sam4l/flashcalw.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Implementation of the SAM4L flash controller.
//!
//! This implementation of the flash controller for the SAM4L uses interrupts to
//! handle main tasks of a flash -- write, reads, and erases. If modifying this
//! file, you should check whether the flash commands (issued via issue_command)
//! generates an interrupt and design a higher level function based off of that.
//!
//! Although the datasheet says that when the FRDY interrupt is on, an interrupt
//! will be generated after a command is complete, it doesn't appear to occur
//! for some commands.
//!
//! A clean interface for reading from flash, writing pages and erasing pages is
//! defined below and should be used to handle the complexity of these tasks.
//!
//! A Client should be set to enable a callback after a command is completed.
//!
//! Almost all of the flash controller functionality is implemented (except for
//! general purpose fuse bits, and more granular control of the cache).
//!
//! - Author: Kevin Baichoo <kbaichoo@cs.stanford.edu>
//! - Date: July 27, 2016
use crate::pm;
use core::cell::Cell;
use core::ops::{Index, IndexMut};
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::registers::{register_bitfields, ReadOnly, ReadWrite, WriteOnly};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
/// Struct of the FLASHCALW registers. Section 14.10 of the datasheet.
#[repr(C)]
struct FlashcalwRegisters {
fcr: ReadWrite<u32, FlashControl::Register>,
fcmd: ReadWrite<u32, FlashCommand::Register>,
fsr: ReadOnly<u32, FlashStatus::Register>,
fpr: ReadOnly<u32, FlashParameter::Register>,
fvr: ReadOnly<u32, FlashVersion::Register>,
fgpfrhi: ReadOnly<u32, FlashGeneralPurposeFuseHigh::Register>,
fgpfrlo: ReadOnly<u32, FlashGeneralPurposeFuseLow::Register>,
_reserved1: [u32; 251],
ctrl: WriteOnly<u32, PicoCacheControl::Register>,
sr: ReadWrite<u32, PicoCacheStatus::Register>,
_reserved2: [u32; 4],
maint0: WriteOnly<u32, PicoCacheMaintenance0::Register>,
maint1: WriteOnly<u32, PicoCacheMaintenance1::Register>,
mcfg: ReadWrite<u32, PicoCacheMonitorConfiguration::Register>,
men: ReadWrite<u32, PicoCacheMonitorEnable::Register>,
mctrl: WriteOnly<u32, PicoCacheMonitorStatus::Register>,
msr: ReadOnly<u32, PicoCacheMonitorStatus::Register>,
}
register_bitfields![u32,
FlashControl [
/// Wait State 1 Optimization
WS1OPT OFFSET(7) NUMBITS(1) [
NoOptimize = 0,
Optimize = 1
],
/// Flash Wait State
FWS OFFSET(6) NUMBITS(1) [
ZeroWaitStates = 0,
OneWaitState = 1
],
/// ECC Error Interrupt Enable
ECCE OFFSET(4) NUMBITS(1) [],
/// Programming Error Interrupt Enable
PROGE OFFSET(3) NUMBITS(1) [],
/// Lock Error Interrupt Enable
LOCKE OFFSET(2) NUMBITS(1) [],
/// Flash Ready Interrupt Enable
FRDY OFFSET(0) NUMBITS(1) []
],
FlashCommand [
/// Write protection key
KEY OFFSET(24) NUMBITS(8) [],
/// Page number
PAGEN OFFSET(8) NUMBITS(16) [],
/// Command
CMD OFFSET(0) NUMBITS(6) [
NOP = 0,
WP = 1,
EP = 2,
CPB = 3,
LP = 4,
UP = 5,
EA = 6,
WGPB = 7,
EGPB = 8,
SSB = 9,
PGPFB = 10,
EAGPF = 11,
QPR = 12,
WUP = 13,
EUP = 14,
QPRUP = 15,
HSEN = 16,
HSDIS = 17
]
],
FlashStatus [
/// Lock region x Lock Status
LOCK15 31,
LOCK14 30,
LOCK13 29,
LOCK12 28,
LOCK11 27,
LOCK10 26,
LOCK9 25,
LOCK8 24,
LOCK7 23,
LOCK6 22,
LOCK5 21,
LOCK4 20,
LOCK3 19,
LOCK2 18,
LOCK1 17,
LOCK0 16,
///ECC Error Status
///
/// WARNING! Datasheet has this bit listed in two places...
ECCERR 9,
/// High Speed Mode
HSMODE 6,
/// Quick Page Read Result
QPRR 5,
/// Security Fuses Status
SECURITY 4,
/// Programming Error Status
PROGE 3,
/// Lock Error Status
LOCKE 2,
/// Flash Ready Status
FRDY 0
],
FlashParameter [
/// Page Size
PSZ OFFSET(8) NUMBITS(3) [
Bytes32 = 0,
Bytes64 = 1,
Bytes128 = 2,
Bytes256 = 3,
Bytes512 = 4,
Bytes1024 = 5,
Bytes2048 = 6,
Bytes4096 = 7
],
/// Flash Size
FSZ OFFSET(0) NUMBITS(4) [
KBytes4 = 0,
KBytes8 = 1,
KBytes16 = 2,
KBytes32 = 3,
KBytes48 = 4,
KBytes64 = 5,
KBytes96 = 6,
KBytes128 = 7,
KBytes192 = 8,
KBytes256 = 9,
KBytes384 = 10,
KBytes512 = 11,
KBytes768 = 12,
KBytes1024 = 13,
KBytes2048 = 14
]
],
FlashVersion [
/// Variant Number
VARIANT OFFSET(16) NUMBITS(4) [],
/// Version Number
VERSION OFFSET(0) NUMBITS(12) []
],
FlashGeneralPurposeFuseHigh [
/// General Purpose Fuse
GPF63 31,
GPF62 30,
GPF61 29,
GPF60 28,
GPF59 27,
GPF58 26,
GPF57 25,
GPF56 24,
GPF55 23,
GPF54 22,
GPF53 21,
GPF52 20,
GPF51 19,
GPF50 18,
GPF49 17,
GPF48 16,
GPF47 15,
GPF46 14,
GPF45 13,
GPF44 12,
GPF43 11,
GPF42 10,
GPF41 9,
GPF40 8,
GPF39 7,
GPF38 6,
GPF37 5,
GPF36 4,
GPF35 3,
GPF34 2,
GPF33 1,
GPF32 0
],
FlashGeneralPurposeFuseLow [
GPF31 31,
GPF30 30,
GPF29 29,
GPF28 28,
GPF27 27,
GPF26 26,
GPF25 25,
GPF24 24,
GPF23 23,
GPF22 22,
GPF21 21,
GPF20 20,
GPF19 19,
GPF18 18,
GPF17 17,
GPF16 16,
GPF15 15,
GPF14 14,
GPF13 13,
GPF12 12,
GPF11 11,
GPF10 10,
GPF9 9,
GPF8 8,
GPF7 7,
GPF6 6,
GPF5 5,
GPF4 4,
GPF3 3,
GPF2 2,
GPF1 1,
GPF0 0
],
PicoCacheControl [
/// Cache Enable
CEN OFFSET(0) NUMBITS(1) [
Disable = 0,
Enable = 1
]
],
PicoCacheStatus [
/// Cache Controller Status
CSTS OFFSET(0) NUMBITS(1) [
Disabled = 0,
Enabled = 1
]
],
PicoCacheMaintenance0 [
/// Cache Controller Invalidate All
INVALL 0
],
PicoCacheMaintenance1 [
/// Invalidate Index
INDEX OFFSET(4) NUMBITS(4) []
],
PicoCacheMonitorConfiguration [
/// Cache Controller Monitor Counter Mode
MODE OFFSET(0) NUMBITS(1) [
CycleCount = 0,
IhitCount = 1,
DhitCount = 2
]
],
PicoCacheMonitorEnable [
/// Monitor Enable
MENABLE OFFSET(0) NUMBITS(1) [
Disable = 0,
Enable = 1
]
],
PicoCacheMonitorControl [
/// Monitor Software Reset
SWRST 0
],
PicoCacheMonitorStatus [
/// Monitor Event Counter
EVENTCNT OFFSET(0) NUMBITS(32) []
]
];
const FLASHCALW_ADDRESS: StaticRef<FlashcalwRegisters> =
unsafe { StaticRef::new(0x400A0000 as *const FlashcalwRegisters) };
#[allow(dead_code)]
enum RegKey {
CONTROL,
COMMAND,
STATUS,
PARAMETER,
VERSION,
GPFRHI,
GPFRLO,
}
/// There are 18 recognized commands for the flash. These are "bare-bones"
/// commands and values that are written to the Flash's command register to
/// inform the flash what to do. Table 14-5.
#[derive(Clone, Copy, PartialEq)]
#[allow(dead_code)]
enum FlashCMD {
NOP,
WP,
EP,
CPB,
LP,
UP,
EA,
WGPB,
EGPB,
SSB,
PGPFB,
EAGPF,
QPR,
WUP,
EUP,
QPRUP,
HSEN,
HSDIS,
}
/// FlashState is used to track the current state and command of the flash.
#[derive(Clone, Copy, PartialEq)]
enum FlashState {
Unconfigured, // Flash is unconfigured, call configure().
Ready, // Flash is ready to complete a command.
Read, // Performing a read operation.
WriteUnlocking { page: i32 }, // Started a write operation.
WriteErasing { page: i32 }, // Waiting on the page to erase.
WriteWriting, // Waiting on the page to actually be written.
EraseUnlocking { page: i32 }, // Started an erase operation.
EraseErasing, // Waiting on the erase to finish.
}
/// This is a wrapper around a u8 array that is sized to a single page for the
/// SAM4L. Users of this module must pass an object of this type to use the
/// `hil::flash::Flash` interface.
///
/// An example looks like:
///
/// ```rust
/// # extern crate sam4l;
/// # use sam4l::flashcalw::Sam4lPage;
/// # use kernel::static_init;
///
/// let pagebuffer = unsafe { static_init!(Sam4lPage, Sam4lPage::default()) };
/// ```
pub struct Sam4lPage(pub [u8; PAGE_SIZE as usize]);
impl Default for Sam4lPage {
fn default() -> Self {
Self([0; PAGE_SIZE as usize])
}
}
impl Sam4lPage {
fn len(&self) -> usize {
self.0.len()
}
}
impl Index<usize> for Sam4lPage {
type Output = u8;
fn index(&self, idx: usize) -> &u8 {
&self.0[idx]
}
}
impl IndexMut<usize> for Sam4lPage {
fn index_mut(&mut self, idx: usize) -> &mut u8 {
&mut self.0[idx]
}
}
impl AsMut<[u8]> for Sam4lPage {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.0
}
}
// The FLASHCALW controller
pub struct FLASHCALW {
registers: StaticRef<FlashcalwRegisters>,
ahb_clock: pm::Clock,
hramc1_clock: pm::Clock,
pb_clock: pm::Clock,
client: OptionalCell<&'static dyn hil::flash::Client<FLASHCALW>>,
current_state: Cell<FlashState>,
buffer: TakeCell<'static, Sam4lPage>,
deferred_call: DeferredCall,
}
// Few constants relating to module configuration.
const PAGE_SIZE: u32 = 512;
const FREQ_PS2_FWS_0_MAX_FREQ: u32 = 24000000;
impl FLASHCALW {
pub fn new(ahb_clk: pm::HSBClock, hramc1_clk: pm::HSBClock, pb_clk: pm::PBBClock) -> FLASHCALW {
FLASHCALW {
registers: FLASHCALW_ADDRESS,
ahb_clock: pm::Clock::HSB(ahb_clk),
hramc1_clock: pm::Clock::HSB(hramc1_clk),
pb_clock: pm::Clock::PBB(pb_clk),
client: OptionalCell::empty(),
current_state: Cell::new(FlashState::Unconfigured),
buffer: TakeCell::empty(),
deferred_call: DeferredCall::new(),
}
}
/// Cache controlling functionality.
// Flush the cache. Should be called after every write!
fn invalidate_cache(&self) {
self.registers
.maint0
.write(PicoCacheMaintenance0::INVALL::SET);
}
fn enable_picocache(&self, enable: bool) {
if enable {
self.registers.ctrl.write(PicoCacheControl::CEN::Enable);
} else {
self.registers.ctrl.write(PicoCacheControl::CEN::Disable);
}
}
/// Enable HCACHE
pub fn enable_cache(&self) {
// enable appropriate clocks
pm::enable_clock(pm::Clock::HSB(pm::HSBClock::FLASHCALWP));
pm::enable_clock(pm::Clock::PBB(pm::PBBClock::HRAMC1));
// enable and wait for it to be ready
self.enable_picocache(true);
while !self.pico_enabled() {}
}
fn pico_enabled(&self) -> bool {
self.registers.sr.is_set(PicoCacheStatus::CSTS)
}
pub fn handle_interrupt(&self) {
// Disable the interrupt line for flash
self.registers.fcr.modify(FlashControl::FRDY::CLEAR);
// Since the only interrupt on is FRDY, a command should have
// either completed or failed at this point.
// Check for errors and report to Client if there are any
if self.is_error() {
let attempted_operation = self.current_state.get();
// Reset state now that we are ready to do a new operation.
self.current_state.set(FlashState::Ready);
self.client.map(|client| match attempted_operation {
FlashState::Read => {
self.buffer.take().map(|buffer| {
client.read_complete(buffer, Err(hil::flash::Error::FlashError));
});
}
FlashState::WriteUnlocking { .. }
| FlashState::WriteErasing { .. }
| FlashState::WriteWriting => {
self.buffer.take().map(|buffer| {
client.write_complete(buffer, Err(hil::flash::Error::FlashError));
});
}
FlashState::EraseUnlocking { .. } | FlashState::EraseErasing => {
client.erase_complete(Err(hil::flash::Error::FlashError));
}
_ => {}
});
}
// Part of a command succeeded -- continue onto next steps.
match self.current_state.get() {
FlashState::Read => {
self.current_state.set(FlashState::Ready);
self.client.map(|client| {
self.buffer.take().map(|buffer| {
client.read_complete(buffer, Ok(()));
});
});
}
FlashState::WriteUnlocking { page } => {
self.current_state.set(FlashState::WriteErasing { page });
self.flashcalw_erase_page(page);
}
FlashState::WriteErasing { page } => {
// Write page buffer isn't really a command, and
// clear page buffer doesn't trigger an interrupt thus
// I'm combining these with an actual command, write_page,
// which generates and interrupt and saves the page.
self.clear_page_buffer();
self.write_to_page_buffer(page as usize * PAGE_SIZE as usize);
self.current_state.set(FlashState::WriteWriting);
self.flashcalw_write_page(page);
}
FlashState::WriteWriting => {
// Flush the cache
self.invalidate_cache();
self.current_state.set(FlashState::Ready);
self.client.map(|client| {
self.buffer.take().map(|buffer| {
client.write_complete(buffer, Ok(()));
});
});
}
FlashState::EraseUnlocking { page } => {
self.current_state.set(FlashState::EraseErasing);
self.flashcalw_erase_page(page);
}
FlashState::EraseErasing => {
// Flush the cache
self.invalidate_cache();
self.current_state.set(FlashState::Ready);
self.client.map(|client| {
client.erase_complete(Ok(()));
});
}
_ => {
self.current_state.set(FlashState::Ready);
}
}
}
/// FLASH properties.
fn get_flash_size(&self) -> u32 {
let flash_sizes = [
4, 8, 16, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 2048,
];
// get the FSZ number and lookup in the table for the size.
flash_sizes[self.registers.fpr.read(FlashParameter::FSZ) as usize] << 10
}
/// FLASHC Control
pub fn set_wait_state(&self, wait_state: u32) {
self.registers.fcr.modify(FlashControl::FWS.val(wait_state));
}
fn enable_ws1_read_opt(&self, enable: bool) {
if enable {
self.registers.fcr.modify(FlashControl::WS1OPT::Optimize);
} else {
self.registers.fcr.modify(FlashControl::WS1OPT::NoOptimize);
}
}
// By default, we are going with High Speed Enable (based on our device running
// in PS2).
fn set_flash_waitstate_and_readmode(&self, cpu_freq: u32, _ps_val: u32, _is_fwu_enabled: bool) {
// ps_val and is_fwu_enabled not used in this implementation.
if cpu_freq > FREQ_PS2_FWS_0_MAX_FREQ {
self.set_wait_state(1);
} else {
self.set_wait_state(0);
}
self.issue_command(FlashCMD::HSEN, -1);
}
/// Configure high-speed flash mode. This is taken from the ASF code
pub fn enable_high_speed_flash(&self) {
// Since we are running at a fast speed we have to set a clock delay
// for flash, as well as enable fast flash mode.
self.registers.fcr.modify(FlashControl::FWS::OneWaitState);
// Enable high speed mode for flash
self.registers
.fcmd
.modify(FlashCommand::KEY.val(0xA5) + FlashCommand::CMD::HSEN);
// And wait for the flash to be ready
while !self.registers.fsr.is_set(FlashStatus::FRDY) {}
}
/// Flashcalw status
fn is_error(&self) -> bool {
pm::enable_clock(self.pb_clock);
self.registers.fsr.is_set(FlashStatus::LOCKE)
| self.registers.fsr.is_set(FlashStatus::PROGE)
}
/// Flashcalw command control
fn issue_command(&self, command: FlashCMD, page_number: i32) {
pm::enable_clock(self.pb_clock);
// For most commands we wait for the interrupt, for some certain
// fast/rarely used commands or commands that don't generate interrupts
// it is better to wait (or at least that is how this driver was
// originally implemented).
if command != FlashCMD::QPRUP
&& command != FlashCMD::QPR
&& command != FlashCMD::CPB
&& command != FlashCMD::HSEN
{
// Enable ready interrupt.
self.registers.fcr.modify(FlashControl::FRDY::SET);
}
// Setup the command register to run this command.
let mut cmd = FlashCommand::KEY.val(0xA5) + FlashCommand::CMD.val(command as u32);
// If this command relies on using a certain page, we need to add that
// in as well.
if page_number >= 0 {
cmd += FlashCommand::PAGEN.val(page_number as u32);
}
self.registers.fcmd.write(cmd);
// Since we don't enable interrupts for these commands, spin wait
// until they are finished. In particular, QPR and QPRUP will not issue
// interrupts (see datasheet 14.6 paragraph 2).
if command == FlashCMD::QPRUP
|| command == FlashCMD::QPR
|| command == FlashCMD::CPB
|| command == FlashCMD::HSEN
{
while !self.registers.fsr.is_set(FlashStatus::FRDY) {}
}
}
/// Flashcalw global commands
fn lock_page_region(&self, page_number: i32, lock: bool) {
if lock {
self.issue_command(FlashCMD::LP, page_number);
} else {
self.issue_command(FlashCMD::UP, page_number);
}
}
/// Flashcalw Access to Flash Pages
fn clear_page_buffer(&self) {
self.issue_command(FlashCMD::CPB, -1);
}
fn is_page_erased(&self) -> bool {
self.registers.fsr.is_set(FlashStatus::QPRR)
}
fn flashcalw_erase_page(&self, page_number: i32) {
self.issue_command(FlashCMD::EP, page_number);
}
fn flashcalw_write_page(&self, page_number: i32) {
self.issue_command(FlashCMD::WP, page_number);
}
/// There's a user_page that isn't contiguous with the rest of the flash.
/// Currently it's not being used.
#[allow(dead_code)]
fn quick_user_page_read(&self) -> bool {
self.issue_command(FlashCMD::QPRUP, -1);
self.is_page_erased()
}
#[allow(dead_code)]
fn erase_user_page(&self, check: bool) -> bool {
self.issue_command(FlashCMD::EUP, -1);
if check {
self.quick_user_page_read()
} else {
true
}
}
#[allow(dead_code)]
fn write_user_page(&self) {
self.issue_command(FlashCMD::WUP, -1);
}
// Instead of having several memset/memcpy functions as Atmel's ASF
// implementation will only have one to write to the page buffer.
fn write_to_page_buffer(&self, pg_buff_addr: usize) {
let mut page_buffer: *mut u8 = pg_buff_addr as *mut u8;
// Errata 45.1.7 - Need to write a 64-bit all one word for every write
// to the page buffer.
let cleared_double_word: [u8; 8] = [255; 8];
let clr_ptr: *const u8 = &cleared_double_word[0] as *const u8;
self.buffer.map(|buffer| {
unsafe {
use core::ptr;
let mut start_buffer: *const u8 = &buffer[0] as *const u8;
let mut data_transfered: u32 = 0;
while data_transfered < PAGE_SIZE {
// errata copy..
ptr::copy(clr_ptr, page_buffer, 8);
// real copy
ptr::copy(start_buffer, page_buffer, 8);
page_buffer = page_buffer.offset(8);
start_buffer = start_buffer.offset(8);
data_transfered += 8;
}
}
});
}
}
// Implementation of high level calls using the low-lv functions.
impl FLASHCALW {
pub fn configure(&self) {
// Enable all clocks (if they aren't on already...).
pm::enable_clock(self.ahb_clock);
pm::enable_clock(self.hramc1_clock);
pm::enable_clock(self.pb_clock);
// Configure all other interrupts explicitly. Note the issue_command
// function turns this on when need be.
self.registers.fcr.modify(
FlashControl::FRDY::CLEAR
+ FlashControl::LOCKE::CLEAR
+ FlashControl::PROGE::CLEAR
+ FlashControl::ECCE::CLEAR,
);
// Enable wait state 1 optimization.
self.enable_ws1_read_opt(true);
// Change speed mode.
self.set_flash_waitstate_and_readmode(48_000_000, 0, false);
// By default the picocache ( a cache only for the flash) is turned off.
// However the bootloader turns it on. I will explicitly turn it on
// here. So if the bootloader changes, nothing breaks.
self.enable_picocache(true);
self.current_state.set(FlashState::Ready);
}
// Address is some raw address in flash that you want to read.
fn read_range(
&self,
address: usize,
size: usize,
buffer: &'static mut Sam4lPage,
) -> Result<(), (ErrorCode, &'static mut Sam4lPage)> {
if self.current_state.get() == FlashState::Unconfigured {
self.configure();
}
// Enable clock in case it's off.
pm::enable_clock(self.ahb_clock);
// Check that address makes sense and buffer has room.
let Some(end_address) = address.checked_add(size) else {
return Err((ErrorCode::INVAL, buffer));
};
if end_address > (self.get_flash_size() as usize) || buffer.len() < size {
return Err((ErrorCode::INVAL, buffer));
}
// Actually do a copy from flash into the buffer.
let mut byte: *const u8 = address as *const u8;
unsafe {
for i in 0..size {
buffer[i] = *byte;
byte = byte.offset(1);
}
}
self.current_state.set(FlashState::Read);
// Hold on to the buffer for the callback.
self.buffer.replace(buffer);
// This is kind of strange, but because read() in this case is
// synchronous, we still need to schedule as if we had an interrupt so
// we can allow this function to return and then call the callback.
self.deferred_call.set();
Ok(())
}
fn write_page(
&self,
page_num: i32,
data: &'static mut Sam4lPage,
) -> Result<(), (ErrorCode, &'static mut Sam4lPage)> {
// Enable clock in case it's off.
pm::enable_clock(self.ahb_clock);
match self.current_state.get() {
FlashState::Unconfigured => self.configure(),
FlashState::Ready => {}
// If we're not ready don't take the command
_ => return Err((ErrorCode::BUSY, data)),
}
// Save the buffer for the future write.
self.buffer.replace(data);
self.current_state
.set(FlashState::WriteUnlocking { page: page_num });
self.lock_page_region(page_num, false);
Ok(())
}
fn erase_page(&self, page_num: i32) -> Result<(), ErrorCode> {
// Enable AHB clock (in case it was off).
pm::enable_clock(self.ahb_clock);
match self.current_state.get() {
FlashState::Unconfigured => self.configure(),
FlashState::Ready => {}
// If we're not ready don't take the command
_ => return Err(ErrorCode::BUSY),
}
self.current_state
.set(FlashState::EraseUnlocking { page: page_num });
self.lock_page_region(page_num, false);
Ok(())
}
}
impl DeferredCallClient for FLASHCALW {
fn handle_deferred_call(&self) {
self.handle_interrupt();
}
fn register(&'static self) {
self.deferred_call.register(self);
}
}
impl<C: hil::flash::Client<Self>> hil::flash::HasClient<'static, C> for FLASHCALW {
fn set_client(&self, client: &'static C) {
self.client.set(client);
}
}
impl hil::flash::Flash for FLASHCALW {
type Page = Sam4lPage;
fn read_page(
&self,
page_number: usize,
buf: &'static mut Self::Page,
) -> Result<(), (ErrorCode, &'static mut Self::Page)> {
self.read_range(page_number * (PAGE_SIZE as usize), buf.len(), buf)
}
fn write_page(
&self,
page_number: usize,
buf: &'static mut Self::Page,
) -> Result<(), (ErrorCode, &'static mut Self::Page)> {
self.write_page(page_number as i32, buf)
}
fn erase_page(&self, page_number: usize) -> Result<(), ErrorCode> {
self.erase_page(page_number as i32)
}
}