kernel/collections/
ring_buffer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Implementation of a ring buffer.

use crate::collections::queue;

pub struct RingBuffer<'a, T: 'a> {
    ring: &'a mut [T],
    head: usize,
    tail: usize,
}

impl<'a, T: Copy> RingBuffer<'a, T> {
    pub fn new(ring: &'a mut [T]) -> RingBuffer<'a, T> {
        RingBuffer {
            head: 0,
            tail: 0,
            ring,
        }
    }

    /// Returns the number of elements that can be enqueued until the ring buffer is full.
    pub fn available_len(&self) -> usize {
        // The maximum capacity of the queue is ring.len - 1, because head == tail for the empty
        // queue.
        self.ring.len().saturating_sub(1 + queue::Queue::len(self))
    }

    /// Returns up to 2 slices that together form the contents of the ring buffer.
    ///
    /// Returns:
    /// - `(None, None)` if the buffer is empty.
    /// - `(Some(slice), None)` if the head is before the tail (therefore all the contents is
    /// contiguous).
    /// - `(Some(left), Some(right))` if the head is after the tail. In that case, the logical
    /// contents of the buffer is `[left, right].concat()` (although physically the "left" slice is
    /// stored after the "right" slice).
    pub fn as_slices(&'a self) -> (Option<&'a [T]>, Option<&'a [T]>) {
        if self.head < self.tail {
            (Some(&self.ring[self.head..self.tail]), None)
        } else if self.head > self.tail {
            let (left, right) = self.ring.split_at(self.head);
            (
                Some(right),
                if self.tail == 0 {
                    None
                } else {
                    Some(&left[..self.tail])
                },
            )
        } else {
            (None, None)
        }
    }
}

impl<T: Copy> queue::Queue<T> for RingBuffer<'_, T> {
    fn has_elements(&self) -> bool {
        self.head != self.tail
    }

    fn is_full(&self) -> bool {
        self.head == ((self.tail + 1) % self.ring.len())
    }

    fn len(&self) -> usize {
        if self.tail > self.head {
            self.tail - self.head
        } else if self.tail < self.head {
            (self.ring.len() - self.head) + self.tail
        } else {
            // head equals tail, length is zero
            0
        }
    }

    fn enqueue(&mut self, val: T) -> bool {
        if self.is_full() {
            // Incrementing tail will overwrite head
            false
        } else {
            self.ring[self.tail] = val;
            self.tail = (self.tail + 1) % self.ring.len();
            true
        }
    }

    fn push(&mut self, val: T) -> Option<T> {
        let result = if self.is_full() {
            let val = self.ring[self.head];
            self.head = (self.head + 1) % self.ring.len();
            Some(val)
        } else {
            None
        };

        self.ring[self.tail] = val;
        self.tail = (self.tail + 1) % self.ring.len();
        result
    }

    fn dequeue(&mut self) -> Option<T> {
        if self.has_elements() {
            let val = self.ring[self.head];
            self.head = (self.head + 1) % self.ring.len();
            Some(val)
        } else {
            None
        }
    }

    /// Removes the first element for which the provided closure returns `true`.
    ///
    /// This walks the ring buffer and, upon finding a matching element, removes
    /// it. It then shifts all subsequent elements forward (filling the hole
    /// created by removing the element).
    ///
    /// If an element was removed, this function returns it as `Some(elem)`.
    fn remove_first_matching<F>(&mut self, f: F) -> Option<T>
    where
        F: Fn(&T) -> bool,
    {
        let len = self.ring.len();
        let mut slot = self.head;
        while slot != self.tail {
            if f(&self.ring[slot]) {
                // This is the desired element, remove it and return it
                let val = self.ring[slot];

                let mut next_slot = (slot + 1) % len;
                // Move everything past this element forward in the ring
                while next_slot != self.tail {
                    self.ring[slot] = self.ring[next_slot];
                    slot = next_slot;
                    next_slot = (next_slot + 1) % len;
                }
                self.tail = slot;
                return Some(val);
            }
            slot = (slot + 1) % len;
        }
        None
    }

    fn empty(&mut self) {
        self.head = 0;
        self.tail = 0;
    }

    fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(&T) -> bool,
    {
        let len = self.ring.len();
        // Index over the elements before the retain operation.
        let mut src = self.head;
        // Index over the retained elements.
        let mut dst = self.head;

        while src != self.tail {
            if f(&self.ring[src]) {
                // When the predicate is true, move the current element to the
                // destination if needed, and increment the destination index.
                if src != dst {
                    self.ring[dst] = self.ring[src];
                }
                dst = (dst + 1) % len;
            }
            src = (src + 1) % len;
        }

        self.tail = dst;
    }
}

#[cfg(test)]
mod test {
    use super::super::queue::Queue;
    use super::RingBuffer;

    #[test]
    fn test_enqueue_dequeue() {
        const LEN: usize = 10;
        let mut ring = [0; LEN];
        let mut buf = RingBuffer::new(&mut ring);

        for _ in 0..2 * LEN {
            assert!(buf.enqueue(42));
            assert_eq!(buf.len(), 1);
            assert!(buf.has_elements());

            assert_eq!(buf.dequeue(), Some(42));
            assert_eq!(buf.len(), 0);
            assert!(!buf.has_elements());
        }
    }

    #[test]
    fn test_push() {
        const LEN: usize = 10;
        const MAX: usize = 100;
        let mut ring = [0; LEN + 1];
        let mut buf = RingBuffer::new(&mut ring);

        for i in 0..LEN {
            assert_eq!(buf.len(), i);
            assert!(!buf.is_full());
            assert_eq!(buf.push(i), None);
            assert!(buf.has_elements());
        }

        for i in LEN..MAX {
            assert!(buf.is_full());
            assert_eq!(buf.push(i), Some(i - LEN));
        }

        for i in 0..LEN {
            assert!(buf.has_elements());
            assert_eq!(buf.len(), LEN - i);
            assert_eq!(buf.dequeue(), Some(MAX - LEN + i));
            assert!(!buf.is_full());
        }

        assert!(!buf.has_elements());
    }

    // Enqueue integers 1 <= n < len, checking that it succeeds and that the
    // queue is full at the end.
    // See std::iota in C++.
    fn enqueue_iota(buf: &mut RingBuffer<usize>, len: usize) {
        for i in 1..len {
            assert!(!buf.is_full());
            assert!(buf.enqueue(i));
            assert!(buf.has_elements());
            assert_eq!(buf.len(), i);
        }

        assert!(buf.is_full());
        assert!(!buf.enqueue(0));
        assert!(buf.has_elements());
    }

    // Dequeue all elements, expecting integers 1 <= n < len, checking that the
    // queue is empty at the end.
    // See std::iota in C++.
    fn dequeue_iota(buf: &mut RingBuffer<usize>, len: usize) {
        for i in 1..len {
            assert!(buf.has_elements());
            assert_eq!(buf.len(), len - i);
            assert_eq!(buf.dequeue(), Some(i));
            assert!(!buf.is_full());
        }

        assert!(!buf.has_elements());
        assert_eq!(buf.len(), 0);
    }

    // Move the head by `count` elements, by enqueueing/dequeueing `count`
    // times an element.
    // This assumes an empty queue at the beginning, and yields an empty queue.
    fn move_head(buf: &mut RingBuffer<usize>, count: usize) {
        assert!(!buf.has_elements());
        assert_eq!(buf.len(), 0);

        for _ in 0..count {
            assert!(buf.enqueue(0));
            assert_eq!(buf.dequeue(), Some(0));
        }

        assert!(!buf.has_elements());
        assert_eq!(buf.len(), 0);
    }

    #[test]
    fn test_fill_once() {
        const LEN: usize = 10;
        let mut ring = [0; LEN];
        let mut buf = RingBuffer::new(&mut ring);

        assert!(!buf.has_elements());
        assert_eq!(buf.len(), 0);

        enqueue_iota(&mut buf, LEN);
        dequeue_iota(&mut buf, LEN);
    }

    #[test]
    fn test_refill() {
        const LEN: usize = 10;
        let mut ring = [0; LEN];
        let mut buf = RingBuffer::new(&mut ring);

        for _ in 0..10 {
            enqueue_iota(&mut buf, LEN);
            dequeue_iota(&mut buf, LEN);
        }
    }

    #[test]
    fn test_retain() {
        const LEN: usize = 10;
        let mut ring = [0; LEN];
        let mut buf = RingBuffer::new(&mut ring);

        move_head(&mut buf, LEN - 2);
        enqueue_iota(&mut buf, LEN);

        buf.retain(|x| x % 2 == 1);
        assert_eq!(buf.len(), LEN / 2);

        assert_eq!(buf.dequeue(), Some(1));
        assert_eq!(buf.dequeue(), Some(3));
        assert_eq!(buf.dequeue(), Some(5));
        assert_eq!(buf.dequeue(), Some(7));
        assert_eq!(buf.dequeue(), Some(9));
        assert_eq!(buf.dequeue(), None);
    }
}