1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Tools for displaying process state.

use core::fmt::Write;

use crate::process::Process;
use crate::utilities::binary_write::BinaryWrite;
use crate::utilities::binary_write::WriteToBinaryOffsetWrapper;

/// A context token that the caller must pass back to us. This allows us to
/// track where we are in the print operation.
#[derive(PartialEq, Eq, Copy, Clone)]
pub struct ProcessPrinterContext {
    /// The overall print message is broken in to chunks so that it can be fit
    /// in a small buffer that is called multiple times. This tracks which byte
    /// we are at so we can ignore the text before and print the next bytes.
    offset: usize,
}

/// Trait for creating a custom "process printer" that formats process state in
/// some sort of presentable format.
///
/// Typically, implementations will display process state in a text UI over some
/// sort of terminal.
///
/// This trait also allows for experimenting with different process display
/// formats. For example, some use cases might want more or less detail, or to
/// encode the process state in some sort of binary format that can be expanded
/// into a human readable format later. Other cases might want to log process
/// state to nonvolatile storage rather than display it immediately.
pub trait ProcessPrinter {
    /// Print a process overview to the `writer`. As `print_overview()` uses a
    /// `&dyn Process` to access the process, only state which can be accessed
    /// via the `Process` trait can be printed.
    ///
    /// This is a synchronous function which also supports asynchronous
    /// operation. This function does not issue a callback, but the return value
    /// indicates whether the caller should call `print_overview()` again (after
    /// the underlying write operation finishes). This allows asynchronous
    /// implementations to still use `print_overview()`, while still supporting
    /// the panic handler which runs synchronously.
    ///
    /// When `print_overview()` is called the first time `None` should be passed
    /// in for `context`.
    ///
    /// ### Return Value
    ///
    /// The return indicates whether `print_overview()` has more printing to do
    /// and should be called again. If `print_overview()` returns `Some()` then
    /// the caller should call `print_overview()` again (providing the returned
    /// `ProcessPrinterContext` as the `context` argument) once the `writer` is
    /// ready to accept more data. If `print_overview()` returns `None`, the
    /// `writer` indicated it accepted all output and the caller does not need
    /// to call `print_overview()` again to finish the printing.
    fn print_overview(
        &self,
        process: &dyn Process,
        writer: &mut dyn BinaryWrite,
        context: Option<ProcessPrinterContext>,
    ) -> Option<ProcessPrinterContext>;
}

/// A Process Printer that displays a process as a human-readable string.
pub struct ProcessPrinterText {}

impl ProcessPrinterText {
    pub fn new() -> ProcessPrinterText {
        ProcessPrinterText {}
    }
}

impl ProcessPrinter for ProcessPrinterText {
    // `print_overview()` must be synchronous, but does not assume a synchronous
    // writer or an infinite (or very large) underlying buffer in the writer. To
    // do this, this implementation assumes the underlying writer _is_
    // synchronous. This makes the printing code cleaner, as it does not need to
    // be broken up into chunks of some length (which would need to match the
    // underlying buffer length). However, not all writers are synchronous, so
    // this implementation keeps track of how many bytes were sent on the last
    // call, and only prints new bytes on the next call. This works by having
    // the function start from the beginning each time, formats the entire
    // overview message, and just drops bytes until getting back to where it
    // left off on the last call.
    //
    // ### Assumptions
    //
    // This implementation makes two assumptions:
    // 1. That `print_overview()` is not called in performance-critical code.
    //    Since each time it formats and "prints" the message starting from the
    //    beginning, it duplicates a fair bit of formatting work. Since this is
    //    for debugging, the performance impact of that shouldn't matter.
    // 2. That `printer_overview()` will be called in a tight loop, and no
    //    process state will change between calls. That could change the length
    //    of the printed message, and lead to gaps or parts of the overview
    //    being duplicated. However, it does not make sense that the kernel
    //    would want to run the process while it is displaying debugging
    //    information about it, so this should be a safe assumption.
    fn print_overview(
        &self,
        process: &dyn Process,
        writer: &mut dyn BinaryWrite,
        context: Option<ProcessPrinterContext>,
    ) -> Option<ProcessPrinterContext> {
        let offset = context.map_or(0, |c| c.offset);

        // Process statistics
        let events_queued = process.pending_tasks();
        let syscall_count = process.debug_syscall_count();
        let dropped_upcall_count = process.debug_dropped_upcall_count();
        let restart_count = process.get_restart_count();

        let addresses = process.get_addresses();
        let sizes = process.get_sizes();

        let process_struct_memory_location = addresses.sram_end
            - sizes.grant_pointers
            - sizes.upcall_list
            - sizes.process_control_block;
        let sram_grant_size = process_struct_memory_location - addresses.sram_grant_start;

        let mut bww = WriteToBinaryOffsetWrapper::new(writer);
        bww.set_offset(offset);

        let _ = bww.write_fmt(format_args!(
            "\
                 𝐀𝐩𝐩: {}   -   [{:?}]\
                 \r\n Events Queued: {}   Syscall Count: {}   Dropped Upcall Count: {}\
                 \r\n Restart Count: {}\
                 \r\n",
            process.get_process_name(),
            process.get_state(),
            events_queued,
            syscall_count,
            dropped_upcall_count,
            restart_count,
        ));

        let _ = match process.debug_syscall_last() {
            Some(syscall) => bww.write_fmt(format_args!(" Last Syscall: {:?}\r\n", syscall)),
            None => bww.write_str(" Last Syscall: None\r\n"),
        };

        let _ = match process.get_completion_code() {
            Some(opt_cc) => match opt_cc {
                Some(cc) => bww.write_fmt(format_args!(" Completion Code: {}\r\n", cc as isize)),
                None => bww.write_str(" Completion Code: Faulted\r\n"),
            },
            None => bww.write_str(" Completion Code: None\r\n"),
        };

        let _ = bww.write_fmt(format_args!(
            "\
                 \r\n\
                 \r\n ╔═══════════╤══════════════════════════════════════════╗\
                 \r\n ║  Address  │ Region Name    Used | Allocated (bytes)  ║\
                 \r\n ╚{:#010X}═╪══════════════════════════════════════════╝\
                 \r\n             │ Grant Ptrs   {:6}\
                 \r\n             │ Upcalls      {:6}\
                 \r\n             │ Process      {:6}\
                 \r\n  {:#010X} ┼───────────────────────────────────────────\
                 \r\n             │ ▼ Grant      {:6}\
                 \r\n  {:#010X} ┼───────────────────────────────────────────\
                 \r\n             │ Unused\
                 \r\n  {:#010X} ┼───────────────────────────────────────────",
            addresses.sram_end,
            sizes.grant_pointers,
            sizes.upcall_list,
            sizes.process_control_block,
            process_struct_memory_location,
            sram_grant_size,
            addresses.sram_grant_start,
            addresses.sram_app_brk,
        ));

        // We check to see if the underlying writer has more work to do. If it
        // does, then its buffer is full and any additional writes are just
        // going to be dropped. So, we skip doing more printing if there are
        // bytes remaining as a slight performance optimization.
        if !bww.bytes_remaining() {
            match addresses.sram_heap_start {
                Some(sram_heap_start) => {
                    let sram_heap_size = addresses.sram_app_brk - sram_heap_start;
                    let sram_heap_allocated = addresses.sram_grant_start - sram_heap_start;

                    let _ = bww.write_fmt(format_args!(
                        "\
                         \r\n             │ ▲ Heap       {:6} | {:6}{}     S\
                         \r\n  {:#010X} ┼─────────────────────────────────────────── R",
                        sram_heap_size,
                        sram_heap_allocated,
                        exceeded_check(sram_heap_size, sram_heap_allocated),
                        sram_heap_start,
                    ));
                }
                None => {
                    let _ = bww.write_str(
                        "\
                         \r\n             │ ▲ Heap            ? |      ?               S\
                         \r\n  ?????????? ┼─────────────────────────────────────────── R",
                    );
                }
            }
        }

        if !bww.bytes_remaining() {
            match (addresses.sram_heap_start, addresses.sram_stack_top) {
                (Some(sram_heap_start), Some(sram_stack_top)) => {
                    let sram_data_size = sram_heap_start - sram_stack_top;
                    let sram_data_allocated = sram_data_size;

                    let _ = bww.write_fmt(format_args!(
                        "\
                         \r\n             │ Data         {:6} | {:6}               A",
                        sram_data_size, sram_data_allocated,
                    ));
                }
                _ => {
                    let _ = bww.write_str(
                        "\
                         \r\n             │ Data              ? |      ?               A",
                    );
                }
            }
        }

        if !bww.bytes_remaining() {
            match (addresses.sram_stack_top, addresses.sram_stack_bottom) {
                (Some(sram_stack_top), Some(sram_stack_bottom)) => {
                    let sram_stack_size = sram_stack_top - sram_stack_bottom;
                    let sram_stack_allocated = sram_stack_top - addresses.sram_start;

                    let _ = bww.write_fmt(format_args!(
                        "\
                         \r\n  {:#010X} ┼─────────────────────────────────────────── M\
                         \r\n             │ ▼ Stack      {:6} | {:6}{}",
                        sram_stack_top,
                        sram_stack_size,
                        sram_stack_allocated,
                        exceeded_check(sram_stack_size, sram_stack_allocated),
                    ));
                }
                _ => {
                    let _ = bww.write_str(
                        "\
                         \r\n  ?????????? ┼─────────────────────────────────────────── M\
                         \r\n             │ ▼ Stack           ? |      ?",
                    );
                }
            }
        }

        if !bww.bytes_remaining() {
            let flash_protected_size = addresses.flash_non_protected_start - addresses.flash_start;
            let flash_app_size = addresses.flash_end - addresses.flash_non_protected_start;

            let _ = bww.write_fmt(format_args!(
                "\
                 \r\n  {:#010X} ┼───────────────────────────────────────────\
                 \r\n             │ Unused\
                 \r\n  {:#010X} ┴───────────────────────────────────────────\
                 \r\n             .....\
                 \r\n  {:#010X} ┬─────────────────────────────────────────── F\
                 \r\n             │ App Flash    {:6}                        L\
                 \r\n  {:#010X} ┼─────────────────────────────────────────── A\
                 \r\n             │ Protected    {:6}                        S\
                 \r\n  {:#010X} ┴─────────────────────────────────────────── H\
                 \r\n",
                addresses.sram_stack_bottom.unwrap_or(0),
                addresses.sram_start,
                addresses.flash_end,
                flash_app_size,
                addresses.flash_non_protected_start,
                flash_protected_size,
                addresses.flash_start
            ));
        }

        if bww.bytes_remaining() {
            // The underlying writer is indicating there are still bytes
            // remaining to be sent. That means we want to return a context so
            // the caller knows to call us again and we can keep printing until
            // we have displayed the entire process overview.
            let new_context = ProcessPrinterContext {
                offset: bww.get_index(),
            };
            Some(new_context)
        } else {
            None
        }
    }
}

/// If `size` is greater than `allocated` then it returns a warning string to
/// help with debugging.
fn exceeded_check(size: usize, allocated: usize) -> &'static str {
    if size > allocated {
        " EXCEEDED!"
    } else {
        "          "
    }
}