capsules_extra/ieee802154/
xmac.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! X-MAC protocol layer for low power 802.15.4 reception, intended primarily
//! to manage an Atmel RF233 radio.
//!
//! Original X-MAC paper, on which this implementation is heavily based:
//!     <http://www.cs.cmu.edu/~andersoe/papers/xmac-sensys.pdf>
//!
//! Nodes using this layer place their radios to sleep for the vast majority of
//! the time, thereby reducing power consumption. Transmitters wake and send a
//! stream of small, strobed `preamble` packets to the desired recipient. If a
//! receiver wakes and ACKS a relevant preamble, the receiver waits for a data
//! packet before returning to sleep. See comments below for implementation
//! details.
//!
//! Additional notes:
//!
//!   * Since much of a node's time is spent sleeping, transmission latency is
//!     much higher than using a radio that is always powered on.
//!   * Err(ErrorCode::NOACK)s may be generated when transmitting, if the
//!     destination node cannot acknowledge within the maximum retry interval.
//!   * Since X-MAC relies on proper sleep/wake behavior for all nodes, any
//!     node with this implementation will not be able to communicate correctly
//!     with non-XMAC-wrapped radios.
//!
//! Usage
//! -----
//! This capsule implements the `capsules::ieee802154::mac::Mac` interface while
//! wrapping an actual `kernel::hil::radio::Radio' with a similar interface, and
//! can be used as the backend for a `capsules::ieee802154::device::MacDevice`,
//! which should fully encode frames before passing it to this layer.
//!
//! In general, given a radio driver `RF233Device`,
//! a `kernel::hil::time::Alarm`, and a `kernel::hil::rng::Rng` device, the
//! necessary modifications to the board configuration are shown below for `imix`s:
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! // main.rs
//!
//! use capsules::ieee802154::mac::Mac;
//! use capsules::ieee802154::xmac;
//! type XMacDevice = capsules::ieee802154::xmac::XMac<'static, RF233Device, Alarm>;
//!
//! // ...
//! // XMac needs one buffer in addition to those provided to the RF233 driver.
//! //   1. stores actual packet contents to free the SPI buffers used by the
//! //      radio for transmitting preamble packets
//! static mut MAC_BUF: [u8; radio::MAX_BUF_SIZE] = [0x00; radio::MAX_BUF_SIZE];
//! // ...
//! let xmac: &XMacDevice = static_init!(XMacDevice, xmac::XMac::new(rf233, alarm, rng, &mut MAC_BUF));
//! rng.set_client(xmac);
//! alarm.set_client(xmac);
//!
//! // Hook up the radio to the XMAC implementation.
//! rf233.set_transmit_client(xmac);
//! rf233.set_receive_client(xmac, &mut RF233_RX_BUF);
//! rf233.set_power_client(xmac);
//!
//! xmac.initialize();
//!
//! // We can now use the XMac driver to instantiate a MacDevice like a Framer
//! let mac_device = static_init!(
//!     capsules::ieee802154::framer::Framer<'static, XMacDevice>,
//!     capsules::ieee802154::framer::Framer::new(xmac));
//! xmac.set_transmit_client(mac_device);
//! xmac.set_receive_client(mac_device);
//! xmac.set_config_client(mac_device);
//! ```

//
// TODO: Test no-preamble transmission with randomized backoff, requires 3
//       devices.
// TODO: Modifying sleep time with traffic load to optimize energy usage.
// TODO: Remove expectation that radios cancel pending sleeps when receiving a
//       new packet (see line 652).
//
// Author: Jean-Luc Watson
// Date: Nov 21 2017
//

use crate::ieee802154::mac::Mac;
use crate::net::ieee802154::{FrameType, FrameVersion, Header, MacAddress, PanID};
use core::cell::Cell;
use kernel::hil::radio;
use kernel::hil::rng::{self, Rng};
use kernel::hil::time::{self, Alarm, ConvertTicks, Ticks};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;

// Time the radio will remain awake listening for packets before sleeping.
// Observing the RF233, receive callbacks for preambles are generated only after
// having been awake for more than 4-6 ms; 10 ms is a safe amount of time where
// we are very likely to pick up any incoming preambles, and is half as much
// as the 20 ms lower bound in Buettner et al.
const WAKE_TIME_MS: u32 = 10;
// Time the radio will sleep between wakes. Configurable to any desired value
// less than or equal to the max time the transmitter sends preambles before
// abandoning the transmission.
const SLEEP_TIME_MS: u32 = 250;
// Time the radio will continue to send preamble packets before aborting the
// transmission and returning NOACK. Should be at least as large as the maximum
// sleep time for any node in the network.
const PREAMBLE_TX_MS: u32 = 251;

// Maximum backoff for a transmitter attempting to send a data packet, when the
// node has detected a data packet sent to the same destination from another
// transmitter. This is an optimization that eliminates the need for any
// preambles when the receiving node is shown to already be awake.
const MAX_TX_BACKOFF_MS: u32 = 10;
// After receiving a data packet, maximum time a node will stay awake to receive
// any additional incoming packets before going to sleep.
const MAX_RX_SLEEP_DELAY_MS: u32 = MAX_TX_BACKOFF_MS;

#[allow(non_camel_case_types)]
#[derive(Copy, Clone, PartialEq)]
enum XMacState {
    // The primary purpose of these states is to manage the timer that runs the
    // protocol and determines the state of the radio (e.g. if in SLEEP, an
    // alarm indicates we should transition to AWAKE).
    AWAKE,       // Awake and listening for incoming preambles
    DELAY_SLEEP, // Receiving done; waiting for any other incoming data packets
    SLEEP,       // Asleep and not receiving or transmitting
    STARTUP,     // Radio waking up, PowerClient::on() transitions to next state
    TX_PREAMBLE, // Transmitting preambles and waiting for an ACK
    TX,          // Transmitting data packet to the destination node
    TX_DELAY,    // Backing off to send data directly without preamble
}

// Information extracted for each packet from the data buffer provided to
// transmit(), used to generate preamble packets and detect when a delayed
// direct transmission (described above) is appropriate.
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct XMacHeaderInfo {
    pub dst_pan: Option<PanID>,
    pub dst_addr: Option<MacAddress>,
    pub src_pan: Option<PanID>,
    pub src_addr: Option<MacAddress>,
}

// The X-MAC `driver` consists primarily of a backend radio driver, an alarm for
// transitioning between different portions of the protocol, and a source of
// randomness for transmit backoffs. In addition, we maintain two packet buffers
// (one for transmit, one for receive) that cycle without copying between XMAC,
// the tx/rx client, and the underlying radio driver. The transmit buffer can
// also hold the actual data packet contents while preambles are being
// transmitted.
pub struct XMac<'a, R: radio::Radio<'a>, A: Alarm<'a>> {
    radio: &'a R,
    alarm: &'a A,
    rng: &'a dyn Rng<'a>,
    tx_client: OptionalCell<&'a dyn radio::TxClient>,
    rx_client: OptionalCell<&'a dyn radio::RxClient>,
    state: Cell<XMacState>,
    delay_sleep: Cell<bool>,

    tx_header: Cell<Option<XMacHeaderInfo>>,
    tx_payload: TakeCell<'static, [u8]>,
    tx_len: Cell<usize>,

    tx_preamble_pending: Cell<bool>,
    tx_preamble_seq_num: Cell<u8>,
    tx_preamble_buf: TakeCell<'static, [u8]>,

    rx_pending: Cell<bool>,
}

impl<'a, R: radio::Radio<'a>, A: Alarm<'a>> XMac<'a, R, A> {
    pub fn new(
        radio: &'a R,
        alarm: &'a A,
        rng: &'a dyn Rng<'a>,
        mac_buf: &'static mut [u8],
    ) -> XMac<'a, R, A> {
        XMac {
            radio,
            alarm,
            rng,
            tx_client: OptionalCell::empty(),
            rx_client: OptionalCell::empty(),
            state: Cell::new(XMacState::STARTUP),
            delay_sleep: Cell::new(false),
            tx_header: Cell::new(None),
            tx_payload: TakeCell::empty(),
            tx_len: Cell::new(0),
            tx_preamble_pending: Cell::new(false),
            tx_preamble_seq_num: Cell::new(0),
            tx_preamble_buf: TakeCell::new(mac_buf),
            rx_pending: Cell::new(false),
        }
    }

    fn sleep_time(&self) -> u32 {
        // TODO (ongoing) modify based on traffic load to efficiently schedule
        // sleep. Currently sleeps for a constant amount of time.
        SLEEP_TIME_MS
    }

    fn sleep(&self) {
        // If transmitting/delaying sleep, we don't want to try to sleep (again)
        if self.state.get() == XMacState::AWAKE {
            // If we should delay sleep (completed RX), set timer accordingly
            if self.delay_sleep.get() {
                self.state.set(XMacState::DELAY_SLEEP);
                self.set_timer_ms(MAX_RX_SLEEP_DELAY_MS);

            // Otherwise, don't sleep if expecting a data packet or transmitting
            } else if !self.rx_pending.get() {
                let _ = self.radio.stop();
                self.state.set(XMacState::SLEEP);
                self.set_timer_ms(self.sleep_time());
            }
        }
    }

    // Sets the timer to fire a set number of milliseconds in the future based
    // on the current tick value.
    fn set_timer_ms(&self, ms: u32) {
        let interval = self.alarm.ticks_from_ms(ms);
        self.set_timer(interval);
    }

    fn set_timer(&self, ticks: A::Ticks) {
        self.alarm.set_alarm(self.alarm.now(), ticks);
    }

    fn transmit_preamble(&self) {
        let mut result: Result<(), (ErrorCode, &'static mut [u8])> = Ok(());
        let buf = self.tx_preamble_buf.take().unwrap();
        let tx_header = self.tx_header.get().unwrap();

        // If we're not currently sending preambles, skip transmission
        if let XMacState::TX_PREAMBLE = self.state.get() {
            // Generate preamble frame. We use a reserved frame type (0b101) to
            // distinguish from regular data frames, increment a sequence
            // number for each consecutive packet sent, and send with no
            // security.
            let header = Header {
                frame_type: FrameType::Multipurpose,
                frame_pending: false,
                ack_requested: true,
                version: FrameVersion::V2006,
                seq: Some(self.tx_preamble_seq_num.get()),
                dst_pan: tx_header.dst_pan,
                dst_addr: tx_header.dst_addr,
                src_pan: tx_header.src_pan,
                src_addr: tx_header.src_addr,
                security: None,
                header_ies: Default::default(),
                header_ies_len: 0,
                payload_ies: Default::default(),
                payload_ies_len: 0,
            };

            self.tx_preamble_seq_num
                .set(self.tx_preamble_seq_num.get() + 1);

            match header.encode(&mut buf[radio::PSDU_OFFSET..], true).done() {
                // If we can successfully encode the preamble, transmit.
                Some((data_offset, _)) => {
                    result = self.radio.transmit(buf, data_offset + radio::PSDU_OFFSET);
                }
                None => {
                    self.tx_preamble_buf.replace(buf);
                    self.call_tx_client(
                        self.tx_payload.take().unwrap(),
                        false,
                        Err(ErrorCode::FAIL),
                    );
                    return;
                }
            }
        }

        // If the transmission fails, callback directly back into the client
        let _ = result.map_err(|(ecode, buf)| {
            self.call_tx_client(buf, false, Err(ecode));
        });
    }

    fn transmit_packet(&self) {
        // If we have actual data to transmit, send it and report errors to
        // client.
        if self.tx_payload.is_some() {
            let tx_buf = self.tx_payload.take().unwrap();

            let _ = self
                .radio
                .transmit(tx_buf, self.tx_len.get())
                .map_err(|(ecode, buf)| {
                    self.call_tx_client(buf, false, Err(ecode));
                });
        }
    }

    // Reports back to client that transmission is complete, radio can turn off
    // if not kept awake by other portions of the protocol.
    fn call_tx_client(&self, buf: &'static mut [u8], acked: bool, result: Result<(), ErrorCode>) {
        self.state.set(XMacState::AWAKE);
        self.sleep();
        self.tx_client.map(move |c| {
            c.send_done(buf, acked, result);
        });
    }

    // Reports any received packet back to the client and starts going to sleep.
    // Does not propagate preamble packets up to the RxClient.
    fn call_rx_client(
        &self,
        buf: &'static mut [u8],
        len: usize,
        lqi: u8,
        crc_valid: bool,
        result: Result<(), ErrorCode>,
    ) {
        self.delay_sleep.set(true);
        self.sleep();

        self.rx_client.map(move |c| {
            c.receive(buf, len, lqi, crc_valid, result);
        });
    }
}

impl<'a, R: radio::Radio<'a>, A: Alarm<'a>> rng::Client for XMac<'a, R, A> {
    fn randomness_available(
        &self,
        randomness: &mut dyn Iterator<Item = u32>,
        _error: Result<(), ErrorCode>,
    ) -> rng::Continue {
        match randomness.next() {
            Some(random) => {
                if self.state.get() == XMacState::TX_DELAY {
                    // When another data packet to our desired destination is
                    // detected, we backoff a random amount before sending our
                    // own data with no preamble. This assumes that the reciever
                    // will remain awake long enough to receive our transmission,
                    // as it should with this implementation. Since Rng is
                    // asynchronous, we account for the time spent waiting for
                    // the callback and randomly determine the remaining time
                    // spent backing off.
                    let ticks_remaining = self.alarm.get_alarm().wrapping_sub(self.alarm.now());
                    let backoff = A::Ticks::from(ticks_remaining.into_u32() % random);
                    self.set_timer(backoff);
                }
                rng::Continue::Done
            }
            None => rng::Continue::More,
        }
    }
}

// The vast majority of these calls pass through to the underlying radio driver.
impl<'a, R: radio::Radio<'a>, A: Alarm<'a>> Mac<'a> for XMac<'a, R, A> {
    fn initialize(&self) -> Result<(), ErrorCode> {
        self.state.set(XMacState::STARTUP);
        Ok(())
    }

    // Always lie and say the radio is on when sleeping, as XMAC will wake up
    // itself to send preambles if necessary.
    fn is_on(&self) -> bool {
        if self.state.get() == XMacState::SLEEP {
            return true;
        }
        self.radio.is_on()
    }

    fn start(&self) -> Result<(), ErrorCode> {
        self.state.set(XMacState::STARTUP);
        self.radio.start()
    }

    fn set_config_client(&self, client: &'a dyn radio::ConfigClient) {
        self.radio.set_config_client(client)
    }

    fn set_address(&self, addr: u16) {
        self.radio.set_address(addr)
    }

    fn set_address_long(&self, addr: [u8; 8]) {
        self.radio.set_address_long(addr)
    }

    fn set_pan(&self, id: u16) {
        self.radio.set_pan(id)
    }

    fn get_address(&self) -> u16 {
        self.radio.get_address()
    }

    fn get_address_long(&self) -> [u8; 8] {
        self.radio.get_address_long()
    }

    fn get_pan(&self) -> u16 {
        self.radio.get_pan()
    }

    fn config_commit(&self) {
        self.radio.config_commit()
    }

    fn set_transmit_client(&self, client: &'a dyn radio::TxClient) {
        self.tx_client.set(client);
    }

    fn set_receive_client(&self, client: &'a dyn radio::RxClient) {
        self.rx_client.set(client);
    }

    fn set_receive_buffer(&self, buffer: &'static mut [u8]) {
        self.radio.set_receive_buffer(buffer);
    }

    fn transmit(
        &self,
        full_mac_frame: &'static mut [u8],
        frame_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        // If the radio is busy, we already have data to transmit, or the buffer
        // size is wrong, fail before attempting to send any preamble packets
        // (and waking up the radio).
        let frame_len = frame_len + radio::MFR_SIZE;
        if self.radio.busy() || self.tx_payload.is_some() {
            return Err((ErrorCode::BUSY, full_mac_frame));
        } else if radio::PSDU_OFFSET + frame_len >= full_mac_frame.len() {
            return Err((ErrorCode::SIZE, full_mac_frame));
        }

        match Header::decode(&full_mac_frame[radio::PSDU_OFFSET..], false).done() {
            Some((_, (header, _))) => {
                self.tx_len.set(frame_len - radio::PSDU_OFFSET);
                self.tx_header.set(Some(XMacHeaderInfo {
                    dst_addr: header.dst_addr,
                    dst_pan: header.dst_pan,
                    src_addr: header.src_addr,
                    src_pan: header.src_pan,
                }));
            }
            None => {
                self.tx_header.set(None);
            }
        }

        match self.tx_header.get() {
            Some(_) => {
                self.tx_payload.replace(full_mac_frame);
            }
            None => {
                return Err((ErrorCode::FAIL, full_mac_frame));
            }
        }

        self.tx_preamble_seq_num.set(0);

        // If the radio is on, start the preamble timer and start transmitting
        if self.radio.is_on() {
            self.state.set(XMacState::TX_PREAMBLE);
            self.set_timer_ms(PREAMBLE_TX_MS);
            self.transmit_preamble();

        // If the radio is currently sleeping, wake it and indicate that when
        // ready, it should begin transmitting preambles
        } else {
            self.state.set(XMacState::STARTUP);
            self.tx_preamble_pending.set(true);
            let _ = self.radio.start();
        }

        Ok(())
    }
}

// Core of the XMAC protocol - when the timer fires, the protocol state
// indicates the next state/action to take.
impl<'a, R: radio::Radio<'a>, A: Alarm<'a>> time::AlarmClient for XMac<'a, R, A> {
    fn alarm(&self) {
        match self.state.get() {
            XMacState::SLEEP => {
                // If asleep, start the radio and wait for the PowerClient to
                // indicate that the radio is ready
                if !self.radio.is_on() {
                    self.state.set(XMacState::STARTUP);
                    let _ = self.radio.start();
                } else {
                    self.set_timer_ms(WAKE_TIME_MS);
                    self.state.set(XMacState::AWAKE);
                }
            }
            // If we've been delaying sleep or haven't heard any incoming
            // preambles, turn the radio off.
            XMacState::AWAKE => {
                self.sleep();
            }
            XMacState::DELAY_SLEEP => {
                self.delay_sleep.set(false);
                self.state.set(XMacState::AWAKE);
                self.sleep();
            }
            // If we've sent preambles for longer than the maximum sleep time of
            // any node in the network, then our destination is non-responsive;
            // return NOACK to the client.
            XMacState::TX_PREAMBLE => {
                self.call_tx_client(
                    self.tx_payload.take().unwrap(),
                    false,
                    Err(ErrorCode::NOACK),
                );
            }
            // After a randomized backoff period, transmit the data directly.
            XMacState::TX_DELAY => {
                self.state.set(XMacState::TX);
                self.transmit_packet();
            }
            _ => {}
        }
    }
}

impl<'a, R: radio::Radio<'a>, A: Alarm<'a>> radio::PowerClient for XMac<'a, R, A> {
    fn changed(&self, on: bool) {
        // If the radio turns on and we're in STARTUP, then either transition to
        // listening for incoming preambles or start transmitting preambles if
        // the radio was turned on for a transmission.
        if on {
            if let XMacState::STARTUP = self.state.get() {
                if self.tx_preamble_pending.get() {
                    self.tx_preamble_pending.set(false);
                    self.state.set(XMacState::TX_PREAMBLE);
                    self.set_timer_ms(PREAMBLE_TX_MS);
                    self.transmit_preamble();
                } else {
                    self.state.set(XMacState::AWAKE);
                    self.set_timer_ms(WAKE_TIME_MS);
                }
            }
        }
    }
}

impl<'a, R: radio::Radio<'a>, A: Alarm<'a>> radio::TxClient for XMac<'a, R, A> {
    fn send_done(&self, buf: &'static mut [u8], acked: bool, result: Result<(), ErrorCode>) {
        match self.state.get() {
            // Completed a data transmission to the destination node
            XMacState::TX => {
                self.call_tx_client(buf, acked, result);
            }
            // Completed a preamble transmission
            XMacState::TX_PREAMBLE => {
                self.tx_preamble_buf.replace(buf);
                if acked {
                    // Destination signals ready to receive data
                    self.state.set(XMacState::TX);
                    self.transmit_packet();
                } else {
                    // Continue resending preambles
                    self.transmit_preamble();
                }
            }
            XMacState::TX_DELAY | XMacState::SLEEP => {
                // If, while sending preambles, we switch to TX_DELAY mode, the
                // last preamble sent will complete afterwards. If no ACK, the
                // radio may have fallen sleep before the callback is processed.
                self.tx_preamble_buf.replace(buf);
            }
            _ => {}
        }
    }
}

// The receive callback is complicated by the fact that, to determine when a
// destination node is receiving packets/awake while we are attempting a
// transmission, we put the radio in promiscuous mode. Not a huge issue, but
// we need to be wary of incoming packets not actually addressed to our node.
impl<'a, R: radio::Radio<'a>, A: Alarm<'a>> radio::RxClient for XMac<'a, R, A> {
    fn receive(
        &self,
        buf: &'static mut [u8],
        frame_len: usize,
        lqi: u8,
        crc_valid: bool,
        result: Result<(), ErrorCode>,
    ) {
        let mut data_received: bool = false;
        let mut continue_sleep: bool = true;

        // First, check to make sure we can decode the MAC header (especially
        // the destination address) to see if we can backoff/send pending
        // transmission.
        if let Some((_, (header, _))) = Header::decode(&buf[radio::PSDU_OFFSET..], false).done() {
            if let Some(dst_addr) = header.dst_addr {
                let addr_match = match dst_addr {
                    MacAddress::Short(addr) => addr == self.radio.get_address(),
                    MacAddress::Long(long_addr) => long_addr == self.radio.get_address_long(),
                };
                // The destination doesn't match our address, check to see if we
                // can backoff a pending transmission if it exists rather than
                // continue sending preambles.
                if !addr_match {
                    if self.state.get() == XMacState::TX_PREAMBLE {
                        if let Some(tx_dst_addr) = self.tx_header.get().and_then(|hdr| hdr.dst_addr)
                        {
                            if tx_dst_addr == dst_addr {
                                // Randomize backoff - since the callback is asynchronous, set the
                                // timer for the max and adjust later. As a result, we can't
                                // backoff for more than the Rng generation time.
                                self.state.set(XMacState::TX_DELAY);
                                let _ = self.rng.get();
                                self.set_timer_ms(MAX_TX_BACKOFF_MS);
                                continue_sleep = false;
                            }
                        }
                    }
                } else {
                    // We've received either a preamble or data packet
                    match header.frame_type {
                        FrameType::Multipurpose => {
                            continue_sleep = false;
                            self.rx_pending.set(true);
                        }
                        FrameType::Data => {
                            continue_sleep = false;
                            data_received = true;
                        }
                        _ => {}
                    }
                }
            }
        }

        // TODO: this currently assumes that upon receiving a packet, the radio
        // will cancel a pending sleep, and an additional call to Radio::stop()
        // is required to shut down the radio. This works specifically for the
        // RF233 with the added line at rf233.rs:744. In progress: it might be
        // possible to remove this requirement.
        if self.state.get() == XMacState::SLEEP {
            self.state.set(XMacState::AWAKE);
        }

        if data_received {
            self.rx_pending.set(false);
            self.call_rx_client(buf, frame_len, lqi, crc_valid, result);
        } else {
            self.radio.set_receive_buffer(buf);
        }

        // If we should go to sleep (i.e. not waiting up for any additional data
        // packets), shut the radio down. If a prior sleep was pending, it was
        // cancelled as the result of the RX (see above).
        if continue_sleep {
            self.sleep();
        }
    }
}