capsules_extra/usb/
cdc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Communications Class Device for USB
//!
//! This capsule allows Tock to support a serial port over USB.

use core::cell::Cell;
use core::cmp;

use super::descriptors;
use super::descriptors::Buffer64;
use super::descriptors::CdcInterfaceDescriptor;
use super::descriptors::EndpointAddress;
use super::descriptors::EndpointDescriptor;
use super::descriptors::InterfaceDescriptor;
use super::descriptors::TransferDirection;
use super::usbc_client_ctrl::ClientCtrl;

use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil;
use kernel::hil::time::{Alarm, AlarmClient, ConvertTicks};
use kernel::hil::uart;
use kernel::hil::usb::TransferType;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::cells::TakeCell;
use kernel::utilities::cells::VolatileCell;
use kernel::ErrorCode;

/// Identifying number for the endpoint when transferring data from us to the
/// host.
const ENDPOINT_IN_NUM: usize = 2;
/// Identifying number for the endpoint when transferring data from the host to
/// us.
const ENDPOINT_OUT_NUM: usize = 3;

static LANGUAGES: &[u16; 1] = &[
    0x0409, // English (United States)
];
/// Platform-specific packet length for the `SAM4L` USB hardware.
pub const MAX_CTRL_PACKET_SIZE_SAM4L: u8 = 8;
/// Platform-specific packet length for the `nRF52` USB hardware.
pub const MAX_CTRL_PACKET_SIZE_NRF52840: u8 = 64;
/// Platform-specific packet length for the `earlgrey` USB hardware.
pub const MAX_CTRL_PACKET_SIZE_EARLGREY: u8 = 64;
/// Number of ms to buffer uart transmissions before beginning to drop them.
///
/// This is useful in that it allows users time to connect over CDC without losing message,
/// while still guaranteeing that blocking uart transmissions eventually get a callback even
/// if a debug output is not connected.
pub const CDC_BUFFER_TIMEOUT_MS: u32 = 10000;

const N_ENDPOINTS: usize = 3;

/// States of the CDC driver.
#[derive(Debug, Copy, Clone, PartialEq)]
enum State {
    /// Default state. User must call `enable()`.
    Disabled,
    /// `enable()` has been called. The descriptor format has been passed to the
    /// hardware.
    Enabled,
    /// `attach()` has been called. The hardware should be ready for a host to
    /// connect.
    Attached,
    /// The host has enumerated this USB device. Things should be functional at
    /// this point.
    Enumerated,
    /// We are seeing the CDC messages that we expect to signal that a CDC
    /// client has connected. We want to see that both line coding and line
    /// state ctrl messages have been received. We stay in the "connecting"
    /// state until the USB transfers for both ctrl messages have completed.
    Connecting { line_coding: bool, line_state: bool },
    /// We have seen the necessary setup messages in the `Connecting` state, now
    /// we delay just to ensure the host has enough time to receive _and
    /// display_ messages.
    ConnectingDelay,
    /// A CDC client is connected. We can safely send data.
    Connected,
}

/// States of the Control Endpoint related to CDC-ACM.
#[derive(Debug, Copy, Clone, PartialEq)]
enum CtrlState {
    /// No ongoing ctrl transcation.
    Idle,
    /// Host has sent a SET_LINE_CODING configuration request.
    SetLineCoding,
    /// Host has send a SET_CONTROL_LINE_STATE configuration request.
    SetControlLineState,
}

#[derive(PartialEq)]
enum CDCCntrlMessage {
    NotSupported,
    SetLineCoding = 0x20,
    SetControlLineState = 0x22,
    SendBreak = 0x23,
}

impl From<u8> for CDCCntrlMessage {
    fn from(num: u8) -> Self {
        match num {
            0x20 => CDCCntrlMessage::SetLineCoding,
            0x22 => CDCCntrlMessage::SetControlLineState,
            0x23 => CDCCntrlMessage::SendBreak,
            _ => CDCCntrlMessage::NotSupported,
        }
    }
}

/// Implementation of the Abstract Control Model (ACM) for the Communications
/// Class Device (CDC) over USB.
pub struct CdcAcm<'a, U: 'a, A: 'a + Alarm<'a>> {
    /// Helper USB client library for handling many USB operations.
    client_ctrl: ClientCtrl<'a, 'static, U>,

    /// 64 byte buffers for each endpoint.
    buffers: [Buffer64; N_ENDPOINTS],

    /// Current state of the CDC driver. This helps us track if a CDC client is
    /// connected and listening or not.
    state: Cell<State>,

    /// Current state of the Control Endpoint. This tracks which configuration
    /// request the host is currently sending us.
    ctrl_state: Cell<CtrlState>,

    /// A holder reference for the TX buffer we are transmitting from.
    tx_buffer: TakeCell<'static, [u8]>,
    /// The number of bytes the client has asked us to send. We track this so we
    /// can pass it back to the client when the transmission has finished.
    tx_len: Cell<usize>,
    /// Where in the `tx_buffer` we need to start sending from when we continue.
    tx_offset: Cell<usize>,
    /// The TX client to use when transmissions finish.
    tx_client: OptionalCell<&'a dyn uart::TransmitClient>,

    /// A holder for the buffer to receive bytes into. We use this as a flag as
    /// well, if we have a buffer then we are actively doing a receive.
    rx_buffer: TakeCell<'static, [u8]>,
    /// How many bytes the client wants us to receive.
    rx_len: Cell<usize>,
    /// How many bytes we have received so far.
    rx_offset: Cell<usize>,
    /// The RX client to use when RX data is received.
    rx_client: OptionalCell<&'a dyn uart::ReceiveClient>,

    /// Alarm used to indicate that data should be dropped and callbacks
    /// returned.
    timeout_alarm: &'a A,
    /// Used to track whether we are in the initial boot up period during which
    /// messages can be queued despite a CDC host not being connected (which is
    /// useful for ensuring debug messages early in the boot process can be
    /// delivered over the console).
    boot_period: Cell<bool>,

    /// Deferred Call
    deferred_call: DeferredCall,
    /// Flag to mark we are waiting on a deferred call for dropping a TX. This
    /// can happen if an upper layer told us to transmit a buffer, but there is
    /// no host connected and therefore we cannot actually transmit. However,
    /// normal UART semantics are that we can always send (perhaps with a
    /// delay), even if nothing is actually listening. To keep the upper layers
    /// happy and to allow this CDC layer to just drop messages, we always
    /// return Ok(()) for TX, and then use a deferred call to signal the
    /// transmit done callback.
    deferred_call_pending_droptx: Cell<bool>,
    /// Flag to mark we need a deferred call to signal a callback after an RX
    /// abort occurs.
    deferred_call_pending_abortrx: Cell<bool>,

    /// Optional host-initiated function. This function (if supplied) is called
    /// when the host sends a special message to the device. The normal signal
    /// for calling this function is the host configuring the baud rate to be
    /// 1200 baud.
    ///
    /// This was originally added for the bootloader to allow the host to tell
    /// the device to enter bootloader mode.
    host_initiated_function: Option<&'a (dyn Fn() + 'a)>,
}

impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> CdcAcm<'a, U, A> {
    pub fn new(
        controller: &'a U,
        max_ctrl_packet_size: u8,
        vendor_id: u16,
        product_id: u16,
        strings: &'static [&'static str; 3],
        timeout_alarm: &'a A,
        host_initiated_function: Option<&'a (dyn Fn() + 'a)>,
    ) -> Self {
        let interfaces: &mut [InterfaceDescriptor] = &mut [
            InterfaceDescriptor {
                interface_number: 0,
                interface_class: 0x02,    // CDC communication
                interface_subclass: 0x02, // abstract control model (ACM)
                interface_protocol: 0x01, // V.25ter (AT commands)
                ..InterfaceDescriptor::default()
            },
            InterfaceDescriptor {
                interface_number: 1,
                interface_class: 0x0a,    // CDC data
                interface_subclass: 0x00, // none
                interface_protocol: 0x00, // none
                ..InterfaceDescriptor::default()
            },
        ];

        let cdc_descriptors: &mut [CdcInterfaceDescriptor] = &mut [
            CdcInterfaceDescriptor {
                subtype: descriptors::CdcInterfaceDescriptorSubType::Header,
                field1: 0x10, // CDC
                field2: 0x11, // CDC
            },
            CdcInterfaceDescriptor {
                subtype: descriptors::CdcInterfaceDescriptorSubType::CallManagement,
                field1: 0x00, // Capabilities
                field2: 0x01, // Data interface 1
            },
            CdcInterfaceDescriptor {
                subtype: descriptors::CdcInterfaceDescriptorSubType::AbstractControlManagement,
                field1: 0x06, // Capabilities
                field2: 0x00, // unused
            },
            CdcInterfaceDescriptor {
                subtype: descriptors::CdcInterfaceDescriptorSubType::Union,
                field1: 0x00, // Interface 0
                field2: 0x01, // Interface 1
            },
        ];

        let endpoints: &[&[EndpointDescriptor]] = &[
            &[EndpointDescriptor {
                endpoint_address: EndpointAddress::new_const(4, TransferDirection::DeviceToHost),
                transfer_type: TransferType::Interrupt,
                max_packet_size: 8,
                interval: 16,
            }],
            &[
                EndpointDescriptor {
                    endpoint_address: EndpointAddress::new_const(
                        2,
                        TransferDirection::DeviceToHost,
                    ),
                    transfer_type: TransferType::Bulk,
                    max_packet_size: 64,
                    interval: 0,
                },
                EndpointDescriptor {
                    endpoint_address: EndpointAddress::new_const(
                        3,
                        TransferDirection::HostToDevice,
                    ),
                    transfer_type: TransferType::Bulk,
                    max_packet_size: 64,
                    interval: 0,
                },
            ],
        ];

        let (device_descriptor_buffer, other_descriptor_buffer) =
            descriptors::create_descriptor_buffers(
                descriptors::DeviceDescriptor {
                    vendor_id,
                    product_id,
                    manufacturer_string: 1,
                    product_string: 2,
                    serial_number_string: 3,
                    class: 0x2, // Class: CDC
                    max_packet_size_ep0: max_ctrl_packet_size,
                    ..descriptors::DeviceDescriptor::default()
                },
                descriptors::ConfigurationDescriptor::default(),
                interfaces,
                endpoints,
                None, // No HID descriptor
                Some(cdc_descriptors),
            );

        Self {
            client_ctrl: ClientCtrl::new(
                controller,
                device_descriptor_buffer,
                other_descriptor_buffer,
                None, // No HID descriptor
                None, // No report descriptor
                LANGUAGES,
                strings,
            ),
            buffers: [
                Buffer64::default(),
                Buffer64::default(),
                Buffer64::default(),
            ],
            state: Cell::new(State::Disabled),
            ctrl_state: Cell::new(CtrlState::Idle),
            tx_buffer: TakeCell::empty(),
            tx_len: Cell::new(0),
            tx_offset: Cell::new(0),
            tx_client: OptionalCell::empty(),
            rx_buffer: TakeCell::empty(),
            rx_len: Cell::new(0),
            rx_offset: Cell::new(0),
            rx_client: OptionalCell::empty(),
            timeout_alarm,
            boot_period: Cell::new(true),
            deferred_call: DeferredCall::new(),
            deferred_call_pending_droptx: Cell::new(false),
            deferred_call_pending_abortrx: Cell::new(false),
            host_initiated_function,
        }
    }

    #[inline]
    pub fn controller(&self) -> &'a U {
        self.client_ctrl.controller()
    }

    #[inline]
    fn buffer(&'a self, i: usize) -> &'a [VolatileCell<u8>; 64] {
        &self.buffers[i - 1].buf
    }

    /// This is a helper function used to indicate successful uart transmission to
    /// a higher layer client despite not actually being connected to a host. Allows
    /// blocking debug interfaces to function in the same way they do when an actual UART
    /// interface is in use. This should only be called in an upcall.
    fn indicate_tx_success(&self) {
        self.tx_len.set(0);
        self.tx_offset.set(0);
        self.tx_client.map(|client| {
            self.tx_buffer.take().map(|buf| {
                client.transmitted_buffer(buf, 0, Err(ErrorCode::FAIL));
            });
        });
    }

    /// Helper function to update the connecting state variable as we progress
    /// through various setup steps that indicate a host is actually connecting
    /// to our serial port.
    ///
    /// - `line_coding`: if true, set. if false, leave to previous value.
    /// - `line_state`:  if true, set. if false, leave to previous value.
    fn set_connecting_state(&self, line_coding: bool, line_state: bool) {
        match self.state.get() {
            State::Enumerated => {
                self.state.set(State::Connecting {
                    line_coding,
                    line_state,
                });
            }
            State::Connecting {
                line_coding: old_lc,
                line_state: old_ls,
            } => {
                self.state.set(State::Connecting {
                    line_coding: if line_coding { true } else { old_lc },
                    line_state: if line_state { true } else { old_ls },
                });
            }
            _ => {}
        }
    }
}

impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> hil::usb::Client<'a>
    for CdcAcm<'a, U, A>
{
    fn enable(&'a self) {
        // Set up the default control endpoint
        self.client_ctrl.enable();

        // Setup buffers for IN and OUT data transfer.
        self.controller()
            .endpoint_set_in_buffer(ENDPOINT_IN_NUM, self.buffer(ENDPOINT_IN_NUM));
        self.controller()
            .endpoint_in_enable(TransferType::Bulk, ENDPOINT_IN_NUM);

        self.controller()
            .endpoint_set_out_buffer(ENDPOINT_OUT_NUM, self.buffer(ENDPOINT_OUT_NUM));
        self.controller()
            .endpoint_out_enable(TransferType::Bulk, ENDPOINT_OUT_NUM);

        self.state.set(State::Enabled);

        self.timeout_alarm.set_alarm(
            self.timeout_alarm.now(),
            self.timeout_alarm.ticks_from_ms(CDC_BUFFER_TIMEOUT_MS),
        );
    }

    fn attach(&'a self) {
        self.client_ctrl.attach();
        self.state.set(State::Attached);
    }

    fn bus_reset(&'a self) {
        // We take a bus reset to mean the enumeration has finished.
        self.state.set(State::Enumerated);
    }

    /// Handle a Control Setup transaction.
    ///
    /// CDC uses special values here, and we can use these to know when a CDC
    /// client is connected or not.
    fn ctrl_setup(&'a self, endpoint: usize) -> hil::usb::CtrlSetupResult {
        descriptors::SetupData::get(&self.client_ctrl.ctrl_buffer.buf).map(|setup_data| {
            let b_request = setup_data.request_code;

            match CDCCntrlMessage::from(b_request) {
                CDCCntrlMessage::SetLineCoding => {
                    self.ctrl_state.set(CtrlState::SetLineCoding);
                }
                CDCCntrlMessage::SetControlLineState => {
                    // Bit 0 and 1 of the value (setup_data.value) can be set
                    // D0: Indicates to DCE if DTE is present or not.
                    //     - 0 -> Not present
                    //     - 1 -> Present
                    // D1: Carrier control for half duplex modems.
                    //     - 0 -> Deactivate carrier
                    //     - 1 -> Activate carrier
                    //
                    // Currently we don't care about the value, just that this
                    // event has occurred. If it has happened, update the flag
                    // in `State::Connecting`.
                    self.set_connecting_state(false, true);

                    self.ctrl_state.set(CtrlState::SetControlLineState);
                }
                CDCCntrlMessage::SendBreak => {
                    // On Mac, we seem to get the SEND_BREAK to signal that a
                    // client disconnects.
                    self.state.set(State::Enumerated)
                }
                _ => {}
            }
        });

        self.client_ctrl.ctrl_setup(endpoint)
    }

    /// Handle a Control In transaction
    fn ctrl_in(&'a self, endpoint: usize) -> hil::usb::CtrlInResult {
        self.client_ctrl.ctrl_in(endpoint)
    }

    /// Handle a Control Out transaction
    fn ctrl_out(&'a self, endpoint: usize, packet_bytes: u32) -> hil::usb::CtrlOutResult {
        // Check what state our Ctrl endpoint is in.
        match self.ctrl_state.get() {
            CtrlState::SetLineCoding => {
                // We got a Ctrl SET_LINE_CODING setup, now we are getting the data.
                // We can parse the data we got.
                descriptors::CdcAcmSetLineCodingData::get(&self.client_ctrl.ctrl_buffer.buf).map(
                    |line_coding| {
                        // If the device is configuring the baud rate to what we
                        // expect, we continue with the connecting process.
                        if line_coding.baud_rate == 115200 {
                            self.set_connecting_state(true, false);
                        }

                        // Check if the baud rate we got matches the special flag
                        // value (1200 baud). If so, we run an optional function
                        // provided when the CDC stack was configured.
                        if line_coding.baud_rate == 1200 {
                            self.host_initiated_function.map(|f| {
                                f();
                            });
                        }
                    },
                );
            }
            _ => {}
        }

        self.client_ctrl.ctrl_out(endpoint, packet_bytes)
    }

    fn ctrl_status(&'a self, endpoint: usize) {
        self.client_ctrl.ctrl_status(endpoint)
    }

    /// Handle the completion of a Control transfer
    fn ctrl_status_complete(&'a self, endpoint: usize) {
        self.ctrl_state.set(CtrlState::Idle);

        // Here we check to see if we just got connected to a CDC client. If so,
        // we do a delay before transmitting if needed.
        match self.state.get() {
            State::Connecting {
                line_coding,
                line_state,
            } => {
                if line_coding && line_state {
                    self.state.set(State::ConnectingDelay);

                    // Wait a 100 ms before sending data.
                    self.timeout_alarm.set_alarm(
                        self.timeout_alarm.now(),
                        self.timeout_alarm.ticks_from_ms(100),
                    );
                }
            }
            _ => {}
        }

        self.client_ctrl.ctrl_status_complete(endpoint)
    }

    /// Handle a Bulk/Interrupt IN transaction.
    ///
    /// This is called when we can send data to the host. It should get called
    /// when we tell the controller we want to resume the IN endpoint (meaning
    /// we know we have data to send) and afterwards until we return
    /// `hil::usb::InResult::Delay` from this function. That means we can use
    /// this as a callback to mean that the transmission finished by waiting
    /// until this function is called when we don't have anything left to send.
    fn packet_in(&'a self, transfer_type: TransferType, endpoint: usize) -> hil::usb::InResult {
        match transfer_type {
            TransferType::Bulk => {
                self.tx_buffer
                    .take()
                    .map_or(hil::usb::InResult::Delay, |tx_buf| {
                        // Check if we have any bytes to send.
                        let offset = self.tx_offset.get();
                        let remaining = self.tx_len.get() - offset;
                        if remaining > 0 {
                            // We do, so we go ahead and send those.

                            // Get packet that we have shared with the underlying
                            // USB stack to copy the tx into.
                            let packet = self.buffer(endpoint);

                            // Calculate how much more we can send.
                            let to_send = cmp::min(packet.len(), remaining);

                            // Copy from the TX buffer to the outgoing USB packet.
                            for i in 0..to_send {
                                packet[i].set(tx_buf[offset + i]);
                            }

                            // Update our state on how much more there is to send.
                            self.tx_offset.set(offset + to_send);

                            // Put the TX buffer back so we can keep sending from it.
                            self.tx_buffer.replace(tx_buf);

                            // Return that we have data to send.
                            hil::usb::InResult::Packet(to_send)
                        } else {
                            // We don't have anything to send, so that means we are
                            // ok to signal the callback.

                            // Signal the callback and pass back the TX buffer.
                            self.tx_client.map(move |tx_client| {
                                tx_client.transmitted_buffer(tx_buf, self.tx_len.get(), Ok(()))
                            });

                            // Return that we have nothing else to do to the USB
                            // driver.
                            hil::usb::InResult::Delay
                        }
                    })
            }
            TransferType::Control | TransferType::Isochronous | TransferType::Interrupt => {
                // Nothing to do for CDC ACM.
                hil::usb::InResult::Delay
            }
        }
    }

    /// Handle a Bulk/Interrupt OUT transaction
    fn packet_out(
        &'a self,
        transfer_type: TransferType,
        endpoint: usize,
        packet_bytes: u32,
    ) -> hil::usb::OutResult {
        match transfer_type {
            TransferType::Bulk => {
                // Start by checking to see if we even care about this RX or
                // not.
                self.rx_buffer.take().map(|rx_buf| {
                    let rx_offset = self.rx_offset.get();

                    // How many more bytes can we store in our RX buffer?
                    let available_bytes = rx_buf.len() - rx_offset;
                    let copy_length = cmp::min(packet_bytes as usize, available_bytes);

                    // Do the copy into the RX buffer.
                    let packet = self.buffer(endpoint);
                    for i in 0..copy_length {
                        rx_buf[rx_offset + i] = packet[i].get();
                    }

                    // Keep track of how many bytes we have received so far.
                    let total_received_bytes = rx_offset + copy_length;

                    // Update how many bytes we have gotten.
                    self.rx_offset.set(total_received_bytes);

                    // Check if we have received at least as many bytes as the
                    // client asked for.
                    if total_received_bytes >= self.rx_len.get() {
                        self.rx_client.map(move |client| {
                            client.received_buffer(
                                rx_buf,
                                total_received_bytes,
                                Ok(()),
                                uart::Error::None,
                            );
                        });
                    } else {
                        // Make sure to put the RX buffer back.
                        self.rx_buffer.replace(rx_buf);
                    }
                });

                // No error cases to report to the USB.
                hil::usb::OutResult::Ok
            }
            TransferType::Control | TransferType::Isochronous | TransferType::Interrupt => {
                // Nothing to do for CDC ACM.
                hil::usb::OutResult::Ok
            }
        }
    }

    fn packet_transmitted(&'a self, _endpoint: usize) {
        // Check if more to send.
        self.tx_buffer.take().map(|tx_buf| {
            // Check if we have any bytes to send.
            let remaining = self.tx_len.get() - self.tx_offset.get();
            if remaining > 0 {
                // We do, so ask to send again.
                self.tx_buffer.replace(tx_buf);
                self.controller().endpoint_resume_in(ENDPOINT_IN_NUM);
            } else {
                // We don't have anything to send, so that means we are
                // ok to signal the callback.

                // Signal the callback and pass back the TX buffer.
                self.tx_client.map(move |tx_client| {
                    tx_client.transmitted_buffer(tx_buf, self.tx_len.get(), Ok(()))
                });
            }
        });
    }
}

impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> uart::Configure for CdcAcm<'a, U, A> {
    fn configure(&self, _parameters: uart::Parameters) -> Result<(), ErrorCode> {
        // Since this is not a real UART, we don't need to consider these
        // parameters.
        Ok(())
    }
}

impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> uart::Transmit<'a>
    for CdcAcm<'a, U, A>
{
    fn set_transmit_client(&self, client: &'a dyn uart::TransmitClient) {
        self.tx_client.set(client);
    }

    fn transmit_buffer(
        &self,
        tx_buffer: &'static mut [u8],
        tx_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        if self.tx_buffer.is_some() {
            // We are already handling a transmission, we cannot queue another
            // request.
            Err((ErrorCode::BUSY, tx_buffer))
        } else if tx_len > tx_buffer.len() {
            // Can't send more bytes than will fit in the buffer.
            Err((ErrorCode::SIZE, tx_buffer))
        } else {
            // Ok, we can handle this transmission. Initialize all of our state
            // for our TX state machine.
            self.tx_len.set(tx_len);
            self.tx_offset.set(0);
            self.tx_buffer.replace(tx_buffer);

            // Don't try to send if there is no CDC client connected.
            if self.state.get() == State::Connected {
                // Then signal to the lower layer that we are ready to do a TX
                // by putting data in the IN endpoint.
                self.controller().endpoint_resume_in(ENDPOINT_IN_NUM);
                Ok(())
            } else if self.boot_period.get() {
                // indicate success because we will try to send it once a host connects
                Ok(())
            } else {
                // indicate success, but we will not actually queue this message -- just schedule
                // a deferred callback to return the buffer immediately.
                self.deferred_call_pending_droptx.set(true);
                self.deferred_call.set();
                Ok(())
            }
        }
    }

    fn transmit_abort(&self) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }

    fn transmit_word(&self, _word: u32) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }
}

impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> uart::Receive<'a> for CdcAcm<'a, U, A> {
    fn set_receive_client(&self, client: &'a dyn uart::ReceiveClient) {
        self.rx_client.set(client);
    }

    fn receive_buffer(
        &self,
        rx_buffer: &'static mut [u8],
        rx_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        if self.rx_buffer.is_some() {
            Err((ErrorCode::BUSY, rx_buffer))
        } else if rx_len > rx_buffer.len() {
            Err((ErrorCode::SIZE, rx_buffer))
        } else {
            self.rx_buffer.replace(rx_buffer);
            self.rx_offset.set(0);
            self.rx_len.set(rx_len);

            Ok(())
        }
    }

    fn receive_abort(&self) -> Result<(), ErrorCode> {
        if self.rx_buffer.is_none() {
            // If we have nothing pending then aborting is very easy.
            Ok(())
        } else {
            // If we do have a receive pending then we need to start a deferred
            // call to set the callback and return `BUSY`.
            self.deferred_call_pending_abortrx.set(true);
            self.deferred_call.set();
            Err(ErrorCode::BUSY)
        }
    }

    fn receive_word(&self) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }
}

impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> AlarmClient for CdcAcm<'a, U, A> {
    fn alarm(&self) {
        self.boot_period.set(false);

        // This alarm is used in two cases. The main is when we first start to
        // delay outgoing messages until a host has a chance to connect. The
        // second is to delay after a host does connect to help ensure messages
        // actually get printed. If this timer goes off, then either no host
        // connected, and we want to start dropping messages, or something did
        // connect and we just executed the delay.
        if self.state.get() == State::ConnectingDelay {
            self.state.set(State::Connected);
            if self.tx_buffer.is_some() {
                self.controller().endpoint_resume_in(ENDPOINT_IN_NUM);
            }
        } else {
            // no client has connected, but we do not want to block indefinitely, so go ahead
            // and deliver a callback.
            self.indicate_tx_success();
        }
    }
}

impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> DeferredCallClient
    for CdcAcm<'a, U, A>
{
    fn handle_deferred_call(&self) {
        if self.deferred_call_pending_droptx.replace(false) {
            self.indicate_tx_success()
        }

        if self.deferred_call_pending_abortrx.replace(false) {
            // Signal the RX callback with CANCEL error.
            self.rx_buffer.take().map(|rx_buf| {
                let rx_offset = self.rx_offset.get();

                // The total number of bytes we have received so far.
                let total_received_bytes = rx_offset;

                self.rx_client.map(move |client| {
                    client.received_buffer(
                        rx_buf,
                        total_received_bytes,
                        Err(ErrorCode::CANCEL),
                        uart::Error::None,
                    );
                });
            });
        }
    }

    fn register(&'static self) {
        self.deferred_call.register(self);
    }
}