sam4l/
i2c.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Implementation of the SAM4L TWIMS peripheral.
//!
//! The implementation, especially of repeated starts, is quite sensitive to the
//! ordering of operations (e.g. setup DMA, then set command register, then next
//! command register, then enable, then start the DMA transfer). The placement
//! of writes to interrupt enable/disable registers is also significant, but not
//! refactored in such a way that's very logical right now.
//!
//! The point is that until this changes, and this notice is taken away: IF YOU
//! CHANGE THIS DRIVER, TEST RIGOROUSLY!!!

use crate::dma::{DMAChannel, DMAClient, DMAPeripheral};
use crate::pm;
use core::cell::Cell;
use kernel::hil;
use kernel::platform::chip::ClockInterface;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::peripheral_management::{PeripheralManagement, PeripheralManager};
use kernel::utilities::registers::interfaces::{Readable, Writeable};
use kernel::utilities::registers::{
    register_bitfields, FieldValue, ReadOnly, ReadWrite, WriteOnly,
};
use kernel::utilities::StaticRef;

// Listing of all registers related to the TWIM peripheral.
// Section 27.9 of the datasheet
#[repr(C)]
#[allow(dead_code)]
struct TWIMRegisters {
    cr: WriteOnly<u32, Control::Register>,
    cwgr: ReadWrite<u32, ClockWaveformGenerator::Register>,
    smbtr: ReadWrite<u32, SmbusTiming::Register>,
    cmdr: ReadWrite<u32, Command::Register>,
    ncmdr: ReadWrite<u32, Command::Register>,
    rhr: ReadOnly<u32, ReceiveHolding::Register>,
    thr: WriteOnly<u32, TransmitHolding::Register>,
    sr: ReadOnly<u32, Status::Register>,
    ier: WriteOnly<u32, Interrupt::Register>,
    idr: WriteOnly<u32, Interrupt::Register>,
    imr: ReadOnly<u32, Interrupt::Register>,
    scr: WriteOnly<u32, StatusClear::Register>,
    pr: ReadOnly<u32>,
    vr: ReadOnly<u32>,
    hscwgr: ReadWrite<u32>,
    srr: ReadWrite<u32, SlewRate::Register>,
    hssrr: ReadWrite<u32>,
}

// Listing of all registers related to the TWIS peripheral.
// Section 28.9 of the datasheet
#[repr(C)]
#[allow(dead_code)]
struct TWISRegisters {
    cr: ReadWrite<u32, ControlSlave::Register>,
    nbytes: ReadWrite<u32, Nbytes::Register>,
    tr: ReadWrite<u32, Timing::Register>,
    rhr: ReadOnly<u32, ReceiveHolding::Register>,
    thr: WriteOnly<u32, TransmitHolding::Register>,
    pecr: ReadOnly<u32, PacketErrorCheck::Register>,
    sr: ReadOnly<u32, StatusSlave::Register>,
    ier: WriteOnly<u32, InterruptSlave::Register>,
    idr: WriteOnly<u32, InterruptSlave::Register>,
    imr: ReadOnly<u32, InterruptSlave::Register>,
    scr: WriteOnly<u32, StatusClearSlave::Register>,
    pr: ReadOnly<u32>,
    vr: ReadOnly<u32>,
    hstr: ReadWrite<u32>,
    srr: ReadWrite<u32, SlewRateSlave::Register>,
    hssrr: ReadWrite<u32>,
}

register_bitfields![u32,
    Control [
        /// Stop the Current Transfer
        STOP 8,
        /// Software Reset
        SWRST 7,
        /// SMBus Disable
        SMDIS 5,
        /// SMBus Enable
        SMEN 4,
        /// Master Disable
        MDIS 1,
        /// Master Enable
        MEN 0
    ],

    ClockWaveformGenerator [
        /// Clock Prescaler
        EXP OFFSET(28) NUMBITS(3) [],
        /// Data Setup and Hold Cycles
        DATA OFFSET(24) NUMBITS(4) [],
        /// START and STOP Cycles
        STASTO OFFSET(16) NUMBITS(8) [],
        /// Clock High Cycles
        HIGH OFFSET(8) NUMBITS(8) [],
        /// Clock Low Cycles
        LOW OFFSET(0) NUMBITS(8) []
    ],

    SmbusTiming [
        /// SMBus Timeout Clock Prescaler
        EXP OFFSET(28) NUMBITS(4) [],
        /// Clock High Maximum Cycles
        THMAX OFFSET(16) NUMBITS(8) [],
        /// Master Clock Stretch Maximum Cycles
        TLWOM OFFSET(8) NUMBITS(8) [],
        /// Slave Clock Stretch Maximum Cycles
        TLOWS OFFSET(0) NUMBITS(8) []
    ],

    Command [
        /// HS-mode Master Code
        HSMCODE OFFSET(28) NUMBITS(3) [],
        /// HS-mode
        HS OFFSET(26) NUMBITS(1) [
            NoHSMode = 0,
            HSMode = 1
        ],
        /// ACK Last Master RX Byte
        ACKLAST OFFSET(25) NUMBITS(1) [
            NackLast = 0,
            AckLast = 1
        ],
        /// Packet Error Checking Enable
        PECEN OFFSET(24) NUMBITS(1) [
            NoPecByteVerification = 0,
            PecByteVerification = 1
        ],
        /// Number of Data Bytes in Transfer
        NBYTES OFFSET(16) NUMBITS(8) [],
        /// CMDR Valid
        VALID OFFSET(15) NUMBITS(1) [],
        /// Send STOP Condition
        STOP OFFSET(14) NUMBITS(1) [
            NoSendStop = 0,
            SendStop = 1
        ],
        /// Send START Condition
        START OFFSET(13) NUMBITS(1) [
            NoStartCondition = 0,
            StartCondition = 1
        ],
        /// Transfer is to Same Address as Previous Address
        REPSAME OFFSET(12) NUMBITS(1) [],
        /// Ten Bit Addressing Mode
        TENBIT OFFSET(11) NUMBITS(1) [
            SevenBitAddressing = 0,
            TenBitAddressing = 1
        ],
        /// Slave Address
        SADR OFFSET(1) NUMBITS(10) [],
        /// Transfer Direction
        READ OFFSET(0) NUMBITS(1) [
            Transmit = 0,
            Receive = 1
        ]
    ],

    ReceiveHolding [
        /// Received Data
        RXDATA OFFSET(0) NUMBITS(8) []
    ],

    TransmitHolding [
        /// Data to Transmit
        TXDATA OFFSET(0) NUMBITS(8) []
    ],

    Status [
        /// ACK in HS-mode Master Code Phase Received
        HSMCACK 17,
        /// Master Interface Enable
        MENB 16,
        /// Stop Request Accepted
        STOP 14,
        /// PEC Error
        PECERR 13,
        /// Timeout
        TOUT 12,
        /// Arbitration Lost
        ARBLST 10,
        /// NAK in Data Phase Received
        DNAK 9,
        /// NAK in Address Phase Received
        ANAK 8,
        /// Two-wire Bus is Free
        BUSFREE 5,
        /// Master Interface is Idle
        IDLE 4,
        /// Command Complete
        CCOMP 3,
        /// Ready for More Commands
        CRDY 2,
        /// THR Data Ready
        TXRDY 1,
        /// RHR Data Ready
        RXRDY 0
    ],

    Interrupt [
        /// ACK in HS-mode Master Code Phase Received
        HSMCACK 17,
        /// Stop Request Accepted
        STOP 14,
        /// PEC Error
        PECERR 13,
        /// Timeout
        TOUT 12,
        /// Arbitration Lost
        ARBLST 10,
        /// NAK in Data Phase Received
        DNAK 9,
        /// NAK in Address Phase Received
        ANAK 8,
        /// Two-wire Bus is Free
        BUSFREE 5,
        /// Master Interface is Idle
        IDLE 4,
        /// Command Complete
        CCOMP 3,
        /// Ready for More Commands
        CRDY 2,
        /// THR Data Ready
        TXRDY 1,
        /// RHR Data Ready
        RXRDY 0
    ],

    StatusClear [
        /// ACK in HS-mode Master Code Phase Received
        HSMCACK 17,
        /// Stop Request Accepted
        STOP 14,
        /// PEC Error
        PECERR 13,
        /// Timeout
        TOUT 12,
        /// Arbitration Lost
        ARBLST 10,
        /// NAK in Data Phase Received
        DNAK 9,
        /// NAK in Address Phase Received
        ANAK 8,
        /// Command Complete
        CCOMP 3
    ],

    SlewRate [
        /// Input Spike Filter Control
        FILTER OFFSET(28) NUMBITS(2) [
            StandardOrFast = 2,
            FastModePlus = 3
        ],
        /// Clock Slew Limit
        CLSLEW OFFSET(24) NUMBITS(2) [],
        /// Clock Drive Strength LOW
        CLDRIVEL OFFSET(16) NUMBITS(3) [],
        /// Data Slew Limit
        DASLEW OFFSET(8) NUMBITS(2) [],
        /// Data Drive Strength LOW
        DADRIVEL OFFSET(0) NUMBITS(3) []
    ]
];

register_bitfields![u32,
    ControlSlave [
        /// Ten Bit Address Match
        TENBIT OFFSET(26) NUMBITS(1) [
            Disable = 0,
            Enable = 1
        ],
        /// Slave Address
        ADR OFFSET(16) NUMBITS(10) [],
        /// Stretch Clock on Data Byte Reception
        SODR OFFSET(15) NUMBITS(1) [],
        /// Stretch Clock on Address Match
        SOAM OFFSET(14) NUMBITS(1) [
            NoStretch = 0,
            Stretch = 1
        ],
        /// NBYTES Count Up
        CUP OFFSET(13) NUMBITS(1) [
            CountDown = 0,
            CountUp = 1
        ],
        /// Slave Receiver Data Phase ACK Value
        ACK OFFSET(12) NUMBITS(1) [
            AckLow = 0,
            AckHigh = 1
        ],
        /// Packet Error Checking Enable
        PECEN OFFSET(11) NUMBITS(1) [
            Disable = 0,
            Enable = 1
        ],
        /// SMBus Host Header
        SMHH OFFSET(10) NUMBITS(1) [
            NoAckHostHeader = 0,
            AckHostHeader = 1
        ],
        /// SMBus Default Address
        SMDA OFFSET(9) NUMBITS(1) [
            NoAckDefaultAddress = 0,
            AckDefaultAddress = 1
        ],
        /// Software Reset
        SWRST OFFSET(7) NUMBITS(1) [],
        /// Clock Stretch Enable
        STREN OFFSET(4) NUMBITS(1) [
            Disable = 0,
            Enable = 1
        ],
        /// General Call Address Match
        GCMATCH OFFSET(3) NUMBITS(1) [
            NoAckGeneralCallAddress = 0,
            AckGeneralCallAddress = 1
        ],
        /// Slave Address Match
        SMATCH OFFSET(2) NUMBITS(1) [
            NoAckSlaveAddress = 0,
            AckSlaveAddress = 1
        ],
        /// SMBus Mode Enable
        SMEN OFFSET(1) NUMBITS(1) [
            Disable = 0,
            Enable = 1
        ],
        /// Slave Enable
        SEN OFFSET(0) NUMBITS(1) [
            Disable = 0,
            Enable = 1
        ]
    ],

    Nbytes [
        NBYTES OFFSET(0) NUMBITS(8) []
    ],

    Timing [
        /// Clock Prescaler
        EXP OFFSET(28) NUMBITS(4) [],
        /// Data Setup Cycles
        SUDAT OFFSET(16) NUMBITS(8) [],
        /// SMBus Timeout Cycles
        TTOUT OFFSET(8) NUMBITS(8) [],
        /// SMBus Low Cycles
        TLOWS OFFSET(0) NUMBITS(8) []
    ],

    PacketErrorCheck [
        /// Calculated PEC Value
        PEC OFFSET(0) NUMBITS(8) []
    ],

    StatusSlave [
        /// Byte Transfer Finished
        BTF 23,
        /// Repeated Start Received
        REP 22,
        /// Stop Received
        STO 21,
        /// SMBus Default Address Match
        SMBDAM 20,
        /// SMBus Host Header Address Match
        SMBHHM 19,
        /// General Call Match
        GCM 17,
        /// Slave Address Match
        SAM 16,
        /// Bus Error
        BUSERR 14,
        /// SMBus PEC Error
        SMBPECERR 13,
        /// SMBus Timeout
        SMBTOUT 12,
        /// NAK Received
        NAK 8,
        /// Overrun
        ORUN 7,
        /// Underrun
        URUN 6,
        /// Transmitter Mode
        TRA 5,
        /// Transmission Complete
        TCOMP 3,
        /// Slave Enabled
        SEN 2,
        /// THR Data Ready
        TXRDY 1,
        /// RHR Data Ready
        RXRDY 0
    ],

    InterruptSlave [
        /// Byte Transfer Finished
        BTF 23,
        /// Repeated Start Received
        REP 22,
        /// Stop Received
        STO 21,
        /// SMBus Default Address Match
        SMBDAM 20,
        /// SMBus Host Header Address Match
        SMBHHM 19,
        /// General Call Match
        GCM 17,
        /// Slave Address Match
        SAM 16,
        /// Bus Error
        BUSERR 14,
        /// SMBus PEC Error
        SMBPECERR 13,
        /// SMBus Timeout
        SMBTOUT 12,
        /// NAK Received
        NAK 8,
        /// Overrun
        ORUN 7,
        /// Underrun
        URUN 6,
        /// Transmission Complete
        TCOMP 3,
        /// THR Data Ready
        TXRDY 1,
        /// RHR Data Ready
        RXRDY 0
    ],

    StatusClearSlave [
        /// Byte Transfer Finished
        BTF 23,
        /// Repeated Start Received
        REP 22,
        /// Stop Received
        STO 21,
        /// SMBus Default Address Match
        SMBDAM 20,
        /// SMBus Host Header Address Match
        SMBHHM 19,
        /// General Call Match
        GCM 17,
        /// Slave Address Match
        SAM 16,
        /// Bus Error
        BUSERR 14,
        /// SMBus PEC Error
        SMBPECERR 13,
        /// SMBus Timeout
        SMBTOUT 12,
        /// NAK Received
        NAK 8,
        /// Overrun
        ORUN 7,
        /// Underrun
        URUN 6,
        /// Transmission Complete
        TCOMP 3
    ],

    SlewRateSlave [
        /// Input Spike Filter Control
        FILTER OFFSET(28) NUMBITS(2) [],
        /// Data Slew Limit
        DASLEW OFFSET(8) NUMBITS(2) [],
        /// Data Drive Strength LOW
        DADRIVEL OFFSET(0) NUMBITS(3) []
    ]
];

// The addresses in memory (7.1 of manual) of the TWIM peripherals
const I2C_BASE_ADDRS: [StaticRef<TWIMRegisters>; 4] = unsafe {
    [
        StaticRef::new(0x40018000 as *const TWIMRegisters),
        StaticRef::new(0x4001C000 as *const TWIMRegisters),
        StaticRef::new(0x40078000 as *const TWIMRegisters),
        StaticRef::new(0x4007C000 as *const TWIMRegisters),
    ]
};

// The addresses in memory (7.1 of manual) of the TWIM peripherals
const I2C_SLAVE_BASE_ADDRS: [StaticRef<TWISRegisters>; 2] = unsafe {
    [
        StaticRef::new(0x40018400 as *const TWISRegisters),
        StaticRef::new(0x4001C400 as *const TWISRegisters),
    ]
};

// Three main I2C speeds
#[derive(Clone, Copy)]
pub enum Speed {
    Standard100k,
    Fast400k,
    FastPlus1M,
}

/// Wrapper for TWIM clock that ensures TWIS clock is off
struct TWIMClock {
    master: pm::Clock,
    slave: Option<pm::Clock>,
}
impl ClockInterface for TWIMClock {
    fn is_enabled(&self) -> bool {
        self.master.is_enabled()
    }

    fn enable(&self) {
        self.slave.map(|slave_clock| {
            if slave_clock.is_enabled() {
                panic!("I2C: Request for master clock, but slave active");
            }
        });
        self.master.enable();
    }

    fn disable(&self) {
        self.master.disable();
    }
}

/// Wrapper for TWIS clock that ensures TWIM clock is off
struct TWISClock {
    master: pm::Clock,
    slave: Option<pm::Clock>,
}
impl ClockInterface for TWISClock {
    fn is_enabled(&self) -> bool {
        let slave_clock = self.slave.unwrap(); // Unwrap fail = I2C: Use of slave with no clock
        slave_clock.is_enabled()
    }

    fn enable(&self) {
        let slave_clock = self.slave.unwrap(); // Unwrap fail = I2C: Use of slave with no clock
        if self.master.is_enabled() {
            panic!("I2C: Request for slave clock, but master active");
        }
        slave_clock.enable();
    }

    fn disable(&self) {
        let slave_clock = self.slave.unwrap(); // Unwrap fail = I2C: Use of slave with no clock
        slave_clock.disable();
    }
}

/// Abstraction of the I2C hardware
pub struct I2CHw<'a> {
    master_mmio_address: StaticRef<TWIMRegisters>,
    slave_mmio_address: Option<StaticRef<TWISRegisters>>,
    master_clock: TWIMClock,
    slave_clock: TWISClock,
    dma: OptionalCell<&'static DMAChannel>,
    dma_pids: (DMAPeripheral, DMAPeripheral),
    master_client: Cell<Option<&'a dyn hil::i2c::I2CHwMasterClient>>,
    slave_client: Cell<Option<&'a dyn hil::i2c::I2CHwSlaveClient>>,
    on_deck: Cell<Option<(DMAPeripheral, usize)>>,

    slave_enabled: Cell<bool>,
    my_slave_address: Cell<u8>,
    slave_read_buffer: TakeCell<'static, [u8]>,
    slave_read_buffer_len: Cell<usize>,
    slave_read_buffer_index: Cell<usize>,
    slave_write_buffer: TakeCell<'static, [u8]>,
    slave_write_buffer_len: Cell<usize>,
    slave_write_buffer_index: Cell<usize>,
    pm: &'static pm::PowerManager,
}

impl PeripheralManagement<TWIMClock> for I2CHw<'_> {
    type RegisterType = TWIMRegisters;

    fn get_registers(&self) -> &TWIMRegisters {
        &self.master_mmio_address
    }

    fn get_clock(&self) -> &TWIMClock {
        &self.master_clock
    }

    fn before_peripheral_access(&self, clock: &TWIMClock, _: &TWIMRegisters) {
        if !clock.is_enabled() {
            clock.enable();
        }
    }

    fn after_peripheral_access(&self, clock: &TWIMClock, registers: &TWIMRegisters) {
        // If there are no interrupts active then we can disable the clock
        // for this peripheral.
        if registers.imr.get() == 0 {
            clock.disable();
        }
    }
}
type TWIMRegisterManager<'a, 'm> = PeripheralManager<'m, I2CHw<'a>, TWIMClock>;

impl PeripheralManagement<TWISClock> for I2CHw<'_> {
    type RegisterType = TWISRegisters;

    fn get_registers(&self) -> &TWISRegisters {
        self.slave_mmio_address.as_ref().unwrap() // Unwrap fail = Access of non-existent slave
    }

    fn get_clock(&self) -> &TWISClock {
        &self.slave_clock
    }

    fn before_peripheral_access(&self, clock: &TWISClock, _: &TWISRegisters) {
        if !clock.is_enabled() {
            clock.enable();
        }
    }

    fn after_peripheral_access(&self, clock: &TWISClock, registers: &TWISRegisters) {
        // If there are no interrupts active then we can disable the clock
        // for this peripheral.
        if registers.imr.get() == 0 {
            clock.disable();
        }
    }
}
type TWISRegisterManager<'a, 'm> = PeripheralManager<'m, I2CHw<'a>, TWISClock>;

const fn create_twims_clocks(
    master: pm::Clock,
    slave: Option<pm::Clock>,
) -> (TWIMClock, TWISClock) {
    (TWIMClock { master, slave }, TWISClock { master, slave })
}

// Need to implement the `new` function on the I2C device as a constructor.
// This gets called from the device tree.
impl<'a> I2CHw<'a> {
    fn new(
        base_addr: StaticRef<TWIMRegisters>,
        slave_base_addr: Option<StaticRef<TWISRegisters>>,
        clocks: (TWIMClock, TWISClock),
        dma_rx: DMAPeripheral,
        dma_tx: DMAPeripheral,
        pm: &'static pm::PowerManager,
    ) -> I2CHw<'a> {
        I2CHw {
            master_mmio_address: base_addr,
            slave_mmio_address: slave_base_addr,
            master_clock: clocks.0,
            slave_clock: clocks.1,
            dma: OptionalCell::empty(),
            dma_pids: (dma_rx, dma_tx),
            master_client: Cell::new(None),
            slave_client: Cell::new(None),
            on_deck: Cell::new(None),

            slave_enabled: Cell::new(false),
            my_slave_address: Cell::new(0),
            slave_read_buffer: TakeCell::empty(),
            slave_read_buffer_len: Cell::new(0),
            slave_read_buffer_index: Cell::new(0),
            slave_write_buffer: TakeCell::empty(),
            slave_write_buffer_len: Cell::new(0),
            slave_write_buffer_index: Cell::new(0),
            pm,
        }
    }

    pub fn new_i2c0(pm: &'static pm::PowerManager) -> Self {
        I2CHw::new(
            I2C_BASE_ADDRS[0],
            Some(I2C_SLAVE_BASE_ADDRS[0]),
            create_twims_clocks(
                pm::Clock::PBA(pm::PBAClock::TWIM0),
                Some(pm::Clock::PBA(pm::PBAClock::TWIS0)),
            ),
            DMAPeripheral::TWIM0_RX,
            DMAPeripheral::TWIM0_TX,
            pm,
        )
    }

    pub fn new_i2c1(pm: &'static pm::PowerManager) -> Self {
        I2CHw::new(
            I2C_BASE_ADDRS[1],
            Some(I2C_SLAVE_BASE_ADDRS[1]),
            create_twims_clocks(
                pm::Clock::PBA(pm::PBAClock::TWIM1),
                Some(pm::Clock::PBA(pm::PBAClock::TWIS1)),
            ),
            DMAPeripheral::TWIM1_RX,
            DMAPeripheral::TWIM1_TX,
            pm,
        )
    }

    pub fn new_i2c2(pm: &'static pm::PowerManager) -> Self {
        I2CHw::new(
            I2C_BASE_ADDRS[2],
            None,
            create_twims_clocks(pm::Clock::PBA(pm::PBAClock::TWIM2), None),
            DMAPeripheral::TWIM2_RX,
            DMAPeripheral::TWIM2_TX,
            pm,
        )
    }

    pub fn new_i2c3(pm: &'static pm::PowerManager) -> Self {
        I2CHw::new(
            I2C_BASE_ADDRS[3],
            None,
            create_twims_clocks(pm::Clock::PBA(pm::PBAClock::TWIM3), None),
            DMAPeripheral::TWIM3_RX,
            DMAPeripheral::TWIM3_TX,
            pm,
        )
    }

    /// Set the clock prescaler and the time widths of the I2C signals
    /// in the CWGR register to make the bus run at a particular I2C speed.
    fn set_bus_speed(&self, twim: &TWIMRegisterManager) {
        // Set I2C waveform timing parameters based on ASF code
        let system_frequency = self.pm.get_system_frequency();
        let mut exp = 0;
        let mut f_prescaled = system_frequency / 400000 / 2;
        while (f_prescaled > 0xff) && (exp <= 0x7) {
            // Increase the prescale factor, and update our frequency
            exp += 1;
            f_prescaled /= 2;
        }

        // Check that we have a valid setting
        if exp > 0x7 {
            panic!("Cannot setup I2C waveform timing with given system clock.");
        }

        let low = f_prescaled / 2;
        let high = f_prescaled - low;
        let data = 0;
        let stasto = f_prescaled;

        twim.registers.cwgr.write(
            ClockWaveformGenerator::EXP.val(exp)
                + ClockWaveformGenerator::DATA.val(data)
                + ClockWaveformGenerator::STASTO.val(stasto)
                + ClockWaveformGenerator::HIGH.val(high)
                + ClockWaveformGenerator::LOW.val(low),
        )
    }

    pub fn set_dma(&self, dma: &'static DMAChannel) {
        self.dma.set(dma);
    }

    pub fn handle_interrupt(&self) {
        let old_status = {
            let twim = &TWIMRegisterManager::new(self);

            let old_status = twim.registers.sr.extract();

            // Clear all status registers.
            twim.registers.scr.write(
                StatusClear::HSMCACK::SET
                    + StatusClear::STOP::SET
                    + StatusClear::PECERR::SET
                    + StatusClear::TOUT::SET
                    + StatusClear::ARBLST::SET
                    + StatusClear::DNAK::SET
                    + StatusClear::ANAK::SET
                    + StatusClear::CCOMP::SET,
            );

            old_status
        };

        let err = if old_status.is_set(Status::ANAK) {
            Some(Err(hil::i2c::Error::AddressNak))
        } else if old_status.is_set(Status::DNAK) {
            Some(Err(hil::i2c::Error::DataNak))
        } else if old_status.is_set(Status::ARBLST) {
            Some(Err(hil::i2c::Error::ArbitrationLost))
        } else if old_status.is_set(Status::CCOMP) {
            Some(Ok(()))
        } else {
            None
        };

        let on_deck = self.on_deck.get();
        self.on_deck.set(None);
        match on_deck {
            None => {
                {
                    let twim = &TWIMRegisterManager::new(self);

                    twim.registers.cmdr.set(0);
                    twim.registers.ncmdr.set(0);
                    self.disable_interrupts(twim);

                    if err.is_some() {
                        // enable, reset, disable
                        twim.registers.cr.write(Control::MEN::SET);
                        twim.registers.cr.write(Control::SWRST::SET);
                        twim.registers.cr.write(Control::MDIS::SET);
                    }
                }

                err.map(|err| {
                    self.master_client.get().map(|client| {
                        let buf = self.dma.and_then(|dma| {
                            let b = dma.abort_transfer();
                            self.dma.set(dma);
                            b
                        });
                        buf.map(|buf| {
                            client.command_complete(buf, err);
                        });
                    });
                });
            }
            Some((dma_periph, len)) => {
                // Check to see if we are only trying to get one byte. If we
                // are, and the RXRDY bit is already set, then we already have
                // that byte in the RHR register. If we setup DMA after we
                // have the single byte we are looking for, everything breaks
                // because we will never get another byte and therefore
                // no more interrupts. So, we just read the byte we have
                // and call this I2C command complete.
                if (len == 1) && old_status.is_set(Status::TXRDY) {
                    let the_byte = {
                        let twim = &TWIMRegisterManager::new(self);

                        twim.registers.cmdr.set(0);
                        twim.registers.ncmdr.set(0);
                        self.disable_interrupts(twim);

                        if err.is_some() {
                            // enable, reset, disable
                            twim.registers.cr.write(Control::MEN::SET);
                            twim.registers.cr.write(Control::SWRST::SET);
                            twim.registers.cr.write(Control::MDIS::SET);
                        }

                        twim.registers.rhr.read(ReceiveHolding::RXDATA) as u8
                    };

                    err.map(|err| {
                        self.master_client.get().map(|client| {
                            let buf = self.dma.and_then(|dma| {
                                let b = dma.abort_transfer();
                                self.dma.set(dma);
                                b
                            });
                            buf.map(|buf| {
                                // Save the already read byte.
                                buf[0] = the_byte;
                                client.command_complete(buf, err);
                            });
                        });
                    });
                } else {
                    {
                        let twim = &TWIMRegisterManager::new(self);
                        // Enable transaction error interrupts
                        twim.registers.ier.write(
                            Interrupt::CCOMP::SET
                                + Interrupt::ANAK::SET
                                + Interrupt::DNAK::SET
                                + Interrupt::ARBLST::SET,
                        );
                    }
                    self.dma.map(|dma| {
                        let buf = dma.abort_transfer().unwrap();
                        dma.prepare_transfer(dma_periph, buf, len);
                        dma.start_transfer();
                    });
                }
            }
        }
    }

    fn setup_transfer(
        &self,
        twim: &TWIMRegisterManager,
        chip: u8,
        flags: FieldValue<u32, Command::Register>,
        direction: FieldValue<u32, Command::Register>,
        len: usize,
    ) {
        // disable before configuring
        twim.registers.cr.write(Control::MDIS::SET);

        // Configure the command register with the settings for this transfer.
        twim.registers.cmdr.write(
            Command::SADR.val(chip as u32)
                + flags
                + Command::VALID::SET
                + Command::NBYTES.val(len as u32)
                + direction,
        );
        twim.registers.ncmdr.set(0);

        // Enable transaction error interrupts
        twim.registers.ier.write(
            Interrupt::CCOMP::SET
                + Interrupt::ANAK::SET
                + Interrupt::DNAK::SET
                + Interrupt::ARBLST::SET,
        );
    }

    fn setup_nextfer(
        &self,
        twim: &TWIMRegisterManager,
        chip: u8,
        flags: FieldValue<u32, Command::Register>,
        direction: FieldValue<u32, Command::Register>,
        len: usize,
    ) {
        // disable before configuring
        twim.registers.cr.write(Control::MDIS::SET);

        twim.registers.ncmdr.write(
            Command::SADR.val(chip as u32)
                + flags
                + Command::VALID::SET
                + Command::NBYTES.val(len as u32)
                + direction,
        );

        // Enable
        twim.registers.cr.write(Control::MEN::SET);
    }

    fn master_enable(&self, twim: &TWIMRegisterManager) {
        // Enable to begin transfer
        twim.registers.cr.write(Control::MEN::SET);
    }

    fn write(
        &self,
        chip: u8,
        flags: FieldValue<u32, Command::Register>,
        data: &'static mut [u8],
        len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        let twim = &TWIMRegisterManager::new(self);
        if self.dma.is_some() {
            self.dma.map(move |dma| {
                dma.enable();
                dma.prepare_transfer(self.dma_pids.1, data, len);
                self.setup_transfer(twim, chip, flags, Command::READ::Transmit, len);
                self.master_enable(twim);
                dma.start_transfer();
            });
            Ok(())
        } else {
            Err((hil::i2c::Error::NotSupported, data))
        }
    }

    fn read(
        &self,
        chip: u8,
        flags: FieldValue<u32, Command::Register>,
        data: &'static mut [u8],
        len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        let twim = &TWIMRegisterManager::new(self);
        if self.dma.is_some() {
            self.dma.map(move |dma| {
                dma.enable();
                dma.prepare_transfer(self.dma_pids.0, data, len);
                self.setup_transfer(twim, chip, flags, Command::READ::Receive, len);
                self.master_enable(twim);
                dma.start_transfer();
            });
            Ok(())
        } else {
            Err((hil::i2c::Error::NotSupported, data))
        }
    }

    fn write_read(
        &self,
        chip: u8,
        data: &'static mut [u8],
        split: usize,
        read_len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        let twim = &TWIMRegisterManager::new(self);
        if self.dma.is_some() {
            self.dma.map(move |dma| {
                dma.enable();
                dma.prepare_transfer(self.dma_pids.1, data, split);
                self.setup_transfer(
                    twim,
                    chip,
                    Command::START::StartCondition,
                    Command::READ::Transmit,
                    split,
                );
                self.setup_nextfer(
                    twim,
                    chip,
                    Command::START::StartCondition + Command::STOP::SendStop,
                    Command::READ::Receive,
                    read_len,
                );
                self.on_deck.set(Some((self.dma_pids.0, read_len)));
                dma.start_transfer();
            });
            Ok(())
        } else {
            Err((hil::i2c::Error::NotSupported, data))
        }
    }

    fn disable_interrupts(&self, twim: &TWIMRegisterManager) {
        twim.registers.idr.set(!0);
    }

    /// Handle possible interrupt for TWIS module.
    pub fn handle_slave_interrupt(&self) {
        if self.slave_mmio_address.is_some() {
            let twis = &TWISRegisterManager::new(self);

            // Get current status from the hardware.
            let status = twis.registers.sr.extract();
            let imr = twis.registers.imr.extract();
            // This will still be a "status" register, just with all of the
            // status bits corresponding to disabled interrupts cleared.
            let interrupts = status.bitand(imr.get());

            // Check for errors.
            if interrupts.any_matching_bits_set(
                StatusSlave::BUSERR::SET
                    + StatusSlave::SMBPECERR::SET
                    + StatusSlave::SMBTOUT::SET
                    + StatusSlave::ORUN::SET
                    + StatusSlave::URUN::SET,
            ) {
                // From the datasheet: If a bus error (misplaced START or STOP)
                // condition is detected, the SR.BUSERR bit is set and the TWIS
                // waits for a new START condition.
                if interrupts.is_set(StatusSlave::BUSERR) {
                    // Restart and wait for the next start byte
                    twis.registers.scr.set(status.get());
                    return;
                }

                panic!("ERR 0x{:x}", interrupts.get());
            }

            // Check if we got the address match interrupt
            if interrupts.is_set(StatusSlave::SAM) {
                twis.registers.nbytes.write(Nbytes::NBYTES.val(0));

                // Did we get a read or a write?
                if status.is_set(StatusSlave::TRA) {
                    // This means the slave is in transmit mode, AKA we got a
                    // read.

                    // Clear the byte transfer done if set (copied from ASF)
                    twis.registers.scr.write(StatusClearSlave::BTF::SET);

                    // Setup interrupts that we now care about
                    twis.registers
                        .ier
                        .write(InterruptSlave::TCOMP::SET + InterruptSlave::BTF::SET);
                    twis.registers.ier.write(
                        InterruptSlave::BUSERR::SET
                            + InterruptSlave::SMBPECERR::SET
                            + InterruptSlave::SMBTOUT::SET
                            + InterruptSlave::ORUN::SET
                            + InterruptSlave::URUN::SET,
                    );

                    if self.slave_read_buffer.is_some() {
                        // Have buffer to send, start reading
                        self.slave_read_buffer_index.set(0);
                        let len = self.slave_read_buffer_len.get();

                        if len >= 1 {
                            self.slave_read_buffer.map(|buffer| {
                                twis.registers
                                    .thr
                                    .write(TransmitHolding::TXDATA.val(buffer[0] as u32));
                            });
                            self.slave_read_buffer_index.set(1);
                        } else {
                            // Send dummy byte
                            twis.registers.thr.write(TransmitHolding::TXDATA.val(0x2e));
                        }

                        // Make it happen by clearing status.
                        twis.registers.scr.set(status.get());
                    } else {
                        // Call to upper layers asking for a buffer to send
                        self.slave_client.get().map(|client| {
                            client.read_expected();
                        });
                    }
                } else {
                    // Slave is in receive mode, AKA we got a write.

                    // Get transmission complete and rxready interrupts.
                    twis.registers
                        .ier
                        .write(InterruptSlave::TCOMP::SET + InterruptSlave::RXRDY::SET);

                    // Set index to 0
                    self.slave_write_buffer_index.set(0);

                    if self.slave_write_buffer.is_some() {
                        // Clear to continue with existing buffer.
                        twis.registers.scr.set(status.get());
                    } else {
                        // Call to upper layers asking for a buffer to
                        // read into.
                        self.slave_client.get().map(|client| {
                            client.write_expected();
                        });
                    }
                }
            } else {
                // Did not get address match interrupt.

                if interrupts.is_set(StatusSlave::TCOMP) {
                    // Transmission complete

                    let nbytes = twis.registers.nbytes.get();

                    twis.registers.idr.set(!0);
                    twis.registers.ier.write(InterruptSlave::SAM::SET);
                    twis.registers.scr.set(status.get());

                    if status.is_set(StatusSlave::TRA) {
                        // read
                        self.slave_client.get().map(|client| {
                            self.slave_read_buffer.take().map(|buffer| {
                                client.command_complete(
                                    buffer,
                                    nbytes as usize,
                                    hil::i2c::SlaveTransmissionType::Read,
                                );
                            });
                        });
                    } else {
                        // write

                        let len = self.slave_write_buffer_len.get();
                        let idx = self.slave_write_buffer_index.get();

                        if len > idx {
                            self.slave_write_buffer.map(|buffer| {
                                buffer[idx] = twis.registers.rhr.read(ReceiveHolding::RXDATA) as u8;
                            });
                            self.slave_write_buffer_index.set(idx + 1);
                        } else {
                            // Just drop on floor
                            twis.registers.rhr.get();
                        }

                        self.slave_client.get().map(|client| {
                            self.slave_write_buffer.take().map(|buffer| {
                                client.command_complete(
                                    buffer,
                                    nbytes as usize,
                                    hil::i2c::SlaveTransmissionType::Write,
                                );
                            });
                        });
                    }
                } else if interrupts.is_set(StatusSlave::BTF) {
                    // Byte transfer finished. Send the next byte from the
                    // buffer.

                    if self.slave_read_buffer.is_some() {
                        // Have buffer to send, start reading
                        let len = self.slave_read_buffer_len.get();
                        let idx = self.slave_read_buffer_index.get();

                        if len > idx {
                            self.slave_read_buffer.map(|buffer| {
                                twis.registers
                                    .thr
                                    .write(TransmitHolding::TXDATA.val(buffer[idx] as u32));
                            });
                            self.slave_read_buffer_index.set(idx + 1);
                        } else {
                            // Send dummy byte
                            twis.registers.thr.write(TransmitHolding::TXDATA.val(0xdf));
                        }
                    } else {
                        // Send a default byte
                        twis.registers.thr.write(TransmitHolding::TXDATA.val(0xdc));
                    }

                    // Make it happen by clearing status.
                    twis.registers.scr.set(status.get());
                } else if interrupts.is_set(StatusSlave::RXRDY) {
                    // Receive byte ready.

                    if self.slave_write_buffer.is_some() {
                        // Check that the BTF byte is set at the beginning of
                        // the transfer. Sometimes a spurious RX ready interrupt
                        // happens at the beginning (right after the address
                        // byte) that we need to ignore, and checking the BTF
                        // bit fixes that. However, sometimes in the middle of a
                        // transfer we get an RXREADY interrupt where the BTF
                        // bit is NOT set. I don't know why.
                        if status.is_set(StatusSlave::BTF)
                            || self.slave_write_buffer_index.get() > 0
                        {
                            // Have buffer to read into
                            let len = self.slave_write_buffer_len.get();
                            let idx = self.slave_write_buffer_index.get();

                            if len > idx {
                                self.slave_write_buffer.map(|buffer| {
                                    buffer[idx] =
                                        twis.registers.rhr.read(ReceiveHolding::RXDATA) as u8;
                                });
                                self.slave_write_buffer_index.set(idx + 1);
                            } else {
                                // Just drop on floor
                                twis.registers.rhr.get();
                            }
                        } else {
                            // Just drop on floor
                            twis.registers.rhr.get();
                        }
                    } else {
                        // Just drop on floor
                        twis.registers.rhr.get();
                    }

                    twis.registers.scr.set(status.get());
                }
            }
        }
    }

    /// Receive the bytes the I2C master is writing to us.
    fn slave_write_receive(
        &self,
        buffer: &'static mut [u8],
        len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        if self.slave_enabled.get() {
            if self.slave_mmio_address.is_some() {
                self.slave_write_buffer.replace(buffer);
                self.slave_write_buffer_len.set(len);
                let twis = &TWISRegisterManager::new(self);

                let status = twis.registers.sr.extract();
                let imr = twis.registers.imr.extract();
                let interrupts = status.bitand(imr.get());

                // Address match status bit still set, so we need to tell the TWIS
                // to continue.
                if interrupts.is_set(StatusSlave::SAM) && !status.is_set(StatusSlave::TRA) {
                    twis.registers.scr.set(status.get());
                }
                Ok(())
            } else {
                Err((hil::i2c::Error::AddressNak, buffer))
            }
        } else {
            Err((hil::i2c::Error::NotSupported, buffer))
        }
    }

    /// Prepare a buffer for the I2C master to read from after a read call.
    fn slave_read_send(
        &self,
        buffer: &'static mut [u8],
        len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        if self.slave_enabled.get() {
            if self.slave_mmio_address.is_some() {
                self.slave_read_buffer.replace(buffer);
                self.slave_read_buffer_len.set(len);
                self.slave_read_buffer_index.set(0);
                let twis = &TWISRegisterManager::new(self);

                // Check to see if we should send the first byte.
                let status = twis.registers.sr.extract();
                let imr = twis.registers.imr.extract();
                let interrupts = status.bitand(imr.get());

                // Address match status bit still set. We got this function
                // call in response to an incoming read. Send the first
                // byte.
                if interrupts.is_set(StatusSlave::SAM) && status.is_set(StatusSlave::TRA) {
                    twis.registers.scr.write(StatusClearSlave::BTF::SET);

                    let len = self.slave_read_buffer_len.get();

                    if len >= 1 {
                        self.slave_read_buffer.map(|buffer| {
                            twis.registers
                                .thr
                                .write(TransmitHolding::TXDATA.val(buffer[0] as u32));
                        });
                        self.slave_read_buffer_index.set(1);
                    } else {
                        // Send dummy byte
                        twis.registers.thr.write(TransmitHolding::TXDATA.val(0x75));
                    }

                    // Make it happen by clearing status.
                    twis.registers.scr.set(status.get());
                }
                Ok(())
            } else {
                Err((hil::i2c::Error::AddressNak, buffer))
            }
        } else {
            Err((hil::i2c::Error::NotSupported, buffer))
        }
    }

    fn slave_disable_interrupts(&self, twis: &TWISRegisterManager) {
        twis.registers.idr.set(!0);
    }

    fn slave_set_address(&self, address: u8) {
        self.my_slave_address.set(address);
    }

    fn slave_listen(&self) {
        if self.slave_mmio_address.is_some() {
            let twis = &TWISRegisterManager::new(self);

            // Enable and configure
            let control = ControlSlave::ADR.val((self.my_slave_address.get() as u32) & 0x7F)
                + ControlSlave::SOAM::Stretch
                + ControlSlave::CUP::CountUp
                + ControlSlave::STREN::Enable
                + ControlSlave::SMATCH::AckSlaveAddress;
            twis.registers.cr.write(control);

            // Set this separately because that makes the HW happy.
            twis.registers.cr.write(control + ControlSlave::SEN::Enable);
        }
    }
}

impl DMAClient for I2CHw<'_> {
    fn transfer_done(&self, _pid: DMAPeripheral) {}
}

impl<'a> hil::i2c::I2CMaster<'a> for I2CHw<'a> {
    fn set_master_client(&self, client: &'a dyn hil::i2c::I2CHwMasterClient) {
        self.master_client.set(Some(client));
    }
    /// This enables the entire I2C peripheral
    fn enable(&self) {
        //disable the i2c slave peripheral
        hil::i2c::I2CSlave::disable(self);

        let twim = &TWIMRegisterManager::new(self);

        // enable, reset, disable
        twim.registers.cr.write(Control::MEN::SET);
        twim.registers.cr.write(Control::SWRST::SET);
        twim.registers.cr.write(Control::MDIS::SET);

        // Init the bus speed
        self.set_bus_speed(twim);

        // slew
        twim.registers.srr.write(
            SlewRate::FILTER::StandardOrFast
                + SlewRate::CLDRIVEL.val(7)
                + SlewRate::DADRIVEL.val(7),
        );

        // clear interrupts
        twim.registers.scr.set(!0);
    }

    /// This disables the entire I2C peripheral
    fn disable(&self) {
        let twim = &TWIMRegisterManager::new(self);
        twim.registers.cr.write(Control::MDIS::SET);
        self.disable_interrupts(twim);
    }

    fn write(
        &self,
        addr: u8,
        data: &'static mut [u8],
        len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        I2CHw::write(
            self,
            addr,
            Command::START::StartCondition + Command::STOP::SendStop,
            data,
            len,
        )
    }

    fn read(
        &self,
        addr: u8,
        data: &'static mut [u8],
        len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        I2CHw::read(
            self,
            addr,
            Command::START::StartCondition + Command::STOP::SendStop,
            data,
            len,
        )
    }

    fn write_read(
        &self,
        addr: u8,
        data: &'static mut [u8],
        write_len: usize,
        read_len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        I2CHw::write_read(self, addr, data, write_len, read_len)
    }
}

impl<'a> hil::i2c::I2CSlave<'a> for I2CHw<'a> {
    fn set_slave_client(&self, client: &'a dyn hil::i2c::I2CHwSlaveClient) {
        self.slave_client.set(Some(client));
    }
    fn enable(&self) {
        if self.slave_mmio_address.is_some() {
            let twis = &TWISRegisterManager::new(self);

            // enable, reset, disable
            twis.registers.cr.write(ControlSlave::SEN::SET);
            twis.registers.cr.write(ControlSlave::SWRST::SET);
            twis.registers.cr.set(0);

            // slew
            twis.registers
                .srr
                .write(SlewRateSlave::FILTER.val(0x2) + SlewRateSlave::DADRIVEL.val(7));

            // clear interrupts
            twis.registers.scr.set(!0);

            // We want to interrupt only on slave address match so we can
            // wait for a message from a master and then decide what to do
            // based on read/write.
            twis.registers.ier.write(InterruptSlave::SAM::SET);

            // Also setup all of the error interrupts.
            twis.registers.ier.write(
                InterruptSlave::BUSERR::SET
                    + InterruptSlave::SMBPECERR::SET
                    + InterruptSlave::SMBTOUT::SET
                    + InterruptSlave::ORUN::SET
                    + InterruptSlave::URUN::SET,
            );
        }

        self.slave_enabled.set(true);
    }

    /// This disables the entire I2C peripheral
    fn disable(&self) {
        self.slave_enabled.set(false);

        if self.slave_mmio_address.is_some() {
            let twis = &TWISRegisterManager::new(self);
            twis.registers.cr.set(0);
            self.slave_disable_interrupts(twis);
        }
    }

    fn set_address(&self, addr: u8) -> Result<(), hil::i2c::Error> {
        self.slave_set_address(addr);
        Ok(())
    }

    fn write_receive(
        &self,
        data: &'static mut [u8],
        max_len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        self.slave_write_receive(data, max_len)
    }

    fn read_send(
        &self,
        data: &'static mut [u8],
        max_len: usize,
    ) -> Result<(), (hil::i2c::Error, &'static mut [u8])> {
        self.slave_read_send(data, max_len)
    }

    fn listen(&self) {
        self.slave_listen();
    }
}