capsules_extra/net/sixlowpan/
sixlowpan_state.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! 6loWPAN compression and reception.
//!
//! 6loWPAN (IPv6 over Low-Power Wireless Networks) is standard for compressing
//! and fragmenting IPv6 packets over low power wireless networks, particularly
//! ones with MTUs (Minimum Transmission Units) smaller than 1280 octets, like
//! IEEE 802.15.4. 6loWPAN compression and fragmentation are defined in RFC 4944
//! and RFC 6282.
//!
//! This module implements 6LoWPAN compression and reception, including
//! compression, fragmentation, and reassembly. It allows a client to convert
//! between a complete IPv6 packets and a series of Mac-layer frames, and vice
//! versa. On the transmission end, IPv6 headers are compressed and packets
//! fragmented if they are larger than the Mac layer MTU size.  For reception,
//! IPv6 packets are decompressed and reassembled from fragments and clients
//! recieve callbacks for each full IPv6 packet.
//!
//! Usage
//! -----
//!
//! The Sixlowpan library exposes two different interfaces for the transmit path
//! and the receive path. Below, both interfaces are described in detail.
//!
//! Transmit
//! --------
//! For a layer interested in sending a packet, this library exposes a
//! [TxState](struct.TxState.html) struct that statefully compresses an
//! [IP6Packet](struct.IP6Packet.html) struct. First, the `TxState` object
//! is initialized for compressing a new packet by calling the `TxState.init`
//! method. The caller then repeatedly calls `TxState.next_fragment`, which
//! returns the next frame to be send (or indicates that the transmission
//! is complete). Note that the upper layer is responsible for sending each
//! frame, and this library is only responsible for producing compressed frames.
//!
//! Receive
//! -------
//! The Sixlowpan library is responsible for receiving and reassembling
//! individual 6LoWPAN-compressed frames. Upper layers interested in receiving
//! the fully reassembled and decompressed IPv6 packet implement the
//! [SixlowpanRxClient](trait.SixlowpanRxClient.html) trait, which is called
//! after a packet is fully received.
//!
//! At a high level, clients interact with this module as shown in the diagrams
//! below:
//!
//! ```txt
//! Transmit:
//!
//!           +-----------+
//!           |Upper Layer|
//!           +-----------+
//!             |      ^
//!             |      |
//!     next_fragment(..packet..)
//!             |      |
//!             v      |
//!            +---------+
//!            |Sixlowpan|
//!            +---------+
//! ...
//!         +---------------+
//!         |SixlowpanClient|
//!         +---------------+
//!                 ^
//!                 |
//!            send_done(..)
//!                 |
//!            +---------+
//!            |Sixlowpan|
//!            +---------+
//! ```
//!
//! ```txt
//! Receive:
//!
//!         +---------------+
//!         |SixlowpanClient|
//!         +---------------+
//!                ^
//!                |
//!          receive(..buf..)
//!                |
//!           +---------+
//!           |Sixlowpan|
//!           +---------+
//! ```
//!
//! ```txt
//! Initialization:
//!
//!           +-----------+
//!           |Upper Layer|
//!           +-----------+
//!                 |
//!          set_client(client)
//!                 |
//!                 v
//!            +---------+
//!            |Sixlowpan|
//!            +---------+
//! ```
//!
//! Examples
//! -----
//! Examples of how to interface and use this layer are included in the file
//! `boards/imix/src/lowpan_frag_dummy.rs`. Some set up is required in
//! the `boards/imix/src/main.rs` file, but for the testing suite, a helper
//! initialization function is included in the `lowpan_frag_dummy.rs` file.

// Internal Design
// ---------------
// The overall 6LoWPAN protocol is non-trivial, and as a result, this layer
// is fairly complex. There are two main aspects of the 6LoWPAN layer; first
// is compression, which is abstracted as a distinct library (found at
// `capsules/src/net/sixlowpan/sixlowpan_compression.rs`), and second is the
// fragmentation and reassembly layer, which is implemented in this file.
// The documentation below describes the different components of the
// fragmentation/reassembly functionality (for 6LoWPAN compression
// documentation, please consult `capsules/src/net/sixlowpan/sixlowpan_compression.rs`).
//
// This layer adds several new structures; principally, it implements the
// Sixlowpan, TxState, and RxState structs and it also defines the
// SixlowpanRxClient trait. The Sixlowpan struct is responsible
// for keeping track of the global *receive* state at this layer, and contains
// a list of RxState objects. The TxState is responsible for
// maintaining the current transmit compression state, and how much of the current
// IPv6 packet has been compressed. The RxState structs maintain the
// reassembly state corresponding to a single IPv6 packet. Note that since
// they are maintained as a list, several RxStates can be allocated at compile
// time, and each RxState corresponds to a distinct IPv6 packet that can be
// reassembled simultaneously. Finally, the SixlowpanRxClient trait defines
// the interface between the upper (IP) layer and the Sixlowpan layer for
// reception. Each object is examined in greater detail below:
//
// Sixlowpan:
// The main `Sixlowpan` struct is responsible for maintaining global reception
// and reassembly state for received radio frames. The struct contains a list
// of RxState objects, which serve as reassembly buffers for different IPv6
// packets. This object implements the RxClient trait, and is set to be the
// client for the MAC-layer radio. Whenever an RxState is fully reassembled,
// the upper layers receive a callback through the `SixlowpanRxState` trait.
//
// TxState:
// The TxState struct maintains the state necessary to incrementally fragment
// a full IPv6 packet. This includes the source/destination Mac
// addresses and PanIDs, frame-level security options, a total datagram size,
// and the current offset into the datagram. This struct also maintains some
// minimal global transmit state, including the global datagram tag and a
// buffer to pass to the radio.
//
// RxState:
// The RxState struct is analogous to the TxState struct, in that it maintains
// state specific to reassembling an IPv6 packet. Unlike the TxState struct
// however, the Sixlowpan object manages multiple RxState structs. These
// RxStates serve as a pool of objects, and when a fragment arrives, the
// Sixlowpan object either dispatches it to an in-progress packet reassembly
// managed by a busy RxState struct, or initializes a free RxState struct
// to start reassembling the rest of the fragments. Similar to TxState,
// RxState objects should only be visible to the Sixlowpan object, aside
// from one caveat - the initialization of RxStates must occur statically
// outside the Sixlowpan struct (this may change in the future).
//
// The RxState struct maintains the in-progress packet buffer, a bitmap
// indicating which 8-byte chunks have not yet been received, the source/dest
// mac address pair, datagram size and tag, and a start time (to lazily
// expire timed-out reassembly processes).
//
// SixlowpanRxClient:
// The SixlowpanRxClient trait has a single function, `receive`. Upper layers
// that implement this trait can set themselves as the client for the Sixlowpan
// struct, and will receive a callback once an IPv6 packet has been fully
// reassembled. Note that the Sixlowpan struct allows for the client to be
// set or changed at runtime, but the current assumption is that a single,
// static client sits above the 6LoWPAN receive layer.
//
//
// Design Decisions
// ----------------
// Throughout designing this layer, there were a number of critical design
// decisions made. Several of the most prominent are listed below, with a
// short rationale as to why they were necessary or the most optimal solution.
//
// Multiple RxStates:
// This design decision is one of the more complicated and contentious ones.
// Due to the wording of the 6LoWPAN specification and the data associated
// with 6LoWPAN fragments, it is entirely reasonable to expect that even
// an edge node (a node not doing routing) might receive 6LoWPAN fragments
// for different IP packets interleaved. In particular, a 6LoWPAN fragment
// header contains a datagram tag, which is different for each IPv6 packet
// fragmented even from the same layer 2 source/destination pairs. Thus,
// a single node could send multiple, distinct, fragmented IPv6 packets
// simultaneously (or at least, a node is not prohibited from doing so). In
// addition, the reassembly timeout for 6LoWPAN fragments is on the order of
// seconds, and with a single RxState, a single lost fragment could
// substantially hamper or delay the ability of a client to receive additional
// packets. As a result of these two issues, the ability to add several
// RxStates to the 6LoWPAN layer was provided. Unfortunately, this
// increased the complexity of this layer substantially, and further,
// necessitated additional initialization complexity by the upper layer.
//
// Single TxState:
// Although both the RxState and TxState structs are treated similarly by
// the Sixlowpan layer, many aspects of their control flow differ
// significantly. The final design decision was to have a single upper layer
// that serialized (or virtualized) both the reception and transmission of
// IPv6 packets. As a result, only a single outstanding transmission made
// sense, and thus the layer was designed to have a serial transmit path.
// Note that this differs greatly from the RxState model, but since we
// cannot serialize reception in the same way, it did not make sense to treat
// both RxState and TxState structs identically.
//
// TODOs and Known Issues
// ----------------------------------
//
// TODOs:
//
//   * Implement and expose a ConfigClient interface?
//
//   * Implement the disassociation event, integrate with lower layer
//
//   * Move network constants/tuning parameters to a separate file
//
// Issues:
//
//   * On imix, the receiver sometimes fails to receive a fragment. This
//     occurs below the Mac layer, and prevents the packet from being fully
//     reassembled.
//

use crate::ieee802154::device::{MacDevice, RxClient};
use crate::ieee802154::framer::Frame;
use crate::net::frag_utils::Bitmap;
use crate::net::ieee802154::{Header, KeyId, MacAddress, PanID, SecurityLevel};
use crate::net::ipv6::IP6Packet;
use crate::net::sixlowpan::sixlowpan_compression;
use crate::net::sixlowpan::sixlowpan_compression::{is_lowpan, ContextStore};
use crate::net::util::{network_slice_to_u16, u16_to_network_slice};

use core::cell::Cell;
use core::cmp::min;

use kernel::collections::list::{List, ListLink, ListNode};
use kernel::hil::radio;
use kernel::hil::time;
use kernel::hil::time::{Frequency, Ticks};
use kernel::utilities::cells::{MapCell, TakeCell};
use kernel::ErrorCode;

// Reassembly timeout in seconds
const FRAG_TIMEOUT: u32 = 60;

/// Client trait for receiving 6lowpan frames.
///
/// Objects that implement this trait can set themselves to be the client
/// for the [Sixlowpan](struct.Sixlowpan.html) struct, and will then receive
/// a callback once an IPv6 packet has been fully reassembled.
pub trait SixlowpanRxClient {
    fn receive(&self, buf: &[u8], len: usize, result: Result<(), ErrorCode>);
}

pub mod lowpan_frag {
    pub const FRAGN_HDR: u8 = 0b11100000;
    pub const FRAG1_HDR: u8 = 0b11000000;
    pub const FRAG1_HDR_SIZE: usize = 4;
    pub const FRAGN_HDR_SIZE: usize = 5;
}

fn set_frag_hdr(
    dgram_size: u16,
    dgram_tag: u16,
    dgram_offset: usize,
    hdr: &mut [u8],
    is_frag1: bool,
) {
    let mask = if is_frag1 {
        lowpan_frag::FRAG1_HDR
    } else {
        lowpan_frag::FRAGN_HDR
    };
    u16_to_network_slice(dgram_size, &mut hdr[0..2]);
    hdr[0] = mask | (hdr[0] & !mask);
    u16_to_network_slice(dgram_tag, &mut hdr[2..4]);
    if !is_frag1 {
        hdr[4] = (dgram_offset / 8) as u8;
    }
}

fn get_frag_hdr(hdr: &[u8]) -> (bool, u16, u16, usize) {
    let is_frag1 = match hdr[0] & lowpan_frag::FRAGN_HDR {
        lowpan_frag::FRAG1_HDR => true,
        _ => false,
    };
    // Zero out upper bits
    let dgram_size = network_slice_to_u16(&hdr[0..2]) & !(0xf << 12);
    let dgram_tag = network_slice_to_u16(&hdr[2..4]);
    let dgram_offset = if is_frag1 { 0 } else { hdr[4] };
    (is_frag1, dgram_size, dgram_tag, (dgram_offset as usize) * 8)
}

fn is_fragment(packet: &[u8]) -> bool {
    let mask = packet[0] & lowpan_frag::FRAGN_HDR;
    (mask == lowpan_frag::FRAGN_HDR) || (mask == lowpan_frag::FRAG1_HDR)
}

pub trait SixlowpanState<'a> {
    fn next_dgram_tag(&self) -> u16;
    fn get_ctx_store(&self) -> &dyn ContextStore;
    fn add_rx_state(&self, rx_state: &'a RxState<'a>);
    fn set_rx_client(&'a self, client: &'a dyn SixlowpanRxClient);
}

/// Tracks the compression state for a single IPv6 packet.
///
/// When an upper layer is interested in sending a packet using Sixlowpan,
/// they must first call `TxState.init`, which initializes the compression
/// state for a new packet. The upper layer then repeatedly calls
/// `TxState.next_fragment` until there are no more frames to compress.
/// Note that the upper layer is responsible for sending the compressed
/// frames; the `TxState` struct simply produces compressed MAC frames.
pub struct TxState<'a> {
    /// State for the current transmission
    pub dst_pan: Cell<PanID>, // Pub to allow for setting to broadcast PAN and back
    src_pan: Cell<PanID>,
    src_mac_addr: Cell<MacAddress>,
    dst_mac_addr: Cell<MacAddress>,
    security: Cell<Option<(SecurityLevel, KeyId)>>,
    dgram_tag: Cell<u16>, // Used to identify particular fragment streams
    dgram_size: Cell<u16>,
    dgram_offset: Cell<usize>,

    busy: Cell<bool>,
    // We need a reference to sixlowpan to compute and increment
    // the global dgram_tag value
    sixlowpan: &'a dyn SixlowpanState<'a>,
}

impl<'a> TxState<'a> {
    /// Creates a new `TxState`
    ///
    /// # Arguments
    ///
    /// `sixlowpan` - A reference to a `SixlowpanState` object, which contains
    /// global state for the entire Sixlowpan layer.
    pub fn new(sixlowpan: &'a dyn SixlowpanState<'a>) -> TxState<'a> {
        TxState {
            // Externally settable fields
            src_pan: Cell::new(0),
            dst_pan: Cell::new(0),
            src_mac_addr: Cell::new(MacAddress::Short(0)),
            dst_mac_addr: Cell::new(MacAddress::Short(0)),
            security: Cell::new(None),

            // Internal fields
            dgram_tag: Cell::new(0),
            dgram_size: Cell::new(0),
            dgram_offset: Cell::new(0),

            busy: Cell::new(false),
            sixlowpan,
        }
    }

    /// Initializes `TxState` for a new packet
    ///
    /// # Arguments
    ///
    /// `src_mac_addr` - The MAC address the frame will be sent from
    /// `dst_mac_addr` - The MAC address the frame will be sent to
    /// `radio_pan` - The PAN ID held by the radio underlying this stack
    /// `security` - Any security options (necessary since the size of the
    /// produced MAC frame is dependent on the security options)
    ///
    /// # Return Value
    ///
    /// This function returns a `Result<(), ErrorCode>`, which indicates success or
    /// failure. Note that if `init` has already been called and we are
    /// currently sending a packet, this function will return
    /// `Err(ErrorCode::BUSY)`
    pub fn init(
        &self,
        src_mac_addr: MacAddress,
        dst_mac_addr: MacAddress,
        radio_pan: u16,
        security: Option<(SecurityLevel, KeyId)>,
    ) -> Result<(), ErrorCode> {
        if self.busy.get() {
            Err(ErrorCode::BUSY)
        } else {
            self.src_mac_addr.set(src_mac_addr);
            self.dst_mac_addr.set(dst_mac_addr);
            self.security.set(security);
            self.busy.set(false);
            self.src_pan.set(radio_pan);
            self.dst_pan.set(radio_pan);
            Ok(())
        }
    }

    /// Gets the next 6LoWPAN Fragment (as a MAC frame) to be sent. Note that
    /// this layer **does not** send the frame, and assumes that `init` has
    /// already been called.
    ///
    /// # Arguments
    ///
    /// `ip6_packet` - A reference to the IPv6 packet to be compressed
    /// `frag_buf` - The buffer to write the MAC frame to
    /// `radio` - A reference to a MacDevice, which is used to prepare the
    /// MAC frame
    ///
    /// # Return Value
    ///
    /// This function returns a `Result` type:
    /// `Ok(bool, frame)` - If `Ok`, then `bool` indicates whether the
    /// transmission is complete, and `Frame` is the filled out next MAC frame
    /// `Err(Result<(), ErrorCode>, &'static mut [u8])` - If `Err`, then `Result<(), ErrorCode>`
    /// is the reason for the error, and the return buffer is the (non-consumed)
    /// `frag_buf` passed in as an argument
    pub fn next_fragment<'b>(
        &self,
        ip6_packet: &'b IP6Packet<'b>,
        frag_buf: &'static mut [u8],
        radio: &dyn MacDevice,
    ) -> Result<(bool, Frame), (Result<(), ErrorCode>, &'static mut [u8])> {
        // This consumes frag_buf
        let frame = radio
            .prepare_data_frame(
                frag_buf,
                self.dst_pan.get(),
                self.dst_mac_addr.get(),
                self.src_pan.get(),
                self.src_mac_addr.get(),
                self.security.get(),
            )
            .map_err(|frame| (Err(ErrorCode::FAIL), frame))?;

        // If this is the first fragment
        if !self.busy.get() {
            let frame = self.start_transmit(ip6_packet, frame, self.sixlowpan.get_ctx_store())?;
            Ok((false, frame))
        } else if self.is_transmit_done() {
            self.end_transmit();
            Ok((true, frame))
        } else {
            // Want the total datagram size we are sending to be less than
            // the length of the packet - otherwise, we risk reading off the
            // end of the array
            if self.dgram_size.get() != ip6_packet.get_total_len() {
                return Err((Err(ErrorCode::NOMEM), frame.into_buf()));
            }

            let frame = self.prepare_next_fragment(ip6_packet, frame)?;
            Ok((false, frame))
        }
    }

    fn is_transmit_done(&self) -> bool {
        self.dgram_size.get() as usize <= self.dgram_offset.get()
    }

    // Frag_buf needs to be >= 802.15.4 MTU
    // The radio takes frag_buf, consumes it, returns Frame or Error
    fn start_transmit<'b>(
        &self,
        ip6_packet: &'b IP6Packet<'b>,
        frame: Frame,
        ctx_store: &dyn ContextStore,
    ) -> Result<Frame, (Result<(), ErrorCode>, &'static mut [u8])> {
        self.busy.set(true);
        self.dgram_size.set(ip6_packet.get_total_len());
        self.dgram_tag.set(self.sixlowpan.next_dgram_tag());
        self.prepare_first_fragment(ip6_packet, frame, ctx_store)
    }

    fn prepare_first_fragment<'b>(
        &self,
        ip6_packet: &'b IP6Packet<'b>,
        mut frame: Frame,
        ctx_store: &dyn ContextStore,
    ) -> Result<Frame, (Result<(), ErrorCode>, &'static mut [u8])> {
        // Here, we assume that the compressed headers fit in the first MTU
        // fragment. This is consistent with RFC 6282.
        let mut lowpan_packet = [0_u8; radio::MAX_FRAME_SIZE];
        let (consumed, written) = {
            match sixlowpan_compression::compress(
                ctx_store,
                ip6_packet,
                self.src_mac_addr.get(),
                self.dst_mac_addr.get(),
                &mut lowpan_packet,
            ) {
                Err(()) => return Err((Err(ErrorCode::FAIL), frame.into_buf())),
                Ok(result) => result,
            }
        };

        let remaining_payload = ip6_packet.get_total_len() as usize - consumed;
        let lowpan_len = written + remaining_payload;

        // TODO: This -2 is added to account for the FCS; this should be changed
        // in the MAC code
        let mut remaining_capacity = frame.remaining_data_capacity() - 2;

        // Need to fragment
        if lowpan_len > remaining_capacity {
            remaining_capacity -= self.write_frag_hdr(&mut frame, true);
        }

        // Write the 6lowpan header
        if written <= remaining_capacity {
            // TODO: Check success
            let _ = frame.append_payload(&lowpan_packet[0..written]);
            remaining_capacity -= written;
        } else {
            return Err((Err(ErrorCode::SIZE), frame.into_buf()));
        }

        // Write the remainder of the payload, rounding down to a multiple
        // of 8 if the entire payload won't fit
        let payload_len = if remaining_payload > remaining_capacity {
            remaining_capacity & !0b111
        } else {
            remaining_payload
        };
        // TODO: Check success
        let (payload_len, consumed) =
            self.write_additional_headers(ip6_packet, &mut frame, consumed, payload_len);

        let _ = frame.append_payload(&ip6_packet.get_payload()[0..payload_len]);
        self.dgram_offset.set(consumed + payload_len);
        Ok(frame)
    }

    fn prepare_next_fragment<'b>(
        &self,
        ip6_packet: &'b IP6Packet<'b>,
        mut frame: Frame,
    ) -> Result<Frame, (Result<(), ErrorCode>, &'static mut [u8])> {
        let dgram_offset = self.dgram_offset.get();
        let mut remaining_capacity = frame.remaining_data_capacity();
        remaining_capacity -= self.write_frag_hdr(&mut frame, false);

        // This rounds payload_len down to the nearest multiple of 8 if it
        // is not the last fragment (per RFC 4944)
        let remaining_payload = (self.dgram_size.get() as usize) - dgram_offset;
        let payload_len = if remaining_payload > remaining_capacity {
            remaining_capacity & !0b111
        } else {
            remaining_payload
        };

        let (payload_len, dgram_offset) =
            self.write_additional_headers(ip6_packet, &mut frame, dgram_offset, payload_len);

        if payload_len > 0 {
            let payload_offset = dgram_offset - ip6_packet.get_total_hdr_size();
            let _ = frame.append_payload(
                &ip6_packet.get_payload()[payload_offset..payload_offset + payload_len],
            );
        }

        // Update the offset to be used for the next fragment
        self.dgram_offset.set(dgram_offset + payload_len);
        Ok(frame)
    }

    // NOTE: This function will not work for headers that span past the first
    // frame.
    fn write_additional_headers<'b>(
        &self,
        ip6_packet: &'b IP6Packet<'b>,
        frame: &mut Frame,
        dgram_offset: usize,
        payload_len: usize,
    ) -> (usize, usize) {
        let total_hdr_len = ip6_packet.get_total_hdr_size();
        let mut payload_len = payload_len;
        let mut dgram_offset = dgram_offset;
        if total_hdr_len > dgram_offset {
            let headers_to_write = min(payload_len, total_hdr_len - dgram_offset);
            // TODO: Note that in order to serialize the headers, we need to
            // statically allocate room on the stack. However, we do not know
            // how many additional headers we have until runtime. This
            // functionality should be fixed in the future.
            let mut headers = [0_u8; 60];
            ip6_packet.encode(&mut headers);
            let _ = frame.append_payload(&headers[dgram_offset..dgram_offset + headers_to_write]);
            payload_len -= headers_to_write;
            dgram_offset += headers_to_write;
        }
        (payload_len, dgram_offset)
    }

    fn write_frag_hdr(&self, frame: &mut Frame, first_frag: bool) -> usize {
        if first_frag {
            let mut frag_header = [0_u8; lowpan_frag::FRAG1_HDR_SIZE];
            set_frag_hdr(
                self.dgram_size.get(),
                self.dgram_tag.get(),
                /*offset = */
                0,
                &mut frag_header,
                true,
            );
            // TODO: Check success
            let _ = frame.append_payload(&frag_header);
            lowpan_frag::FRAG1_HDR_SIZE
        } else {
            let mut frag_header = [0_u8; lowpan_frag::FRAGN_HDR_SIZE];
            set_frag_hdr(
                self.dgram_size.get(),
                self.dgram_tag.get(),
                self.dgram_offset.get(),
                &mut frag_header,
                first_frag,
            );
            // TODO: Check success
            let _ = frame.append_payload(&frag_header);
            lowpan_frag::FRAGN_HDR_SIZE
        }
    }

    fn end_transmit(&self) {
        self.busy.set(false);
    }
}

/// Tracks the decompression and defragmentation of an IPv6 packet
///
/// A list of `RxState`s is maintained by [Sixlowpan](struct.Sixlowpan.html) to
/// keep track of ongoing packet reassemblies. The number of `RxState`s is the
/// number of packets that can be reassembled at the same time. Generally,
/// two `RxState`s are sufficient for normal-case operation.
pub struct RxState<'a> {
    packet: TakeCell<'static, [u8]>,
    bitmap: MapCell<Bitmap>,
    dst_mac_addr: Cell<MacAddress>,
    src_mac_addr: Cell<MacAddress>,
    dgram_tag: Cell<u16>,
    dgram_size: Cell<u16>,
    // Marks if this instance is being used for a packet reassembly or if it is
    // free to use for a new packet.
    busy: Cell<bool>,
    // The time when packet reassembly started for the current packet.
    start_time: Cell<u32>,

    next: ListLink<'a, RxState<'a>>,
}

impl<'a> ListNode<'a, RxState<'a>> for RxState<'a> {
    fn next(&'a self) -> &'a ListLink<'a, RxState<'a>> {
        &self.next
    }
}

impl<'a> RxState<'a> {
    /// Creates a new `RxState`
    ///
    /// # Arguments
    ///
    /// `packet` - A buffer for reassembling an IPv6 packet. Currently, we
    /// assume this to be 1280 bytes long (the minimum IPv6 MTU size).
    pub fn new(packet: &'static mut [u8]) -> RxState<'a> {
        RxState {
            packet: TakeCell::new(packet),
            bitmap: MapCell::new(Bitmap::new()),
            dst_mac_addr: Cell::new(MacAddress::Short(0)),
            src_mac_addr: Cell::new(MacAddress::Short(0)),
            dgram_tag: Cell::new(0),
            dgram_size: Cell::new(0),
            busy: Cell::new(false),
            start_time: Cell::new(0),
            next: ListLink::empty(),
        }
    }

    fn is_my_fragment(
        &self,
        src_mac_addr: MacAddress,
        dst_mac_addr: MacAddress,
        dgram_size: u16,
        dgram_tag: u16,
    ) -> bool {
        self.busy.get()
            && (self.dgram_tag.get() == dgram_tag)
            && (self.dgram_size.get() == dgram_size)
            && (self.src_mac_addr.get() == src_mac_addr)
            && (self.dst_mac_addr.get() == dst_mac_addr)
    }

    // Checks if a given RxState is free or expired (and thus, can be freed).
    // This function implements the reassembly timeout for 6LoWPAN lazily.
    fn is_busy(&self, frequency: u32, current_time: u32) -> bool {
        let expired = current_time >= (self.start_time.get() + FRAG_TIMEOUT * frequency);
        if expired {
            self.end_receive(None, Err(ErrorCode::FAIL));
        }
        self.busy.get()
    }

    fn start_receive(
        &self,
        src_mac_addr: MacAddress,
        dst_mac_addr: MacAddress,
        dgram_size: u16,
        dgram_tag: u16,
        current_tics: u32,
    ) {
        self.dst_mac_addr.set(dst_mac_addr);
        self.src_mac_addr.set(src_mac_addr);
        self.dgram_tag.set(dgram_tag);
        self.dgram_size.set(dgram_size);
        self.busy.set(true);
        self.bitmap.map(|bitmap| bitmap.clear());
        self.start_time.set(current_tics);
    }

    // This function assumes that the payload is a slice starting from the
    // actual payload (no 802.15.4 headers, no fragmentation headers), and
    // returns true if the packet is completely reassembled.
    fn receive_next_frame(
        &self,
        payload: &[u8],
        payload_len: usize,
        dgram_size: u16,
        dgram_offset: usize,
        ctx_store: &dyn ContextStore,
    ) -> Result<bool, Result<(), ErrorCode>> {
        let packet = self.packet.take().ok_or(Err(ErrorCode::NOMEM))?;
        let uncompressed_len = if dgram_offset == 0 {
            let (consumed, written) = sixlowpan_compression::decompress(
                ctx_store,
                &payload[0..payload_len],
                self.src_mac_addr.get(),
                self.dst_mac_addr.get(),
                packet,
                dgram_size,
                true,
            )
            .map_err(|()| Err(ErrorCode::FAIL))?;
            let remaining = payload_len - consumed;
            packet[written..written + remaining]
                .copy_from_slice(&payload[consumed..consumed + remaining]);
            written + remaining
        } else {
            packet[dgram_offset..dgram_offset + payload_len]
                .copy_from_slice(&payload[0..payload_len]);
            payload_len
        };
        self.packet.replace(packet);
        if !self.bitmap.map_or(false, |bitmap| {
            bitmap.set_bits(dgram_offset / 8, (dgram_offset + uncompressed_len) / 8)
        }) {
            // If this fails, we received an overlapping fragment. We can simply
            // drop the packet in this case.
            Err(Err(ErrorCode::FAIL))
        } else {
            self.bitmap
                .map(|bitmap| bitmap.is_complete((dgram_size as usize) / 8))
                .ok_or(Err(ErrorCode::FAIL))
        }
    }

    fn end_receive(
        &self,
        client: Option<&'a dyn SixlowpanRxClient>,
        result: Result<(), ErrorCode>,
    ) {
        self.busy.set(false);
        self.bitmap.map(|bitmap| bitmap.clear());
        self.start_time.set(0);
        client.map(move |client| {
            // Since packet is borrowed from the upper layer, failing to return it
            // in the callback represents a significant error that should never
            // occur - all other calls to `packet.take()` replace the packet,
            // and thus the packet should always be here.
            self.packet
                .map(|packet| {
                    client.receive(packet, self.dgram_size.get() as usize, result);
                })
                .unwrap(); // Unwrap fail = Error: `packet` is None in call to end_receive.
        });
    }
}

/// Sends a receives IPv6 packets via 6loWPAN compression and fragmentation.
///
/// # Initialization
///
/// The `new` method creates an instance of `Sixlowpan` that can send packets.
/// To receive packets, `Sixlowpan` needs one or more
/// [RxState](struct.RxState.html)s which can be added with `add_rx_state`. More
/// [RxState](struct.RxState.html)s allow the `Sixlowpan` to receive more
/// packets concurrently.
///
/// Finally, `set_client` controls the client that will receive transmission
/// completion and reception callbacks.
pub struct Sixlowpan<'a, A: time::Alarm<'a>, C: ContextStore> {
    pub ctx_store: C,
    clock: &'a A,
    tx_dgram_tag: Cell<u16>,
    rx_client: Cell<Option<&'a dyn SixlowpanRxClient>>,

    // Receive state
    rx_states: List<'a, RxState<'a>>,
}

// This function is called after receiving a frame
impl<'a, A: time::Alarm<'a>, C: ContextStore> RxClient for Sixlowpan<'a, A, C> {
    fn receive<'b>(
        &self,
        buf: &'b [u8],
        header: Header<'b>,
        _lqi: u8,
        data_offset: usize,
        data_len: usize,
    ) {
        // We return if retcode is not valid, as it does not make sense to issue
        // a callback for an invalid frame reception
        // TODO: Handle the case where the addresses are None/elided - they
        // should not default to the zero address
        let src_mac_addr = header.src_addr.unwrap_or(MacAddress::Short(0));
        let dst_mac_addr = header.dst_addr.unwrap_or(MacAddress::Short(0));

        let (rx_state, returncode) = self.receive_frame(
            &buf[data_offset..data_offset + data_len],
            data_len,
            src_mac_addr,
            dst_mac_addr,
        );
        // Reception completed if rx_state is not None. Note that this can
        // also occur for some fail states (e.g. dropping an invalid packet)
        rx_state.map(|state| state.end_receive(self.rx_client.get(), returncode));
    }
}

impl<'a, A: time::Alarm<'a>, C: ContextStore> SixlowpanState<'a> for Sixlowpan<'a, A, C> {
    fn next_dgram_tag(&self) -> u16 {
        // Increment dgram_tag
        let dgram_tag = if (self.tx_dgram_tag.get() + 1) == 0 {
            1
        } else {
            self.tx_dgram_tag.get() + 1
        };
        self.tx_dgram_tag.set(dgram_tag);
        dgram_tag
    }

    fn get_ctx_store(&self) -> &dyn ContextStore {
        &self.ctx_store
    }

    /// Adds an additional `RxState` for reassembling IPv6 packets
    ///
    /// Each [RxState](struct.RxState.html) struct allows an additional IPv6
    /// packet to be reassembled concurrently.
    fn add_rx_state(&self, rx_state: &'a RxState<'a>) {
        self.rx_states.push_head(rx_state);
    }

    /// Sets the [SixlowpanClient](trait.SixlowpanClient.html) that will receive
    /// transmission completion and new packet reception callbacks.
    fn set_rx_client(&'a self, client: &'a dyn SixlowpanRxClient) {
        self.rx_client.set(Some(client));
    }
}

impl<'a, A: time::Alarm<'a>, C: ContextStore> Sixlowpan<'a, A, C> {
    /// Creates a new `Sixlowpan`
    ///
    /// # Arguments
    ///
    /// * `ctx_store` - Stores IPv6 address nextwork context mappings
    ///
    /// * `tx_buf` - A buffer used for storing individual fragments of a packet
    /// in transmission. This buffer must be at least the length of an 802.15.4
    /// frame.
    ///
    /// * `clock` - A implementation of `Alarm` used for tracking the timing of
    /// frame arrival. The clock should be continue running during sleep and
    /// have an accuracy of at least 60 seconds.
    pub fn new(ctx_store: C, clock: &'a A) -> Sixlowpan<'a, A, C> {
        Sixlowpan {
            ctx_store,
            clock,
            tx_dgram_tag: Cell::new(0),
            rx_client: Cell::new(None),

            rx_states: List::new(),
        }
    }

    fn receive_frame(
        &self,
        packet: &[u8],
        packet_len: usize,
        src_mac_addr: MacAddress,
        dst_mac_addr: MacAddress,
    ) -> (Option<&RxState<'a>>, Result<(), ErrorCode>) {
        if is_fragment(packet) {
            let (is_frag1, dgram_size, dgram_tag, dgram_offset) = get_frag_hdr(&packet[0..5]);
            let offset_to_payload = if is_frag1 {
                lowpan_frag::FRAG1_HDR_SIZE
            } else {
                lowpan_frag::FRAGN_HDR_SIZE
            };
            self.receive_fragment(
                &packet[offset_to_payload..],
                packet_len - offset_to_payload,
                src_mac_addr,
                dst_mac_addr,
                dgram_size,
                dgram_tag,
                dgram_offset,
            )
        } else {
            self.receive_single_packet(packet, packet_len, src_mac_addr, dst_mac_addr)
        }
    }

    fn receive_single_packet(
        &self,
        payload: &[u8],
        payload_len: usize,
        src_mac_addr: MacAddress,
        dst_mac_addr: MacAddress,
    ) -> (Option<&RxState<'a>>, Result<(), ErrorCode>) {
        let rx_state = self
            .rx_states
            .iter()
            .find(|state| !state.is_busy(self.clock.now().into_u32(), A::Frequency::frequency()));
        rx_state.map_or((None, Err(ErrorCode::NOMEM)), |state| {
            state.start_receive(
                src_mac_addr,
                dst_mac_addr,
                payload_len as u16,
                0,
                self.clock.now().into_u32(),
            );
            // The packet buffer should *always* be there; in particular,
            // since this state is not busy, it must have the packet buffer.
            // Otherwise, we are in an inconsistent state and can fail.
            let packet = state.packet.take().unwrap();

            // Filter non 6LoWPAN packets and return
            if !is_lowpan(payload) {
                return (None, Ok(()));
            }

            let decompressed = sixlowpan_compression::decompress(
                &self.ctx_store,
                &payload[0..payload_len],
                src_mac_addr,
                dst_mac_addr,
                packet,
                0,
                false,
            );
            match decompressed {
                Ok((consumed, written)) => {
                    let remaining = payload_len - consumed;
                    packet[written..written + remaining]
                        .copy_from_slice(&payload[consumed..consumed + remaining]);
                    // Want dgram_size to contain decompressed size of packet
                    state.dgram_size.set((written + remaining) as u16);
                }
                Err(()) => {
                    return (None, Err(ErrorCode::FAIL));
                }
            }

            state.packet.replace(packet);
            (Some(state), Ok(()))
        })
    }

    // This function returns an Err if an error occurred, returns Ok(Some(RxState))
    // if the packet has been fully reassembled, or returns Ok(None) if there
    // are still pending fragments
    fn receive_fragment(
        &self,
        frag_payload: &[u8],
        payload_len: usize,
        src_mac_addr: MacAddress,
        dst_mac_addr: MacAddress,
        dgram_size: u16,
        dgram_tag: u16,
        dgram_offset: usize,
    ) -> (Option<&RxState<'a>>, Result<(), ErrorCode>) {
        // First try to find an rx_state in the middle of assembly
        let mut rx_state = self
            .rx_states
            .iter()
            .find(|state| state.is_my_fragment(src_mac_addr, dst_mac_addr, dgram_size, dgram_tag));

        // Else find a free state
        if rx_state.is_none() {
            rx_state = self.rx_states.iter().find(|state| {
                !state.is_busy(self.clock.now().into_u32(), A::Frequency::frequency())
            });
            // Initialize new state
            rx_state.map(|state| {
                state.start_receive(
                    src_mac_addr,
                    dst_mac_addr,
                    dgram_size,
                    dgram_tag,
                    self.clock.now().into_u32(),
                )
            });
            if rx_state.is_none() {
                return (None, Err(ErrorCode::NOMEM));
            }
        }
        rx_state.map_or((None, Err(ErrorCode::NOMEM)), |state| {
            // Returns true if the full packet is reassembled
            let res = state.receive_next_frame(
                frag_payload,
                payload_len,
                dgram_size,
                dgram_offset,
                &self.ctx_store,
            );
            match res {
                // Some error occurred
                Err(_) => (Some(state), Err(ErrorCode::FAIL)),
                Ok(complete) => {
                    if complete {
                        // Packet fully reassembled
                        (Some(state), Ok(()))
                    } else {
                        // Packet not fully reassembled
                        (None, Ok(()))
                    }
                }
            }
        })
    }

    #[allow(dead_code)]
    // TODO: This code is currently unimplemented
    // This function is called when a disassociation event occurs, as we need
    // to expire all pending state.
    fn discard_all_state(&self) {
        for rx_state in self.rx_states.iter() {
            rx_state.end_receive(None, Err(ErrorCode::FAIL));
        }
        unimplemented!();
        // TODO: Need to get buffer back from Mac layer on disassociation
    }
}