sam4l/i2c.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Implementation of the SAM4L TWIMS peripheral.
//!
//! The implementation, especially of repeated starts, is quite sensitive to the
//! ordering of operations (e.g. setup DMA, then set command register, then next
//! command register, then enable, then start the DMA transfer). The placement
//! of writes to interrupt enable/disable registers is also significant, but not
//! refactored in such a way that's very logical right now.
//!
//! The point is that until this changes, and this notice is taken away: IF YOU
//! CHANGE THIS DRIVER, TEST RIGOROUSLY!!!
use crate::dma::{DMAChannel, DMAClient, DMAPeripheral};
use crate::pm;
use core::cell::Cell;
use kernel::hil;
use kernel::platform::chip::ClockInterface;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::peripheral_management::{PeripheralManagement, PeripheralManager};
use kernel::utilities::registers::interfaces::{Readable, Writeable};
use kernel::utilities::registers::{
register_bitfields, FieldValue, ReadOnly, ReadWrite, WriteOnly,
};
use kernel::utilities::StaticRef;
// Listing of all registers related to the TWIM peripheral.
// Section 27.9 of the datasheet
#[repr(C)]
#[allow(dead_code)]
struct TWIMRegisters {
cr: WriteOnly<u32, Control::Register>,
cwgr: ReadWrite<u32, ClockWaveformGenerator::Register>,
smbtr: ReadWrite<u32, SmbusTiming::Register>,
cmdr: ReadWrite<u32, Command::Register>,
ncmdr: ReadWrite<u32, Command::Register>,
rhr: ReadOnly<u32, ReceiveHolding::Register>,
thr: WriteOnly<u32, TransmitHolding::Register>,
sr: ReadOnly<u32, Status::Register>,
ier: WriteOnly<u32, Interrupt::Register>,
idr: WriteOnly<u32, Interrupt::Register>,
imr: ReadOnly<u32, Interrupt::Register>,
scr: WriteOnly<u32, StatusClear::Register>,
pr: ReadOnly<u32>,
vr: ReadOnly<u32>,
hscwgr: ReadWrite<u32>,
srr: ReadWrite<u32, SlewRate::Register>,
hssrr: ReadWrite<u32>,
}
// Listing of all registers related to the TWIS peripheral.
// Section 28.9 of the datasheet
#[repr(C)]
#[allow(dead_code)]
struct TWISRegisters {
cr: ReadWrite<u32, ControlSlave::Register>,
nbytes: ReadWrite<u32, Nbytes::Register>,
tr: ReadWrite<u32, Timing::Register>,
rhr: ReadOnly<u32, ReceiveHolding::Register>,
thr: WriteOnly<u32, TransmitHolding::Register>,
pecr: ReadOnly<u32, PacketErrorCheck::Register>,
sr: ReadOnly<u32, StatusSlave::Register>,
ier: WriteOnly<u32, InterruptSlave::Register>,
idr: WriteOnly<u32, InterruptSlave::Register>,
imr: ReadOnly<u32, InterruptSlave::Register>,
scr: WriteOnly<u32, StatusClearSlave::Register>,
pr: ReadOnly<u32>,
vr: ReadOnly<u32>,
hstr: ReadWrite<u32>,
srr: ReadWrite<u32, SlewRateSlave::Register>,
hssrr: ReadWrite<u32>,
}
register_bitfields![u32,
Control [
/// Stop the Current Transfer
STOP 8,
/// Software Reset
SWRST 7,
/// SMBus Disable
SMDIS 5,
/// SMBus Enable
SMEN 4,
/// Master Disable
MDIS 1,
/// Master Enable
MEN 0
],
ClockWaveformGenerator [
/// Clock Prescaler
EXP OFFSET(28) NUMBITS(3) [],
/// Data Setup and Hold Cycles
DATA OFFSET(24) NUMBITS(4) [],
/// START and STOP Cycles
STASTO OFFSET(16) NUMBITS(8) [],
/// Clock High Cycles
HIGH OFFSET(8) NUMBITS(8) [],
/// Clock Low Cycles
LOW OFFSET(0) NUMBITS(8) []
],
SmbusTiming [
/// SMBus Timeout Clock Prescaler
EXP OFFSET(28) NUMBITS(4) [],
/// Clock High Maximum Cycles
THMAX OFFSET(16) NUMBITS(8) [],
/// Master Clock Stretch Maximum Cycles
TLWOM OFFSET(8) NUMBITS(8) [],
/// Slave Clock Stretch Maximum Cycles
TLOWS OFFSET(0) NUMBITS(8) []
],
Command [
/// HS-mode Master Code
HSMCODE OFFSET(28) NUMBITS(3) [],
/// HS-mode
HS OFFSET(26) NUMBITS(1) [
NoHSMode = 0,
HSMode = 1
],
/// ACK Last Master RX Byte
ACKLAST OFFSET(25) NUMBITS(1) [
NackLast = 0,
AckLast = 1
],
/// Packet Error Checking Enable
PECEN OFFSET(24) NUMBITS(1) [
NoPecByteVerification = 0,
PecByteVerification = 1
],
/// Number of Data Bytes in Transfer
NBYTES OFFSET(16) NUMBITS(8) [],
/// CMDR Valid
VALID OFFSET(15) NUMBITS(1) [],
/// Send STOP Condition
STOP OFFSET(14) NUMBITS(1) [
NoSendStop = 0,
SendStop = 1
],
/// Send START Condition
START OFFSET(13) NUMBITS(1) [
NoStartCondition = 0,
StartCondition = 1
],
/// Transfer is to Same Address as Previous Address
REPSAME OFFSET(12) NUMBITS(1) [],
/// Ten Bit Addressing Mode
TENBIT OFFSET(11) NUMBITS(1) [
SevenBitAddressing = 0,
TenBitAddressing = 1
],
/// Slave Address
SADR OFFSET(1) NUMBITS(10) [],
/// Transfer Direction
READ OFFSET(0) NUMBITS(1) [
Transmit = 0,
Receive = 1
]
],
ReceiveHolding [
/// Received Data
RXDATA OFFSET(0) NUMBITS(8) []
],
TransmitHolding [
/// Data to Transmit
TXDATA OFFSET(0) NUMBITS(8) []
],
Status [
/// ACK in HS-mode Master Code Phase Received
HSMCACK 17,
/// Master Interface Enable
MENB 16,
/// Stop Request Accepted
STOP 14,
/// PEC Error
PECERR 13,
/// Timeout
TOUT 12,
/// Arbitration Lost
ARBLST 10,
/// NAK in Data Phase Received
DNAK 9,
/// NAK in Address Phase Received
ANAK 8,
/// Two-wire Bus is Free
BUSFREE 5,
/// Master Interface is Idle
IDLE 4,
/// Command Complete
CCOMP 3,
/// Ready for More Commands
CRDY 2,
/// THR Data Ready
TXRDY 1,
/// RHR Data Ready
RXRDY 0
],
Interrupt [
/// ACK in HS-mode Master Code Phase Received
HSMCACK 17,
/// Stop Request Accepted
STOP 14,
/// PEC Error
PECERR 13,
/// Timeout
TOUT 12,
/// Arbitration Lost
ARBLST 10,
/// NAK in Data Phase Received
DNAK 9,
/// NAK in Address Phase Received
ANAK 8,
/// Two-wire Bus is Free
BUSFREE 5,
/// Master Interface is Idle
IDLE 4,
/// Command Complete
CCOMP 3,
/// Ready for More Commands
CRDY 2,
/// THR Data Ready
TXRDY 1,
/// RHR Data Ready
RXRDY 0
],
StatusClear [
/// ACK in HS-mode Master Code Phase Received
HSMCACK 17,
/// Stop Request Accepted
STOP 14,
/// PEC Error
PECERR 13,
/// Timeout
TOUT 12,
/// Arbitration Lost
ARBLST 10,
/// NAK in Data Phase Received
DNAK 9,
/// NAK in Address Phase Received
ANAK 8,
/// Command Complete
CCOMP 3
],
SlewRate [
/// Input Spike Filter Control
FILTER OFFSET(28) NUMBITS(2) [
StandardOrFast = 2,
FastModePlus = 3
],
/// Clock Slew Limit
CLSLEW OFFSET(24) NUMBITS(2) [],
/// Clock Drive Strength LOW
CLDRIVEL OFFSET(16) NUMBITS(3) [],
/// Data Slew Limit
DASLEW OFFSET(8) NUMBITS(2) [],
/// Data Drive Strength LOW
DADRIVEL OFFSET(0) NUMBITS(3) []
]
];
register_bitfields![u32,
ControlSlave [
/// Ten Bit Address Match
TENBIT OFFSET(26) NUMBITS(1) [
Disable = 0,
Enable = 1
],
/// Slave Address
ADR OFFSET(16) NUMBITS(10) [],
/// Stretch Clock on Data Byte Reception
SODR OFFSET(15) NUMBITS(1) [],
/// Stretch Clock on Address Match
SOAM OFFSET(14) NUMBITS(1) [
NoStretch = 0,
Stretch = 1
],
/// NBYTES Count Up
CUP OFFSET(13) NUMBITS(1) [
CountDown = 0,
CountUp = 1
],
/// Slave Receiver Data Phase ACK Value
ACK OFFSET(12) NUMBITS(1) [
AckLow = 0,
AckHigh = 1
],
/// Packet Error Checking Enable
PECEN OFFSET(11) NUMBITS(1) [
Disable = 0,
Enable = 1
],
/// SMBus Host Header
SMHH OFFSET(10) NUMBITS(1) [
NoAckHostHeader = 0,
AckHostHeader = 1
],
/// SMBus Default Address
SMDA OFFSET(9) NUMBITS(1) [
NoAckDefaultAddress = 0,
AckDefaultAddress = 1
],
/// Software Reset
SWRST OFFSET(7) NUMBITS(1) [],
/// Clock Stretch Enable
STREN OFFSET(4) NUMBITS(1) [
Disable = 0,
Enable = 1
],
/// General Call Address Match
GCMATCH OFFSET(3) NUMBITS(1) [
NoAckGeneralCallAddress = 0,
AckGeneralCallAddress = 1
],
/// Slave Address Match
SMATCH OFFSET(2) NUMBITS(1) [
NoAckSlaveAddress = 0,
AckSlaveAddress = 1
],
/// SMBus Mode Enable
SMEN OFFSET(1) NUMBITS(1) [
Disable = 0,
Enable = 1
],
/// Slave Enable
SEN OFFSET(0) NUMBITS(1) [
Disable = 0,
Enable = 1
]
],
Nbytes [
NBYTES OFFSET(0) NUMBITS(8) []
],
Timing [
/// Clock Prescaler
EXP OFFSET(28) NUMBITS(4) [],
/// Data Setup Cycles
SUDAT OFFSET(16) NUMBITS(8) [],
/// SMBus Timeout Cycles
TTOUT OFFSET(8) NUMBITS(8) [],
/// SMBus Low Cycles
TLOWS OFFSET(0) NUMBITS(8) []
],
PacketErrorCheck [
/// Calculated PEC Value
PEC OFFSET(0) NUMBITS(8) []
],
StatusSlave [
/// Byte Transfer Finished
BTF 23,
/// Repeated Start Received
REP 22,
/// Stop Received
STO 21,
/// SMBus Default Address Match
SMBDAM 20,
/// SMBus Host Header Address Match
SMBHHM 19,
/// General Call Match
GCM 17,
/// Slave Address Match
SAM 16,
/// Bus Error
BUSERR 14,
/// SMBus PEC Error
SMBPECERR 13,
/// SMBus Timeout
SMBTOUT 12,
/// NAK Received
NAK 8,
/// Overrun
ORUN 7,
/// Underrun
URUN 6,
/// Transmitter Mode
TRA 5,
/// Transmission Complete
TCOMP 3,
/// Slave Enabled
SEN 2,
/// THR Data Ready
TXRDY 1,
/// RHR Data Ready
RXRDY 0
],
InterruptSlave [
/// Byte Transfer Finished
BTF 23,
/// Repeated Start Received
REP 22,
/// Stop Received
STO 21,
/// SMBus Default Address Match
SMBDAM 20,
/// SMBus Host Header Address Match
SMBHHM 19,
/// General Call Match
GCM 17,
/// Slave Address Match
SAM 16,
/// Bus Error
BUSERR 14,
/// SMBus PEC Error
SMBPECERR 13,
/// SMBus Timeout
SMBTOUT 12,
/// NAK Received
NAK 8,
/// Overrun
ORUN 7,
/// Underrun
URUN 6,
/// Transmission Complete
TCOMP 3,
/// THR Data Ready
TXRDY 1,
/// RHR Data Ready
RXRDY 0
],
StatusClearSlave [
/// Byte Transfer Finished
BTF 23,
/// Repeated Start Received
REP 22,
/// Stop Received
STO 21,
/// SMBus Default Address Match
SMBDAM 20,
/// SMBus Host Header Address Match
SMBHHM 19,
/// General Call Match
GCM 17,
/// Slave Address Match
SAM 16,
/// Bus Error
BUSERR 14,
/// SMBus PEC Error
SMBPECERR 13,
/// SMBus Timeout
SMBTOUT 12,
/// NAK Received
NAK 8,
/// Overrun
ORUN 7,
/// Underrun
URUN 6,
/// Transmission Complete
TCOMP 3
],
SlewRateSlave [
/// Input Spike Filter Control
FILTER OFFSET(28) NUMBITS(2) [],
/// Data Slew Limit
DASLEW OFFSET(8) NUMBITS(2) [],
/// Data Drive Strength LOW
DADRIVEL OFFSET(0) NUMBITS(3) []
]
];
// The addresses in memory (7.1 of manual) of the TWIM peripherals
const I2C_BASE_ADDRS: [StaticRef<TWIMRegisters>; 4] = unsafe {
[
StaticRef::new(0x40018000 as *const TWIMRegisters),
StaticRef::new(0x4001C000 as *const TWIMRegisters),
StaticRef::new(0x40078000 as *const TWIMRegisters),
StaticRef::new(0x4007C000 as *const TWIMRegisters),
]
};
// The addresses in memory (7.1 of manual) of the TWIM peripherals
const I2C_SLAVE_BASE_ADDRS: [StaticRef<TWISRegisters>; 2] = unsafe {
[
StaticRef::new(0x40018400 as *const TWISRegisters),
StaticRef::new(0x4001C400 as *const TWISRegisters),
]
};
// Three main I2C speeds
#[derive(Clone, Copy)]
pub enum Speed {
Standard100k,
Fast400k,
FastPlus1M,
}
/// Wrapper for TWIM clock that ensures TWIS clock is off
struct TWIMClock {
master: pm::Clock,
slave: Option<pm::Clock>,
}
impl ClockInterface for TWIMClock {
fn is_enabled(&self) -> bool {
self.master.is_enabled()
}
fn enable(&self) {
self.slave.map(|slave_clock| {
if slave_clock.is_enabled() {
panic!("I2C: Request for master clock, but slave active");
}
});
self.master.enable();
}
fn disable(&self) {
self.master.disable();
}
}
/// Wrapper for TWIS clock that ensures TWIM clock is off
struct TWISClock {
master: pm::Clock,
slave: Option<pm::Clock>,
}
impl ClockInterface for TWISClock {
fn is_enabled(&self) -> bool {
let slave_clock = self.slave.unwrap(); // Unwrap fail = I2C: Use of slave with no clock
slave_clock.is_enabled()
}
fn enable(&self) {
let slave_clock = self.slave.unwrap(); // Unwrap fail = I2C: Use of slave with no clock
if self.master.is_enabled() {
panic!("I2C: Request for slave clock, but master active");
}
slave_clock.enable();
}
fn disable(&self) {
let slave_clock = self.slave.unwrap(); // Unwrap fail = I2C: Use of slave with no clock
slave_clock.disable();
}
}
/// Abstraction of the I2C hardware
pub struct I2CHw<'a> {
master_mmio_address: StaticRef<TWIMRegisters>,
slave_mmio_address: Option<StaticRef<TWISRegisters>>,
master_clock: TWIMClock,
slave_clock: TWISClock,
dma: OptionalCell<&'static DMAChannel>,
dma_pids: (DMAPeripheral, DMAPeripheral),
master_client: Cell<Option<&'a dyn hil::i2c::I2CHwMasterClient>>,
slave_client: Cell<Option<&'a dyn hil::i2c::I2CHwSlaveClient>>,
on_deck: Cell<Option<(DMAPeripheral, usize)>>,
slave_enabled: Cell<bool>,
my_slave_address: Cell<u8>,
slave_read_buffer: TakeCell<'static, [u8]>,
slave_read_buffer_len: Cell<usize>,
slave_read_buffer_index: Cell<usize>,
slave_write_buffer: TakeCell<'static, [u8]>,
slave_write_buffer_len: Cell<usize>,
slave_write_buffer_index: Cell<usize>,
pm: &'static pm::PowerManager,
}
impl PeripheralManagement<TWIMClock> for I2CHw<'_> {
type RegisterType = TWIMRegisters;
fn get_registers(&self) -> &TWIMRegisters {
&self.master_mmio_address
}
fn get_clock(&self) -> &TWIMClock {
&self.master_clock
}
fn before_peripheral_access(&self, clock: &TWIMClock, _: &TWIMRegisters) {
if !clock.is_enabled() {
clock.enable();
}
}
fn after_peripheral_access(&self, clock: &TWIMClock, registers: &TWIMRegisters) {
// If there are no interrupts active then we can disable the clock
// for this peripheral.
if registers.imr.get() == 0 {
clock.disable();
}
}
}
type TWIMRegisterManager<'a, 'm> = PeripheralManager<'m, I2CHw<'a>, TWIMClock>;
impl PeripheralManagement<TWISClock> for I2CHw<'_> {
type RegisterType = TWISRegisters;
fn get_registers(&self) -> &TWISRegisters {
self.slave_mmio_address.as_ref().unwrap() // Unwrap fail = Access of non-existent slave
}
fn get_clock(&self) -> &TWISClock {
&self.slave_clock
}
fn before_peripheral_access(&self, clock: &TWISClock, _: &TWISRegisters) {
if !clock.is_enabled() {
clock.enable();
}
}
fn after_peripheral_access(&self, clock: &TWISClock, registers: &TWISRegisters) {
// If there are no interrupts active then we can disable the clock
// for this peripheral.
if registers.imr.get() == 0 {
clock.disable();
}
}
}
type TWISRegisterManager<'a, 'm> = PeripheralManager<'m, I2CHw<'a>, TWISClock>;
const fn create_twims_clocks(
master: pm::Clock,
slave: Option<pm::Clock>,
) -> (TWIMClock, TWISClock) {
(TWIMClock { master, slave }, TWISClock { master, slave })
}
// Need to implement the `new` function on the I2C device as a constructor.
// This gets called from the device tree.
impl<'a> I2CHw<'a> {
fn new(
base_addr: StaticRef<TWIMRegisters>,
slave_base_addr: Option<StaticRef<TWISRegisters>>,
clocks: (TWIMClock, TWISClock),
dma_rx: DMAPeripheral,
dma_tx: DMAPeripheral,
pm: &'static pm::PowerManager,
) -> I2CHw<'a> {
I2CHw {
master_mmio_address: base_addr,
slave_mmio_address: slave_base_addr,
master_clock: clocks.0,
slave_clock: clocks.1,
dma: OptionalCell::empty(),
dma_pids: (dma_rx, dma_tx),
master_client: Cell::new(None),
slave_client: Cell::new(None),
on_deck: Cell::new(None),
slave_enabled: Cell::new(false),
my_slave_address: Cell::new(0),
slave_read_buffer: TakeCell::empty(),
slave_read_buffer_len: Cell::new(0),
slave_read_buffer_index: Cell::new(0),
slave_write_buffer: TakeCell::empty(),
slave_write_buffer_len: Cell::new(0),
slave_write_buffer_index: Cell::new(0),
pm,
}
}
pub fn new_i2c0(pm: &'static pm::PowerManager) -> Self {
I2CHw::new(
I2C_BASE_ADDRS[0],
Some(I2C_SLAVE_BASE_ADDRS[0]),
create_twims_clocks(
pm::Clock::PBA(pm::PBAClock::TWIM0),
Some(pm::Clock::PBA(pm::PBAClock::TWIS0)),
),
DMAPeripheral::TWIM0_RX,
DMAPeripheral::TWIM0_TX,
pm,
)
}
pub fn new_i2c1(pm: &'static pm::PowerManager) -> Self {
I2CHw::new(
I2C_BASE_ADDRS[1],
Some(I2C_SLAVE_BASE_ADDRS[1]),
create_twims_clocks(
pm::Clock::PBA(pm::PBAClock::TWIM1),
Some(pm::Clock::PBA(pm::PBAClock::TWIS1)),
),
DMAPeripheral::TWIM1_RX,
DMAPeripheral::TWIM1_TX,
pm,
)
}
pub fn new_i2c2(pm: &'static pm::PowerManager) -> Self {
I2CHw::new(
I2C_BASE_ADDRS[2],
None,
create_twims_clocks(pm::Clock::PBA(pm::PBAClock::TWIM2), None),
DMAPeripheral::TWIM2_RX,
DMAPeripheral::TWIM2_TX,
pm,
)
}
pub fn new_i2c3(pm: &'static pm::PowerManager) -> Self {
I2CHw::new(
I2C_BASE_ADDRS[3],
None,
create_twims_clocks(pm::Clock::PBA(pm::PBAClock::TWIM3), None),
DMAPeripheral::TWIM3_RX,
DMAPeripheral::TWIM3_TX,
pm,
)
}
/// Set the clock prescaler and the time widths of the I2C signals
/// in the CWGR register to make the bus run at a particular I2C speed.
fn set_bus_speed(&self, twim: &TWIMRegisterManager) {
// Set I2C waveform timing parameters based on ASF code
let system_frequency = self.pm.get_system_frequency();
let mut exp = 0;
let mut f_prescaled = system_frequency / 400000 / 2;
while (f_prescaled > 0xff) && (exp <= 0x7) {
// Increase the prescale factor, and update our frequency
exp += 1;
f_prescaled /= 2;
}
// Check that we have a valid setting
if exp > 0x7 {
panic!("Cannot setup I2C waveform timing with given system clock.");
}
let low = f_prescaled / 2;
let high = f_prescaled - low;
let data = 0;
let stasto = f_prescaled;
twim.registers.cwgr.write(
ClockWaveformGenerator::EXP.val(exp)
+ ClockWaveformGenerator::DATA.val(data)
+ ClockWaveformGenerator::STASTO.val(stasto)
+ ClockWaveformGenerator::HIGH.val(high)
+ ClockWaveformGenerator::LOW.val(low),
)
}
pub fn set_dma(&self, dma: &'static DMAChannel) {
self.dma.set(dma);
}
pub fn handle_interrupt(&self) {
let old_status = {
let twim = &TWIMRegisterManager::new(self);
let old_status = twim.registers.sr.extract();
// Clear all status registers.
twim.registers.scr.write(
StatusClear::HSMCACK::SET
+ StatusClear::STOP::SET
+ StatusClear::PECERR::SET
+ StatusClear::TOUT::SET
+ StatusClear::ARBLST::SET
+ StatusClear::DNAK::SET
+ StatusClear::ANAK::SET
+ StatusClear::CCOMP::SET,
);
old_status
};
let err = if old_status.is_set(Status::ANAK) {
Some(Err(hil::i2c::Error::AddressNak))
} else if old_status.is_set(Status::DNAK) {
Some(Err(hil::i2c::Error::DataNak))
} else if old_status.is_set(Status::ARBLST) {
Some(Err(hil::i2c::Error::ArbitrationLost))
} else if old_status.is_set(Status::CCOMP) {
Some(Ok(()))
} else {
None
};
let on_deck = self.on_deck.get();
self.on_deck.set(None);
match on_deck {
None => {
{
let twim = &TWIMRegisterManager::new(self);
twim.registers.cmdr.set(0);
twim.registers.ncmdr.set(0);
self.disable_interrupts(twim);
if err.is_some() {
// enable, reset, disable
twim.registers.cr.write(Control::MEN::SET);
twim.registers.cr.write(Control::SWRST::SET);
twim.registers.cr.write(Control::MDIS::SET);
}
}
err.map(|err| {
self.master_client.get().map(|client| {
let buf = self.dma.and_then(|dma| {
let b = dma.abort_transfer();
self.dma.set(dma);
b
});
buf.map(|buf| {
client.command_complete(buf, err);
});
});
});
}
Some((dma_periph, len)) => {
// Check to see if we are only trying to get one byte. If we
// are, and the RXRDY bit is already set, then we already have
// that byte in the RHR register. If we setup DMA after we
// have the single byte we are looking for, everything breaks
// because we will never get another byte and therefore
// no more interrupts. So, we just read the byte we have
// and call this I2C command complete.
if (len == 1) && old_status.is_set(Status::TXRDY) {
let the_byte = {
let twim = &TWIMRegisterManager::new(self);
twim.registers.cmdr.set(0);
twim.registers.ncmdr.set(0);
self.disable_interrupts(twim);
if err.is_some() {
// enable, reset, disable
twim.registers.cr.write(Control::MEN::SET);
twim.registers.cr.write(Control::SWRST::SET);
twim.registers.cr.write(Control::MDIS::SET);
}
twim.registers.rhr.read(ReceiveHolding::RXDATA) as u8
};
err.map(|err| {
self.master_client.get().map(|client| {
let buf = self.dma.and_then(|dma| {
let b = dma.abort_transfer();
self.dma.set(dma);
b
});
buf.map(|buf| {
// Save the already read byte.
buf[0] = the_byte;
client.command_complete(buf, err);
});
});
});
} else {
{
let twim = &TWIMRegisterManager::new(self);
// Enable transaction error interrupts
twim.registers.ier.write(
Interrupt::CCOMP::SET
+ Interrupt::ANAK::SET
+ Interrupt::DNAK::SET
+ Interrupt::ARBLST::SET,
);
}
self.dma.map(|dma| {
let buf = dma.abort_transfer().unwrap();
dma.prepare_transfer(dma_periph, buf, len);
dma.start_transfer();
});
}
}
}
}
fn setup_transfer(
&self,
twim: &TWIMRegisterManager,
chip: u8,
flags: FieldValue<u32, Command::Register>,
direction: FieldValue<u32, Command::Register>,
len: usize,
) {
// disable before configuring
twim.registers.cr.write(Control::MDIS::SET);
// Configure the command register with the settings for this transfer.
twim.registers.cmdr.write(
Command::SADR.val(chip as u32)
+ flags
+ Command::VALID::SET
+ Command::NBYTES.val(len as u32)
+ direction,
);
twim.registers.ncmdr.set(0);
// Enable transaction error interrupts
twim.registers.ier.write(
Interrupt::CCOMP::SET
+ Interrupt::ANAK::SET
+ Interrupt::DNAK::SET
+ Interrupt::ARBLST::SET,
);
}
fn setup_nextfer(
&self,
twim: &TWIMRegisterManager,
chip: u8,
flags: FieldValue<u32, Command::Register>,
direction: FieldValue<u32, Command::Register>,
len: usize,
) {
// disable before configuring
twim.registers.cr.write(Control::MDIS::SET);
twim.registers.ncmdr.write(
Command::SADR.val(chip as u32)
+ flags
+ Command::VALID::SET
+ Command::NBYTES.val(len as u32)
+ direction,
);
// Enable
twim.registers.cr.write(Control::MEN::SET);
}
fn master_enable(&self, twim: &TWIMRegisterManager) {
// Enable to begin transfer
twim.registers.cr.write(Control::MEN::SET);
}
fn write(
&self,
chip: u8,
flags: FieldValue<u32, Command::Register>,
data: &'static mut [u8],
len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
let twim = &TWIMRegisterManager::new(self);
if self.dma.is_some() {
self.dma.map(move |dma| {
dma.enable();
dma.prepare_transfer(self.dma_pids.1, data, len);
self.setup_transfer(twim, chip, flags, Command::READ::Transmit, len);
self.master_enable(twim);
dma.start_transfer();
});
Ok(())
} else {
Err((hil::i2c::Error::NotSupported, data))
}
}
fn read(
&self,
chip: u8,
flags: FieldValue<u32, Command::Register>,
data: &'static mut [u8],
len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
let twim = &TWIMRegisterManager::new(self);
if self.dma.is_some() {
self.dma.map(move |dma| {
dma.enable();
dma.prepare_transfer(self.dma_pids.0, data, len);
self.setup_transfer(twim, chip, flags, Command::READ::Receive, len);
self.master_enable(twim);
dma.start_transfer();
});
Ok(())
} else {
Err((hil::i2c::Error::NotSupported, data))
}
}
fn write_read(
&self,
chip: u8,
data: &'static mut [u8],
split: usize,
read_len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
let twim = &TWIMRegisterManager::new(self);
if self.dma.is_some() {
self.dma.map(move |dma| {
dma.enable();
dma.prepare_transfer(self.dma_pids.1, data, split);
self.setup_transfer(
twim,
chip,
Command::START::StartCondition,
Command::READ::Transmit,
split,
);
self.setup_nextfer(
twim,
chip,
Command::START::StartCondition + Command::STOP::SendStop,
Command::READ::Receive,
read_len,
);
self.on_deck.set(Some((self.dma_pids.0, read_len)));
dma.start_transfer();
});
Ok(())
} else {
Err((hil::i2c::Error::NotSupported, data))
}
}
fn disable_interrupts(&self, twim: &TWIMRegisterManager) {
twim.registers.idr.set(!0);
}
/// Handle possible interrupt for TWIS module.
pub fn handle_slave_interrupt(&self) {
if self.slave_mmio_address.is_some() {
let twis = &TWISRegisterManager::new(self);
// Get current status from the hardware.
let status = twis.registers.sr.extract();
let imr = twis.registers.imr.extract();
// This will still be a "status" register, just with all of the
// status bits corresponding to disabled interrupts cleared.
let interrupts = status.bitand(imr.get());
// Check for errors.
if interrupts.any_matching_bits_set(
StatusSlave::BUSERR::SET
+ StatusSlave::SMBPECERR::SET
+ StatusSlave::SMBTOUT::SET
+ StatusSlave::ORUN::SET
+ StatusSlave::URUN::SET,
) {
// From the datasheet: If a bus error (misplaced START or STOP)
// condition is detected, the SR.BUSERR bit is set and the TWIS
// waits for a new START condition.
if interrupts.is_set(StatusSlave::BUSERR) {
// Restart and wait for the next start byte
twis.registers.scr.set(status.get());
return;
}
panic!("ERR 0x{:x}", interrupts.get());
}
// Check if we got the address match interrupt
if interrupts.is_set(StatusSlave::SAM) {
twis.registers.nbytes.write(Nbytes::NBYTES.val(0));
// Did we get a read or a write?
if status.is_set(StatusSlave::TRA) {
// This means the slave is in transmit mode, AKA we got a
// read.
// Clear the byte transfer done if set (copied from ASF)
twis.registers.scr.write(StatusClearSlave::BTF::SET);
// Setup interrupts that we now care about
twis.registers
.ier
.write(InterruptSlave::TCOMP::SET + InterruptSlave::BTF::SET);
twis.registers.ier.write(
InterruptSlave::BUSERR::SET
+ InterruptSlave::SMBPECERR::SET
+ InterruptSlave::SMBTOUT::SET
+ InterruptSlave::ORUN::SET
+ InterruptSlave::URUN::SET,
);
if self.slave_read_buffer.is_some() {
// Have buffer to send, start reading
self.slave_read_buffer_index.set(0);
let len = self.slave_read_buffer_len.get();
if len >= 1 {
self.slave_read_buffer.map(|buffer| {
twis.registers
.thr
.write(TransmitHolding::TXDATA.val(buffer[0] as u32));
});
self.slave_read_buffer_index.set(1);
} else {
// Send dummy byte
twis.registers.thr.write(TransmitHolding::TXDATA.val(0x2e));
}
// Make it happen by clearing status.
twis.registers.scr.set(status.get());
} else {
// Call to upper layers asking for a buffer to send
self.slave_client.get().map(|client| {
client.read_expected();
});
}
} else {
// Slave is in receive mode, AKA we got a write.
// Get transmission complete and rxready interrupts.
twis.registers
.ier
.write(InterruptSlave::TCOMP::SET + InterruptSlave::RXRDY::SET);
// Set index to 0
self.slave_write_buffer_index.set(0);
if self.slave_write_buffer.is_some() {
// Clear to continue with existing buffer.
twis.registers.scr.set(status.get());
} else {
// Call to upper layers asking for a buffer to
// read into.
self.slave_client.get().map(|client| {
client.write_expected();
});
}
}
} else {
// Did not get address match interrupt.
if interrupts.is_set(StatusSlave::TCOMP) {
// Transmission complete
let nbytes = twis.registers.nbytes.get();
twis.registers.idr.set(!0);
twis.registers.ier.write(InterruptSlave::SAM::SET);
twis.registers.scr.set(status.get());
if status.is_set(StatusSlave::TRA) {
// read
self.slave_client.get().map(|client| {
self.slave_read_buffer.take().map(|buffer| {
client.command_complete(
buffer,
nbytes as usize,
hil::i2c::SlaveTransmissionType::Read,
);
});
});
} else {
// write
let len = self.slave_write_buffer_len.get();
let idx = self.slave_write_buffer_index.get();
if len > idx {
self.slave_write_buffer.map(|buffer| {
buffer[idx] = twis.registers.rhr.read(ReceiveHolding::RXDATA) as u8;
});
self.slave_write_buffer_index.set(idx + 1);
} else {
// Just drop on floor
twis.registers.rhr.get();
}
self.slave_client.get().map(|client| {
self.slave_write_buffer.take().map(|buffer| {
client.command_complete(
buffer,
nbytes as usize,
hil::i2c::SlaveTransmissionType::Write,
);
});
});
}
} else if interrupts.is_set(StatusSlave::BTF) {
// Byte transfer finished. Send the next byte from the
// buffer.
if self.slave_read_buffer.is_some() {
// Have buffer to send, start reading
let len = self.slave_read_buffer_len.get();
let idx = self.slave_read_buffer_index.get();
if len > idx {
self.slave_read_buffer.map(|buffer| {
twis.registers
.thr
.write(TransmitHolding::TXDATA.val(buffer[idx] as u32));
});
self.slave_read_buffer_index.set(idx + 1);
} else {
// Send dummy byte
twis.registers.thr.write(TransmitHolding::TXDATA.val(0xdf));
}
} else {
// Send a default byte
twis.registers.thr.write(TransmitHolding::TXDATA.val(0xdc));
}
// Make it happen by clearing status.
twis.registers.scr.set(status.get());
} else if interrupts.is_set(StatusSlave::RXRDY) {
// Receive byte ready.
if self.slave_write_buffer.is_some() {
// Check that the BTF byte is set at the beginning of
// the transfer. Sometimes a spurious RX ready interrupt
// happens at the beginning (right after the address
// byte) that we need to ignore, and checking the BTF
// bit fixes that. However, sometimes in the middle of a
// transfer we get an RXREADY interrupt where the BTF
// bit is NOT set. I don't know why.
if status.is_set(StatusSlave::BTF)
|| self.slave_write_buffer_index.get() > 0
{
// Have buffer to read into
let len = self.slave_write_buffer_len.get();
let idx = self.slave_write_buffer_index.get();
if len > idx {
self.slave_write_buffer.map(|buffer| {
buffer[idx] =
twis.registers.rhr.read(ReceiveHolding::RXDATA) as u8;
});
self.slave_write_buffer_index.set(idx + 1);
} else {
// Just drop on floor
twis.registers.rhr.get();
}
} else {
// Just drop on floor
twis.registers.rhr.get();
}
} else {
// Just drop on floor
twis.registers.rhr.get();
}
twis.registers.scr.set(status.get());
}
}
}
}
/// Receive the bytes the I2C master is writing to us.
fn slave_write_receive(
&self,
buffer: &'static mut [u8],
len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
if self.slave_enabled.get() {
if self.slave_mmio_address.is_some() {
self.slave_write_buffer.replace(buffer);
self.slave_write_buffer_len.set(len);
let twis = &TWISRegisterManager::new(self);
let status = twis.registers.sr.extract();
let imr = twis.registers.imr.extract();
let interrupts = status.bitand(imr.get());
// Address match status bit still set, so we need to tell the TWIS
// to continue.
if interrupts.is_set(StatusSlave::SAM) && !status.is_set(StatusSlave::TRA) {
twis.registers.scr.set(status.get());
}
Ok(())
} else {
Err((hil::i2c::Error::AddressNak, buffer))
}
} else {
Err((hil::i2c::Error::NotSupported, buffer))
}
}
/// Prepare a buffer for the I2C master to read from after a read call.
fn slave_read_send(
&self,
buffer: &'static mut [u8],
len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
if self.slave_enabled.get() {
if self.slave_mmio_address.is_some() {
self.slave_read_buffer.replace(buffer);
self.slave_read_buffer_len.set(len);
self.slave_read_buffer_index.set(0);
let twis = &TWISRegisterManager::new(self);
// Check to see if we should send the first byte.
let status = twis.registers.sr.extract();
let imr = twis.registers.imr.extract();
let interrupts = status.bitand(imr.get());
// Address match status bit still set. We got this function
// call in response to an incoming read. Send the first
// byte.
if interrupts.is_set(StatusSlave::SAM) && status.is_set(StatusSlave::TRA) {
twis.registers.scr.write(StatusClearSlave::BTF::SET);
let len = self.slave_read_buffer_len.get();
if len >= 1 {
self.slave_read_buffer.map(|buffer| {
twis.registers
.thr
.write(TransmitHolding::TXDATA.val(buffer[0] as u32));
});
self.slave_read_buffer_index.set(1);
} else {
// Send dummy byte
twis.registers.thr.write(TransmitHolding::TXDATA.val(0x75));
}
// Make it happen by clearing status.
twis.registers.scr.set(status.get());
}
Ok(())
} else {
Err((hil::i2c::Error::AddressNak, buffer))
}
} else {
Err((hil::i2c::Error::NotSupported, buffer))
}
}
fn slave_disable_interrupts(&self, twis: &TWISRegisterManager) {
twis.registers.idr.set(!0);
}
fn slave_set_address(&self, address: u8) {
self.my_slave_address.set(address);
}
fn slave_listen(&self) {
if self.slave_mmio_address.is_some() {
let twis = &TWISRegisterManager::new(self);
// Enable and configure
let control = ControlSlave::ADR.val((self.my_slave_address.get() as u32) & 0x7F)
+ ControlSlave::SOAM::Stretch
+ ControlSlave::CUP::CountUp
+ ControlSlave::STREN::Enable
+ ControlSlave::SMATCH::AckSlaveAddress;
twis.registers.cr.write(control);
// Set this separately because that makes the HW happy.
twis.registers.cr.write(control + ControlSlave::SEN::Enable);
}
}
}
impl DMAClient for I2CHw<'_> {
fn transfer_done(&self, _pid: DMAPeripheral) {}
}
impl<'a> hil::i2c::I2CMaster<'a> for I2CHw<'a> {
fn set_master_client(&self, client: &'a dyn hil::i2c::I2CHwMasterClient) {
self.master_client.set(Some(client));
}
/// This enables the entire I2C peripheral
fn enable(&self) {
//disable the i2c slave peripheral
hil::i2c::I2CSlave::disable(self);
let twim = &TWIMRegisterManager::new(self);
// enable, reset, disable
twim.registers.cr.write(Control::MEN::SET);
twim.registers.cr.write(Control::SWRST::SET);
twim.registers.cr.write(Control::MDIS::SET);
// Init the bus speed
self.set_bus_speed(twim);
// slew
twim.registers.srr.write(
SlewRate::FILTER::StandardOrFast
+ SlewRate::CLDRIVEL.val(7)
+ SlewRate::DADRIVEL.val(7),
);
// clear interrupts
twim.registers.scr.set(!0);
}
/// This disables the entire I2C peripheral
fn disable(&self) {
let twim = &TWIMRegisterManager::new(self);
twim.registers.cr.write(Control::MDIS::SET);
self.disable_interrupts(twim);
}
fn write(
&self,
addr: u8,
data: &'static mut [u8],
len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
I2CHw::write(
self,
addr,
Command::START::StartCondition + Command::STOP::SendStop,
data,
len,
)
}
fn read(
&self,
addr: u8,
data: &'static mut [u8],
len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
I2CHw::read(
self,
addr,
Command::START::StartCondition + Command::STOP::SendStop,
data,
len,
)
}
fn write_read(
&self,
addr: u8,
data: &'static mut [u8],
write_len: usize,
read_len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
I2CHw::write_read(self, addr, data, write_len, read_len)
}
}
impl<'a> hil::i2c::I2CSlave<'a> for I2CHw<'a> {
fn set_slave_client(&self, client: &'a dyn hil::i2c::I2CHwSlaveClient) {
self.slave_client.set(Some(client));
}
fn enable(&self) {
if self.slave_mmio_address.is_some() {
let twis = &TWISRegisterManager::new(self);
// enable, reset, disable
twis.registers.cr.write(ControlSlave::SEN::SET);
twis.registers.cr.write(ControlSlave::SWRST::SET);
twis.registers.cr.set(0);
// slew
twis.registers
.srr
.write(SlewRateSlave::FILTER.val(0x2) + SlewRateSlave::DADRIVEL.val(7));
// clear interrupts
twis.registers.scr.set(!0);
// We want to interrupt only on slave address match so we can
// wait for a message from a master and then decide what to do
// based on read/write.
twis.registers.ier.write(InterruptSlave::SAM::SET);
// Also setup all of the error interrupts.
twis.registers.ier.write(
InterruptSlave::BUSERR::SET
+ InterruptSlave::SMBPECERR::SET
+ InterruptSlave::SMBTOUT::SET
+ InterruptSlave::ORUN::SET
+ InterruptSlave::URUN::SET,
);
}
self.slave_enabled.set(true);
}
/// This disables the entire I2C peripheral
fn disable(&self) {
self.slave_enabled.set(false);
if self.slave_mmio_address.is_some() {
let twis = &TWISRegisterManager::new(self);
twis.registers.cr.set(0);
self.slave_disable_interrupts(twis);
}
}
fn set_address(&self, addr: u8) -> Result<(), hil::i2c::Error> {
self.slave_set_address(addr);
Ok(())
}
fn write_receive(
&self,
data: &'static mut [u8],
max_len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
self.slave_write_receive(data, max_len)
}
fn read_send(
&self,
data: &'static mut [u8],
max_len: usize,
) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
self.slave_read_send(data, max_len)
}
fn listen(&self) {
self.slave_listen();
}
}