stm32f4xx/clocks/
pll.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright OxidOS Automotive SRL.
//
// Author: Ioan-Cristian CÎRSTEA <ioan.cirstea@oxidos.io>

//! Main phase-locked loop (PLL) clock driver for the STM32F4xx family. [^doc_ref]
//!
//! Many boards of the STM32F4xx family provide several PLL clocks. However, all of them have a
//! main PLL clock. This driver is designed for the main PLL clock. It will be simply referred as
//! the PLL clock.
//!
//! The PLL clock is composed of two outputs:
//!
//! + the main one used for the system clock
//! + the PLL48CLK used for USB OTG FS, the random number generator and SDIO clocks
//!
//! # Implemented features
//!
//! - [x] Default configuration of 96MHz with reduced PLL jitter
//! - [x] 1MHz frequency precision
//! - [x] Support for 13-216MHz frequency range
//! - [x] Support for PLL48CLK output
//!
//! # Missing features
//!
//! - [ ] Precision higher than 1MHz
//! - [ ] Source selection
//! - [ ] Precise control over the PLL48CLK frequency
//!
//! # Usage
//!
//! For the purposes of brevity, any error checking has been removed. In real applications, always
//! check the return values of the [Pll] methods.
//!
//! First, get a reference to the [Pll] struct:
//! ```rust,ignore
//! let pll = &peripherals.stm32f4.clocks.pll;
//! ```
//!
//! ## Start the clock with a given frequency
//!
//! ```rust,ignore
//! pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 100); // 100MHz
//! pll.enable();
//! ```
//!
//! ## Stop the clock
//!
//! ```rust,ignore
//! pll.disable();
//! ```
//!
//! ## Check whether the PLL clock is running or not
//! ```rust,ignore
//! if pll.is_enabled() {
//!     // do something...
//! } else {
//!     // do something...
//! }
//! ```
//!
//! ## Check the clock frequency
//!
//! ```rust,ignore
//! let optional_pll_frequency = pll.get_frequency_mhz();
//! if let None = optional_pll_frequency {
//!     /* Clock stopped */
//! }
//! let pll_frequency = optional_pll_frequency.unwrap();
//! /* Computations based on the PLL frequency */
//! ```
//!
//! ## Reconfigure the clock once started
//!
//! ```rust,ignore
//! pll.disable(); // The PLL clock can't be configured while running
//! pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 50); // 50MHz
//! pll.enable();
//! ```
//!
//! ## Configure the PLL clock so that PLL48CLK output is correctly calibrated
//! ```rust,ignore
//! // The frequency of the PLL clock must be 1, 1.5, 2, 2.5, 3, 3.5 or 4 x 48MHz in order to get
//! // 48MHz output. Otherwise, the driver will attempt to get the closest frequency lower than 48MHz
//! pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 72); // 72MHz = 48MHz * 1.5
//! pll.enable();
//! ```
//!
//! ## Check if the PLL48CLK output is calibrated.
//! ```rust,ignore
//! if !pll.is_pll48_calibrated() {
//!     /* Handle the case when it is not calibrated */
//! }
//! ```
//!
//! ## Get the frequency of the PLL48CLK output
//!
//! ```rust,ignore
//! let optional_pll48_frequency = pll.get_frequency_mhz();
//! if let None = optional_pll48_frequency {
//!     /* Clock stopped */
//! }
//! let pll48_frequency = optional_pll48_frequency.unwrap();
//! ```
//!
//! [^doc_ref]: See 6.2.3 in the documentation.

use crate::chip_specific::clock_constants;
use crate::clocks::hsi::HSI_FREQUENCY_MHZ;
use crate::rcc::Rcc;
use crate::rcc::SysClockSource;
use crate::rcc::{PllSource, PLLM, PLLP, PLLQ};
use crate::rcc::{DEFAULT_PLLM_VALUE, DEFAULT_PLLN_VALUE, DEFAULT_PLLP_VALUE, DEFAULT_PLLQ_VALUE};

use kernel::debug;
use kernel::utilities::cells::OptionalCell;
use kernel::ErrorCode;

use core::cell::Cell;
use core::marker::PhantomData;

/// Main PLL clock structure.
pub struct Pll<'a, PllConstants> {
    rcc: &'a Rcc,
    frequency_mhz: OptionalCell<usize>,
    pll48_frequency_mhz: OptionalCell<usize>,
    pll48_calibrated: Cell<bool>,
    _marker: PhantomData<PllConstants>,
}

impl<'a, PllConstants: clock_constants::PllConstants> Pll<'a, PllConstants> {
    // Create a new instance of the PLL clock.
    //
    // The instance of the PLL clock is configured to run at 96MHz and with minimal PLL jitter
    // effects.
    //
    // # Parameters
    //
    // + rcc: an instance of [crate::rcc]
    //
    // # Returns
    //
    // An instance of the PLL clock.
    pub(in crate::clocks) fn new(rcc: &'a Rcc) -> Self {
        const PLLP: usize = match DEFAULT_PLLP_VALUE {
            PLLP::DivideBy2 => 2,
            PLLP::DivideBy4 => 4,
            PLLP::DivideBy6 => 6,
            PLLP::DivideBy8 => 8,
        };
        const PLLM: usize = DEFAULT_PLLM_VALUE as usize;
        const PLLQ: usize = DEFAULT_PLLQ_VALUE as usize;
        Self {
            rcc,
            frequency_mhz: OptionalCell::new(HSI_FREQUENCY_MHZ / PLLM * DEFAULT_PLLN_VALUE / PLLP),
            pll48_frequency_mhz: OptionalCell::new(
                HSI_FREQUENCY_MHZ / PLLM * DEFAULT_PLLN_VALUE / PLLQ,
            ),
            pll48_calibrated: Cell::new(true),
            _marker: PhantomData,
        }
    }

    // The caller must ensure the desired frequency lies between MIN_FREQ_MHZ and
    // MAX_FREQ_MHZ.  Otherwise, the return value makes no sense.
    fn compute_pllp(desired_frequency_mhz: usize) -> PLLP {
        if desired_frequency_mhz < 55 {
            PLLP::DivideBy8
        } else if desired_frequency_mhz < 73 {
            PLLP::DivideBy6
        } else if desired_frequency_mhz < 109 {
            PLLP::DivideBy4
        } else {
            PLLP::DivideBy2
        }
    }

    // The caller must ensure the desired frequency lies between MIN_FREQ_MHZ and
    // MAX_FREQ_MHZ. Otherwise, the return value makes no sense.
    fn compute_plln(
        desired_frequency_mhz: usize,
        pll_source_clock_freq: usize,
        pllp: PLLP,
    ) -> usize {
        let vco_input_frequency: usize = pll_source_clock_freq / DEFAULT_PLLM_VALUE as usize;
        desired_frequency_mhz * Into::<usize>::into(pllp) / vco_input_frequency
    }

    // The caller must ensure the VCO output frequency lies between 100 and 432MHz. Otherwise, the
    // return value makes no sense.
    fn compute_pllq(vco_output_frequency_mhz: usize) -> PLLQ {
        for pllq in 3..10 {
            if 48 * pllq >= vco_output_frequency_mhz {
                return match pllq {
                    3 => PLLQ::DivideBy3,
                    4 => PLLQ::DivideBy4,
                    5 => PLLQ::DivideBy5,
                    6 => PLLQ::DivideBy6,
                    7 => PLLQ::DivideBy7,
                    8 => PLLQ::DivideBy8,
                    _ => PLLQ::DivideBy9,
                };
            }
        }
        unreachable!("The previous for loop should always return");
    }

    /// Set the PLL source clock
    fn set_pll_source_clock(&self, source: PllSource) -> Result<(), ErrorCode> {
        if self.is_enabled() {
            Err(ErrorCode::FAIL)
        } else {
            self.rcc.set_pll_clocks_source(source);
            Ok(())
        }
    }

    /// Start the PLL clock.
    ///
    /// # Errors
    ///
    /// + [Err]\([ErrorCode::BUSY]\): if enabling the PLL clock took too long. Recall this method to
    /// ensure the PLL clock is running.
    pub fn enable(&self) -> Result<(), ErrorCode> {
        // Enable the PLL clock
        self.rcc.enable_pll_clock();

        // Wait until the PLL clock is locked.
        // 200 was obtained by running tests in release mode
        for _ in 0..200 {
            if self.rcc.is_locked_pll_clock() {
                return Ok(());
            }
        }

        // If waiting for the PLL clock took too long, return ErrorCode::BUSY
        Err(ErrorCode::BUSY)
    }

    /// Stop the PLL clock.
    ///
    /// # Errors
    ///
    /// + [Err]\([ErrorCode::FAIL]\): if the PLL clock is configured as the system clock.
    /// + [Err]\([ErrorCode::BUSY]\): disabling the PLL clock took to long. Retry to ensure it is
    /// not running.
    pub fn disable(&self) -> Result<(), ErrorCode> {
        // Can't disable the PLL clock when it is used as the system clock
        if self.rcc.get_sys_clock_source() == SysClockSource::PLL {
            return Err(ErrorCode::FAIL);
        }

        // Disable the PLL clock
        self.rcc.disable_pll_clock();

        // Wait to unlock the PLL clock
        // 10 was obtained by testing in release mode
        for _ in 0..10 {
            if !self.rcc.is_locked_pll_clock() {
                return Ok(());
            }
        }

        // If the waiting was too long, return ErrorCode::BUSY
        Err(ErrorCode::BUSY)
    }

    /// Check whether the PLL clock is enabled or not.
    ///
    /// # Returns
    ///
    /// + [false]: the PLL clock is not enabled
    /// + [true]: the PLL clock is enabled
    pub fn is_enabled(&self) -> bool {
        self.rcc.is_enabled_pll_clock()
    }

    /// Set the frequency of the PLL clock.
    ///
    /// The PLL clock has two outputs:
    ///
    /// + main output used for configuring the system clock
    /// + a second output called PLL48CLK used by OTG USB FS (48MHz), the random number generator
    /// (≤ 48MHz) and the SDIO (≤ 48MHz) clocks.
    ///
    /// When calling this method, the given frequency is set for the main output. The method will
    /// attempt to configure the PLL48CLK output to 48MHz, or to the highest value less than 48MHz
    /// if it is not possible to get a precise 48MHz. In order to obtain a precise 48MHz frequency
    /// (for the OTG USB FS peripheral), one should call this method with a frequency of 1, 1.5, 2,
    /// 2.5 ... 4 x 48MHz.
    ///
    /// # Parameters
    ///
    /// + pll_source: PLL source clock (HSI or HSE)
    ///
    /// + source_frequency: the frequency of the PLL source clock in MHz. For the HSI the frequency
    /// is fixed to 16MHz. For the HSE, the frequency is hardware-dependent
    ///
    /// + desired_frequency_mhz: the desired frequency in MHz. Supported values: 24-216MHz for
    /// STM32F401 and 13-216MHz for all the other chips
    ///
    /// # Errors
    ///
    /// + [Err]\([ErrorCode::INVAL]\): if the desired frequency can't be achieved
    /// + [Err]\([ErrorCode::FAIL]\): if the PLL clock is already enabled. It must be disabled before
    /// configuring it.
    pub(super) fn set_frequency_mhz(
        &self,
        pll_source: PllSource,
        source_frequency: usize,
        desired_frequency_mhz: usize,
    ) -> Result<(), ErrorCode> {
        // Check for errors:
        // + PLL clock running
        // + invalid frequency
        if self.rcc.is_enabled_pll_clock() {
            return Err(ErrorCode::FAIL);
        } else if desired_frequency_mhz < PllConstants::MIN_FREQ_MHZ
            || desired_frequency_mhz > PllConstants::MAX_FREQ_MHZ
        {
            return Err(ErrorCode::INVAL);
        }

        // The output frequencies for the PLL clock is computed as following:
        // Source frequency / PLLM = VCO input frequency (must range from 1MHz to 2MHz)
        // VCO output frequency = VCO input frequency * PLLN (must range from 100MHz to 432MHz)
        // PLL output frequency = VCO output frequency / PLLP
        // PLL48CLK = VCO output frequency / PLLQ

        // Set PLL source (HSI or HSE)
        if self.set_pll_source_clock(pll_source) != Ok(()) {
            return Err(ErrorCode::FAIL);
        }

        // Compute PLLP
        let pllp = Self::compute_pllp(desired_frequency_mhz);
        self.rcc.set_pll_clock_p_divider(pllp);

        // Compute PLLN
        let plln = Self::compute_plln(desired_frequency_mhz, source_frequency, pllp);
        self.rcc.set_pll_clock_n_multiplier(plln);

        // Compute PLLQ
        let vco_output_frequency = source_frequency / DEFAULT_PLLM_VALUE as usize * plln;
        let pllq = Self::compute_pllq(vco_output_frequency);
        self.rcc.set_pll_clock_q_divider(pllq);

        // Check if PLL48CLK is calibrated, e.g. its frequency is exactly 48MHz
        let pll48_frequency = vco_output_frequency / pllq as usize;
        self.pll48_calibrated
            .set(pll48_frequency == 48 && vco_output_frequency % pllq as usize == 0);

        // Cache the frequency so it is not computed every time a get method is called
        self.frequency_mhz.set(desired_frequency_mhz);
        self.pll48_frequency_mhz.set(pll48_frequency);

        Ok(())
    }

    /// Get the frequency in MHz of the PLL clock.
    ///
    /// # Returns
    ///
    /// + [Some]\(frequency_mhz\): if the PLL clock is enabled.
    /// + [None]: if the PLL clock is disabled.
    pub fn get_frequency_mhz(&self) -> Option<usize> {
        if self.is_enabled() {
            self.frequency_mhz.get()
        } else {
            None
        }
    }

    /// Get the frequency in MHz of the PLL clock from RCC registers instead of using the cached
    /// value.
    ///
    /// # Returns
    ///
    /// + [Some]\(frequency_mhz\): if the PLL clock is enabled.
    /// + [None]: if the PLL clock is disabled.
    pub fn get_frequency_mhz_no_cache(&self, source_frequency: usize) -> Option<usize> {
        if self.is_enabled() {
            let pllm = self.rcc.get_pll_clocks_m_divider() as usize;
            let plln = self.rcc.get_pll_clock_n_multiplier();
            let pllp: usize = self.rcc.get_pll_clock_p_divider().into();
            Some(source_frequency / pllm * plln / pllp)
        } else {
            None
        }
    }

    /// Get the frequency in MHz of the PLL48 clock.
    ///
    /// **NOTE:** If the PLL clock was not configured with a frequency multiple of 48MHz, the
    /// returned value is inaccurate.
    ///
    /// # Returns
    ///
    /// + [Some]\(frequency_mhz\): if the PLL clock is enabled.
    /// + [None]: if the PLL clock is disabled.
    pub fn get_frequency_mhz_pll48(&self) -> Option<usize> {
        if self.is_enabled() {
            self.pll48_frequency_mhz.get()
        } else {
            None
        }
    }

    /// Check if the PLL48 clock is calibrated (its output is exactly 48MHz).
    ///
    /// A frequency of 48MHz is required for USB OTG FS.
    ///
    /// # Returns
    ///
    /// + [true]: the PLL48 clock frequency is exactly 48MHz.
    /// + [false]: the PLL48 clock is not exactly 48MHz.
    pub fn is_pll48_calibrated(&self) -> bool {
        self.pll48_calibrated.get()
    }
}

/// Tests for the PLL clock
///
/// This module ensures that the PLL clock works as expected. If changes are brought to the PLL
/// clock, ensure to run all the tests to see if anything is broken.
///
/// # Usage
///
/// First, import the [crate::clocks::pll] module inside the board main file:
///
/// ```rust,ignore
/// use stm32f429zi::pll;
/// ```
/// To run all the available tests, add this line before **kernel::process::load_processes()**:
///
/// ```rust,ignore
/// pll::tests::run(&peripherals.stm32f4.clocks.pll);
/// ```
///
/// If everything works as expected, the following message should be printed on the kernel console:
///
/// ```text
/// ===============================================
/// Testing PLL...
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Testing PLL configuration...
/// Finished testing PLL configuration.
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Testing PLL struct...
/// Finished testing PLL struct.
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Finished testing PLL. Everything is alright!
/// ===============================================
/// ```
///
/// There is also the possibility to run a part of the test suite. Check the functions present in
/// this module for more details.
///
/// # Errors
///
/// If there are any errors, open an issue ticket at <https://github.com/tock/tock>. Please provide the
/// output of the test execution.
pub mod tests {
    use super::{
        clock_constants, debug, ErrorCode, Pll, PllSource, DEFAULT_PLLM_VALUE, HSI_FREQUENCY_MHZ,
        PLLM, PLLP, PLLQ,
    };

    // Depending on the default PLLM value, the computed PLLN value changes.
    const MULTIPLIER: usize = match DEFAULT_PLLM_VALUE {
        PLLM::DivideBy8 => 1,
        PLLM::DivideBy16 => 2,
    };

    /// Test if the configuration parameters are correctly computed for a given frequency.
    ///
    /// # Usage
    ///
    /// ```rust,ignore
    /// use stm32f429zi::pll; // Import the pll module
    /// /* Code goes here */
    /// pll::test::test_pll_config(&peripherals.stm32f4.pll); // Run the tests
    /// ```
    pub fn test_pll_config<PllConstants: clock_constants::PllConstants>() {
        debug!("Testing PLL configuration...");

        // 13 or 24MHz --> minimum value
        let mut pllp = Pll::<PllConstants>::compute_pllp(PllConstants::MIN_FREQ_MHZ);
        assert_eq!(PLLP::DivideBy8, pllp);
        let mut plln =
            Pll::<PllConstants>::compute_plln(PllConstants::MIN_FREQ_MHZ, HSI_FREQUENCY_MHZ, pllp);

        #[cfg(not(feature = "stm32f401"))]
        assert_eq!(52 * MULTIPLIER, plln);
        #[cfg(feature = "stm32f401")]
        assert_eq!(96 * MULTIPLIER, plln);

        let mut vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        let mut pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);

        #[cfg(not(feature = "stm32f401"))]
        assert_eq!(PLLQ::DivideBy3, pllq);
        #[cfg(feature = "stm32f401")]
        assert_eq!(PLLQ::DivideBy4, pllq);

        // 25MHz --> minimum required value for Ethernet devices
        pllp = Pll::<PllConstants>::compute_pllp(25);
        assert_eq!(PLLP::DivideBy8, pllp);
        plln = Pll::<PllConstants>::compute_plln(25, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(100 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy5, pllq);

        // 54MHz --> last frequency before PLLP becomes DivideBy6
        pllp = Pll::<PllConstants>::compute_pllp(54);
        assert_eq!(PLLP::DivideBy8, pllp);
        plln = Pll::<PllConstants>::compute_plln(54, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(216 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy9, pllq);

        // 55MHz --> PLLP becomes DivideBy6
        pllp = Pll::<PllConstants>::compute_pllp(55);
        assert_eq!(PLLP::DivideBy6, pllp);
        plln = Pll::<PllConstants>::compute_plln(55, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(165 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy7, pllq);

        // 70MHz --> Another value for PLLP::DivideBy6
        pllp = Pll::<PllConstants>::compute_pllp(70);
        assert_eq!(PLLP::DivideBy6, pllp);
        plln = Pll::<PllConstants>::compute_plln(70, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(210 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy9, pllq);

        // 72MHz --> last frequency before PLLP becomes DivideBy4
        pllp = Pll::<PllConstants>::compute_pllp(72);
        assert_eq!(PLLP::DivideBy6, pllp);
        plln = Pll::<PllConstants>::compute_plln(72, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(216 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy9, pllq);

        // 73MHz --> PLLP becomes DivideBy4
        pllp = Pll::<PllConstants>::compute_pllp(73);
        assert_eq!(PLLP::DivideBy4, pllp);
        plln = Pll::<PllConstants>::compute_plln(73, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(146 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy7, pllq);

        // 100MHz --> Another value for PLLP::DivideBy4
        pllp = Pll::<PllConstants>::compute_pllp(100);
        assert_eq!(PLLP::DivideBy4, pllp);
        plln = Pll::<PllConstants>::compute_plln(100, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(200 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy9, pllq);

        // 108MHz --> last frequency before PLLP becomes DivideBy2
        pllp = Pll::<PllConstants>::compute_pllp(108);
        assert_eq!(PLLP::DivideBy4, pllp);
        plln = Pll::<PllConstants>::compute_plln(108, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(216 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy9, pllq);

        // 109MHz --> PLLP becomes DivideBy2
        pllp = Pll::<PllConstants>::compute_pllp(109);
        assert_eq!(PLLP::DivideBy2, pllp);
        plln = Pll::<PllConstants>::compute_plln(109, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(109 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy5, pllq);

        // 125MHz --> Another value for PLLP::DivideBy2
        pllp = Pll::<PllConstants>::compute_pllp(125);
        assert_eq!(PLLP::DivideBy2, pllp);
        plln = Pll::<PllConstants>::compute_plln(125, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(125 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy6, pllq);

        // 180MHz --> Max frequency for the CPU
        pllp = Pll::<PllConstants>::compute_pllp(180);
        assert_eq!(PLLP::DivideBy2, pllp);
        plln = Pll::<PllConstants>::compute_plln(180, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(180 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy8, pllq);

        // 216MHz --> Max frequency for the PLL due to the VCO output frequency limit
        pllp = Pll::<PllConstants>::compute_pllp(216);
        assert_eq!(PLLP::DivideBy2, pllp);
        plln = Pll::<PllConstants>::compute_plln(216, HSI_FREQUENCY_MHZ, pllp);
        assert_eq!(216 * MULTIPLIER, plln);
        vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
        pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
        assert_eq!(PLLQ::DivideBy9, pllq);

        debug!("Finished testing PLL configuration.");
    }

    /// Check if the PLL works as expected.
    ///
    /// **NOTE:** it is highly recommended to call [test_pll_config]
    /// first to check whether the configuration parameters are correctly computed.
    ///
    /// # Usage
    ///
    /// ```rust,ignore
    /// use stm32f429zi::pll; // Import the PLL module
    /// /* Code goes here */
    /// pll::test::test_pll_struct(&peripherals.stm32f4.pll); // Run the tests
    /// ```
    pub fn test_pll_struct<'a, PllConstants: clock_constants::PllConstants>(
        pll: &'a Pll<'a, PllConstants>,
    ) {
        debug!("Testing PLL struct...");
        // Make sure the PLL clock is disabled
        assert_eq!(Ok(()), pll.disable());
        assert!(!pll.is_enabled());

        // Attempting to configure the PLL with either too high or too low frequency
        assert_eq!(
            Err(ErrorCode::INVAL),
            pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 12)
        );
        assert_eq!(
            Err(ErrorCode::INVAL),
            pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 217)
        );

        // Start the PLL with the default configuration.
        assert_eq!(Ok(()), pll.enable());

        // Make sure the PLL is enabled.
        assert!(pll.is_enabled());

        // By default, the PLL clock is set to 96MHz
        assert_eq!(Some(96), pll.get_frequency_mhz());

        // By default, the PLL48 clock is correctly calibrated
        assert!(pll.is_pll48_calibrated());

        // Impossible to configure the PLL clock once it is enabled.
        assert_eq!(
            Err(ErrorCode::FAIL),
            pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 50)
        );

        // Stop the PLL in order to reconfigure it.
        assert_eq!(Ok(()), pll.disable());

        // Configure the PLL clock to run at 25MHz
        assert_eq!(
            Ok(()),
            pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 25)
        );

        // Start the PLL with the new configuration
        assert_eq!(Ok(()), pll.enable());

        // get_frequency() method should reflect the new change
        assert_eq!(Some(25), pll.get_frequency_mhz());

        // Since 25 is not a multiple of 48, the PLL48 clock is not correctly calibrated
        assert!(!pll.is_pll48_calibrated());

        // The expected PLL48 clock value in this case should be approximately 40 MHz.
        // It is actually exactly 40MHz in this particular case.
        assert_eq!(Some(40), pll.get_frequency_mhz_pll48());

        // Stop the PLL clock
        assert_eq!(Ok(()), pll.disable());

        // Attempting to get the frequency of the PLL clock when it is disabled should return None.
        assert_eq!(None, pll.get_frequency_mhz());
        // Same for PLL48 clock
        assert_eq!(None, pll.get_frequency_mhz_pll48());

        // Attempting to configure the PLL clock with a frequency multiple of 48MHz
        assert_eq!(
            Ok(()),
            pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 144)
        );
        assert_eq!(Ok(()), pll.enable());
        assert_eq!(Some(144), pll.get_frequency_mhz());

        // PLL48 clock output should be correctly calibrated
        assert!(pll.is_pll48_calibrated());
        assert_eq!(Some(48), pll.get_frequency_mhz_pll48());

        // Reconfigure the clock for 100MHz
        assert_eq!(Ok(()), pll.disable());
        assert_eq!(
            Ok(()),
            pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 100)
        );
        assert_eq!(Ok(()), pll.enable());
        assert_eq!(Some(100), pll.get_frequency_mhz());

        // In this case, the PLL48 clock is not correctly calibrated. Its frequency is
        // approximately 44MHz.
        assert!(!pll.is_pll48_calibrated());
        assert_eq!(Some(44), pll.get_frequency_mhz_pll48());

        // Configure the clock to 72MHz = 48MHz * 1.5
        assert_eq!(Ok(()), pll.disable());
        assert_eq!(
            Ok(()),
            pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 72)
        );
        assert_eq!(Ok(()), pll.enable());
        assert_eq!(Some(72), pll.get_frequency_mhz());

        // In this case, the PLL48 clock is correctly calibrated
        assert!(pll.is_pll48_calibrated());
        assert_eq!(Some(48), pll.get_frequency_mhz_pll48());

        // Turn off the PLL clock
        assert_eq!(Ok(()), pll.disable());
        assert!(!pll.is_enabled());

        debug!("Finished testing PLL struct.");
    }

    /// Run the entire test suite.
    ///
    /// # Usage
    ///
    /// ```rust,ignore
    /// use stm32f429zi::pll; // Import the PLL module
    /// /* Code goes here */
    /// pll::test::run(&peripherals.stm32f4.pll); // Run the tests
    /// ```
    pub fn run<'a, PllConstants: clock_constants::PllConstants>(pll: &'a Pll<'a, PllConstants>) {
        debug!("");
        debug!("===============================================");
        debug!("Testing PLL...");
        debug!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
        test_pll_config::<PllConstants>();
        debug!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
        test_pll_struct(pll);
        debug!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
        debug!("Finished testing PLL. Everything is alright!");
        debug!("===============================================");
        debug!("");
    }
}