
)
: $stmts:expr
) => {
const _: () = {
// We've reached the end! Normally it is sufficient to compare the
// struct's size to the reported end offet. However, we must
// evaluate the previous iterations' expressions for them to have an
// effect anyways, so we can perform an internal sanity check on
// this value as well.
const SUM_MAX_ALIGN: (usize, usize) = $stmts;
const SUM: usize = SUM_MAX_ALIGN.0;
const MAX_ALIGN: usize = SUM_MAX_ALIGN.1;
// Internal sanity check. If we have reached this point and
// correctly iterated over the struct's fields, the current offset
// and the claimed end offset MUST be equal.
assert!(SUM == $size);
const STRUCT_SIZE: usize = core::mem::size_of::<$struct $(<$life>)?>();
const ALIGNMENT_CORRECTED_SIZE: usize = if $size % MAX_ALIGN != 0 { $size + (MAX_ALIGN - ($size % MAX_ALIGN)) } else { $size };
assert!(
STRUCT_SIZE == ALIGNMENT_CORRECTED_SIZE,
"{}",
concat!(
"Invalid size for struct ",
stringify!($struct),
" (expected ",
stringify!($size),
", actual struct size differs)",
),
);
};
};
// Consume a proper ($offset:expr => $field:ident: $ty:ty) field.
(@munch $struct:ident $(<$life:lifetime>)?
(
$(#[$attr:meta])*
($offset_start:expr => $vis:vis $field:ident: $ty:ty),
$(#[$attr_next:meta])*
($offset_end:expr => $($next:tt)*),
$($after:tt)*
)
: $output:expr
) => {
$crate::test_fields!(
@munch $struct $(<$life>)? (
$(#[$attr_next])*
($offset_end => $($next)*),
$($after)*
) : {
// Evaluate the previous iterations' expression to determine the
// current offset.
const SUM_MAX_ALIGN: (usize, usize) = $output;
const SUM: usize = SUM_MAX_ALIGN.0;
const MAX_ALIGN: usize = SUM_MAX_ALIGN.1;
// Validate the start offset of the current field. This check is
// mostly relevant for when this is the first field in the
// struct, as any subsequent start offset error will be detected
// by an end offset error of the previous field.
assert!(
SUM == $offset_start,
"{}",
concat!(
"Invalid start offset for field ",
stringify!($field),
" (expected ",
stringify!($offset_start),
" but actual value differs)",
),
);
// Validate that the start offset of the current field within
// the struct matches the type's minimum alignment constraint.
const ALIGN: usize = core::mem::align_of::<$ty>();
// Clippy can tell that (align - 1) is zero for some fields, so
// we allow this lint and further encapsule the assert! as an
// expression, such that the allow attr can apply.
#[allow(clippy::bad_bit_mask)]
{
assert!(
SUM & (ALIGN - 1) == 0,
"{}",
concat!(
"Invalid alignment for field ",
stringify!($field),
" (offset differs from expected)",
),
);
}
// Add the current field's length to the offset and validate the
// end offset of the field based on the next field's claimed
// start offset.
const NEW_SUM: usize = SUM + core::mem::size_of::<$ty>();
assert!(
NEW_SUM == $offset_end,
"{}",
concat!(
"Invalid end offset for field ",
stringify!($field),
" (expected ",
stringify!($offset_end),
" but actual value differs)",
),
);
// Determine the new maximum alignment. core::cmp::max(ALIGN,
// MAX_ALIGN) does not work here, as the function is not const.
const NEW_MAX_ALIGN: usize = if ALIGN > MAX_ALIGN { ALIGN } else { MAX_ALIGN };
// Provide the updated offset and alignment to the next
// iteration.
(NEW_SUM, NEW_MAX_ALIGN)
}
);
};
// Consume a padding ($offset:expr => $padding:ident) field.
(@munch $struct:ident $(<$life:lifetime>)?
(
$(#[$attr:meta])*
($offset_start:expr => $padding:ident),
$(#[$attr_next:meta])*
($offset_end:expr => $($next:tt)*),
$($after:tt)*
)
: $output:expr
) => {
$crate::test_fields!(
@munch $struct $(<$life>)? (
$(#[$attr_next])*
($offset_end => $($next)*),
$($after)*
) : {
// Evaluate the previous iterations' expression to determine the
// current offset.
const SUM_MAX_ALIGN: (usize, usize) = $output;
const SUM: usize = SUM_MAX_ALIGN.0;
const MAX_ALIGN: usize = SUM_MAX_ALIGN.1;
// Validate the start offset of the current padding field. This
// check is mostly relevant for when this is the first field in
// the struct, as any subsequent start offset error will be
// detected by an end offset error of the previous field.
assert!(
SUM == $offset_start,
concat!(
"Invalid start offset for padding ",
stringify!($padding),
" (expected ",
stringify!($offset_start),
" but actual value differs)",
),
);
// The padding field is automatically sized. Provide the start
// offset of the next field to the next iteration.
($offset_end, MAX_ALIGN)
}
);
};
}
/// Define a peripheral memory map containing registers.
///
/// Implementations of memory-mapped registers can use this macro to define the
/// individual registers in the peripheral and their relative address offset
/// from the start of the peripheral's mapped address. An example use for a
/// hypothetical UART driver might look like:
///
/// ```rust,ignore
/// register_structs! {
/// pub UartRegisters {
/// (0x00 => control: ReadWrite<u32, CONTROL::Register>),
/// (0x04 => write_byte: ReadWrite<u32, BYTE::Register>),
/// (0x08 => _reserved1),
/// (0x20 => interrupt_enable: ReadWrite<u32, INTERRUPT::Register>),
/// (0x24 => interrupt_status: ReadWrite<u32, INTERRUPT::Register>),
/// (0x28 => @END),
/// }
/// }
/// ```
///
/// By convention, gaps in the register memory map are named `_reserved`. The
/// macro will automatically compute the size of the reserved field so that the
/// next register is at the correct address.
///
/// The size of the register is denoted by the first parameter in the
/// [`ReadWrite`](crate::registers::ReadWrite) type. The second parameter in the
/// [`ReadWrite`](crate::registers::ReadWrite) type is a register definition
/// which is specified with the
/// [`register_bitfields!()`](crate::register_bitfields) macro.
#[macro_export]
macro_rules! register_structs {
{
$(
$(#[$attr:meta])*
$vis_struct:vis $name:ident $(<$life:lifetime>)? {
$( $fields:tt )*
}
),*
} => {
$( $crate::register_fields!(@root $(#[$attr])* $vis_struct $name $(<$life>)? { $($fields)* } ); )*
$( $crate::test_fields!(@root $name $(<$life>)? { $($fields)* } ); )*
};
}