qemu_rv32_virt_chip/uart.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! QEMU's memory mapped 16550 UART
use core::cell::Cell;
use kernel::hil;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::registers::{
register_bitfields, Aliased, Field, InMemoryRegister, ReadOnly, ReadWrite,
};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
pub const UART0_BASE: StaticRef<Uart16550Registers> =
unsafe { StaticRef::new(0x1000_0000 as *const Uart16550Registers) };
pub const UART_16550_BAUD_BASE: usize = 399193;
type Uart16550RegshiftInt = u8;
#[repr(C)]
pub struct Uart16550Registers {
/// 0x00:
/// - DLAB = 0
/// - Read: receiver buffer (RBR)
/// - Write: transmitter holding (THR)
/// - DLAB = 1: divisor latch LSB (DLL)
rbr_thr: Aliased<Uart16550RegshiftInt, RBR::Register, THR::Register>,
/// 0x01:
/// - DLAB = 0: interrupt enable (IER)
/// - DLAB = 1: divisor latch MSB (DLM)
ier: ReadWrite<Uart16550RegshiftInt, IER::Register>,
/// 0x02:
/// - Read: interrupt identification (IIR)
/// - Write: FIFO control (FCR)
iir_fcr: Aliased<Uart16550RegshiftInt, IIR::Register, FCR::Register>,
/// 0x03: line control (LCR)
lcr: ReadWrite<Uart16550RegshiftInt, LCR::Register>,
/// 0x04: modem control (MCR)
mcr: ReadWrite<Uart16550RegshiftInt, MCR::Register>,
/// 0x05: line status (LSR)
lsr: ReadOnly<Uart16550RegshiftInt, LSR::Register>,
/// 0x06: modem status (MSR)
msr: ReadOnly<Uart16550RegshiftInt, MSR::Register>,
}
impl Uart16550Registers {
/// Access the DLL and DLM (divisor latch LSB and MSB) registers
///
/// Setting the 7th bit of the line control register (LCR) changes
/// the RBR/THR and IER to be the DLL and DLM register
/// respectively.
///
/// This function takes care of latching the registers and calling
/// a closure in which this virtual register can be
/// accessed. Prior to calling the closure, the register is
/// latched back and the closure is instead provided with an
/// in-memory copy of the register, which is then written back to
/// DLL and DLM.
///
/// This provides a safe way to access the DLL and DLM
/// registers.
fn divisor_latch_reg<F, R>(&self, f: F) -> R
where
F: FnOnce(&InMemoryRegister<u16, DLR::Register>) -> R,
{
let dlab_field = Field::<Uart16550RegshiftInt, LCR::Register>::new(1, 7);
// Set DLAB = 1
self.lcr.modify(dlab_field.val(1));
// Read the old values of rbr_thr and ier and combine them
// into a u16
let old_val = u16::from_be_bytes([self.ier.get(), self.rbr_thr.get()]);
// Set DLAB = 0 prior to handing back to the caller
self.lcr.modify(dlab_field.val(0));
let dlr = InMemoryRegister::<u16, DLR::Register>::new(old_val);
let ret = f(&dlr);
// Get the bytes from the modified value
let [new_ier, new_rbr_thr] = u16::to_be_bytes(dlr.get());
// Set DLAB = 1
self.lcr.modify(dlab_field.val(1));
// Write the modified value back to the registers
self.ier.set(new_ier as Uart16550RegshiftInt);
self.rbr_thr.set(new_rbr_thr as Uart16550RegshiftInt);
// Set DLAB = 0
self.lcr.modify(dlab_field.val(0));
ret
}
}
register_bitfields![u8,
RBR [
Data OFFSET(0) NUMBITS(8) [],
],
THR [
Data OFFSET(0) NUMBITS(8) [],
],
IER [
ModemStatusRegisterChange OFFSET(3) NUMBITS(1) [],
ReceiverLineStatusRegisterChange OFFSET(2) NUMBITS(1) [],
TransmitterHoldingRegisterEmpty OFFSET(1) NUMBITS(1) [],
ReceivedDataAvailable OFFSET(0) NUMBITS(1) [],
],
IIR [
FIFO OFFSET(6) NUMBITS(2) [
NoFIFO = 0,
UnusableFIFO = 2,
FIFOEnabled = 3,
],
Identification OFFSET(1) NUMBITS(3) [
ModemStatusChange = 0,
TransmitterHoldingRegisterEmpty = 1,
ReceiveDataAvailable = 2,
LineStatusChange = 3,
CharacterTimeout = 6,
],
Pending OFFSET(0) NUMBITS(1) [
Pending = 0,
NotPending = 1,
],
],
FCR [
ReceiveFIFOInterruptTriggerLevel OFFSET(6) NUMBITS(2) [
Bytes1 = 0,
Bytes4 = 1,
Bytes8 = 2,
Bytes14 = 3,
],
DMAMode OFFSET(3) NUMBITS(1) [
Mode0 = 0,
Mode1 = 1,
],
ClearTransmitFIFO OFFSET(2) NUMBITS(1) [],
ClearReceiveFIFO OFFSET(1) NUMBITS(1) [],
Enable OFFSET(0) NUMBITS(1) [],
],
LCR [
BreakSignal OFFSET(6) NUMBITS(1) [],
ParityMode OFFSET(4) NUMBITS(2) [
Odd = 0,
Even = 1,
High = 2,
Low = 3,
],
Parity OFFSET(3) NUMBITS(1) [],
StopBits OFFSET(2) NUMBITS(1) [
One = 0,
OneHalfTwo = 1,
],
DataWordLength OFFSET(0) NUMBITS(2) [
Bits5 = 0,
Bits6 = 1,
Bits7 = 2,
Bits8 = 3,
],
],
MCR [
LoopbackMode OFFSET(4) NUMBITS(1) [],
AuxiliaryOutput2 OFFSET(3) NUMBITS(1) [],
AuxiliaryOutput1 OFFSET(2) NUMBITS(1) [],
RequestToSend OFFSET(1) NUMBITS(1) [],
DataTerminalReady OFFSET(0) NUMBITS(1) [],
],
LSR [
ErronousDataInFIFO OFFSET(7) NUMBITS(1) [],
THREmptyLineIdle OFFSET(6) NUMBITS(1) [],
THREmpty OFFSET(5) NUMBITS(1) [],
BreakSignalReceived OFFSET(4) NUMBITS(1) [],
FramingError OFFSET(3) NUMBITS(1) [],
ParityError OFFSET(2) NUMBITS(1) [],
OverrunError OFFSET(1) NUMBITS(1) [],
DataAvailable OFFSET(0) NUMBITS(1) [],
],
MSR [
CarrierDetect OFFSET(7) NUMBITS(1) [],
RingIndicator OFFSET(6) NUMBITS(1) [],
DataSetReady OFFSET(5) NUMBITS(1) [],
ClearToSend OFFSET(4) NUMBITS(1) [],
ChangeInCarrierDetect OFFSET(3) NUMBITS(1) [],
TrailingEdgeRingIndicator OFFSET(2) NUMBITS(1) [],
ChangeInDataSetReady OFFSET(1) NUMBITS(1) [],
ChangeInClearToSend OFFSET(0) NUMBITS(1) [],
],
];
register_bitfields![u16,
DLR [
Divisor OFFSET(0) NUMBITS(16) [],
],
];
pub struct Uart16550<'a> {
regs: StaticRef<Uart16550Registers>,
tx_client: OptionalCell<&'a dyn hil::uart::TransmitClient>,
rx_client: OptionalCell<&'a dyn hil::uart::ReceiveClient>,
tx_buffer: TakeCell<'static, [u8]>,
tx_len: Cell<usize>,
tx_index: Cell<usize>,
rx_buffer: TakeCell<'static, [u8]>,
rx_len: Cell<usize>,
rx_index: Cell<usize>,
}
impl<'a> Uart16550<'a> {
pub fn new(regs: StaticRef<Uart16550Registers>) -> Uart16550<'a> {
// Disable all interrupts when constructing the UART
regs.ier.set(0xF);
regs.iir_fcr.write(FCR::Enable::CLEAR);
Uart16550 {
regs,
tx_client: OptionalCell::empty(),
rx_client: OptionalCell::empty(),
tx_buffer: TakeCell::empty(),
tx_len: Cell::new(0),
tx_index: Cell::new(0),
rx_buffer: TakeCell::empty(),
rx_len: Cell::new(0),
rx_index: Cell::new(0),
}
}
}
impl Uart16550<'_> {
pub fn handle_interrupt(&self) {
// Currently we can only receive a tx interrupt, however we
// need to check the interrupt cause nonetheless as this will
// clear the TX interrupt bit
let iir = self.regs.iir_fcr.extract();
// Check if the register contained a valid interrupt at all
if !iir.matches_all(IIR::Pending::Pending) {
panic!("UART 16550: interrupt without interrupt");
}
// Check whether there is space for new data
if iir.matches_all(IIR::Identification::TransmitterHoldingRegisterEmpty) {
// The respective interrupt has already been cleared by
// the extraction of IIR
// We also check whether the tx_buffer is set, as we
// could've generated the interrupt by transmit_sync
if self.tx_buffer.is_some() {
self.transmit_continue();
}
}
// Check whether we've received some new data.
else if iir.matches_all(IIR::Identification::ReceiveDataAvailable) {
self.receive();
}
// We don't care about MSC interrupts, but have to ack the
// interrupt by reading MSR
else if iir.matches_all(IIR::Identification::ModemStatusChange) {
let _ = self.regs.msr.get();
}
// We don't care about LSC interrupts, but have to ack the
// interrupt by reading LSR
else if iir.matches_all(IIR::Identification::LineStatusChange) {
let _ = self.regs.lsr.get();
}
// We con't care about character timeout interrupts, but CAN'T
// SUPPRESS THEM and have to ack by reading RBR
else if iir.matches_all(IIR::Identification::CharacterTimeout) {
let _ = self.regs.rbr_thr.get();
}
// All other interrupt sources are unknown, panic if we see
// them
else {
panic!("UART 16550: unknown interrupt");
}
}
/// Blocking transmit
///
/// This function will transmit the passed slice in a blocking
/// fashing, returning when finished.
///
/// The current device configuration is used, and the device must
/// be enabled. Otherwise, this function may block indefinitely.
pub fn transmit_sync(&self, bytes: &[u8]) {
// We don't want to cause excessive interrupts here, so
// disable transmit interrupts temporarily
let prev_ier = self.regs.ier.extract();
if prev_ier.is_set(IER::TransmitterHoldingRegisterEmpty) {
self.regs
.ier
.modify_no_read(prev_ier, IER::TransmitterHoldingRegisterEmpty::CLEAR);
}
for byte in bytes.iter() {
while !self.regs.lsr.is_set(LSR::THREmpty) {}
self.regs.rbr_thr.write(THR::Data.val(*byte));
}
// Restore the IER register to its original state
self.regs.ier.set(prev_ier.get());
}
fn transmit_continue(&self) {
// This should only be called as a result of a transmit
// interrupt
// Get the current transmission information
let mut index = self.tx_index.get();
let tx_data = self.tx_buffer.take().expect("UART 16550: no tx buffer");
if index < self.tx_len.get() {
// Still data to send
while index < self.tx_len.get() && self.regs.lsr.is_set(LSR::THREmpty) {
self.regs.rbr_thr.write(THR::Data.val(tx_data[index]));
index += 1;
}
// Put the updated index and buffer back, wait for an
// interrupt
self.tx_index.set(index);
self.tx_buffer.replace(tx_data);
} else {
// We are finished, disable tx interrupts
self.regs
.ier
.modify(IER::TransmitterHoldingRegisterEmpty::CLEAR);
// Callback to the client
self.tx_client
.map(move |client| client.transmitted_buffer(tx_data, self.tx_len.get(), Ok(())));
}
}
fn receive(&self) {
// Receive interrupts must only be enabled when we're currently holding
// a buffer to receive data into:
let rx_buffer = self.rx_buffer.take().expect("UART 16550: no rx buffer");
let len = self.rx_len.get();
let mut index = self.rx_index.get();
// Read in a while loop, until no more data in the FIFO
while self.regs.lsr.is_set(LSR::DataAvailable) && index < len {
rx_buffer[index] = self.regs.rbr_thr.get();
index += 1;
}
// Check whether we've read sufficient data:
if index == len {
// We're done, disable interrupts and return to the client:
self.regs.ier.modify(IER::ReceivedDataAvailable::CLEAR);
self.rx_client.map(move |client| {
client.received_buffer(rx_buffer, len, Ok(()), hil::uart::Error::None)
});
} else {
// Store the new index and place the buffer back:
self.rx_index.set(index);
self.rx_buffer.replace(rx_buffer);
}
}
}
impl hil::uart::Configure for Uart16550<'_> {
fn configure(&self, params: hil::uart::Parameters) -> Result<(), ErrorCode> {
use hil::uart::{Parity, StopBits, Width};
// 16550 operates at a default frequency of 115200. Dividing
// this by the target frequency gives the divisor register
// contents.
let divisor: u16 = (115_200 / params.baud_rate) as u16;
self.regs.divisor_latch_reg(|dlr| {
dlr.set(divisor);
});
let mut lcr = self.regs.lcr.extract();
match params.width {
Width::Six => lcr.modify(LCR::DataWordLength::Bits6),
Width::Seven => lcr.modify(LCR::DataWordLength::Bits7),
Width::Eight => lcr.modify(LCR::DataWordLength::Bits8),
};
match params.stop_bits {
StopBits::One => LCR::StopBits::One,
// 1.5 stop bits for 5bit works, 2 stop bits for 6-8 bit
// words. We only support 6-8 bit words, so this
// configures 2 stop bits
StopBits::Two => LCR::StopBits::OneHalfTwo,
};
match params.parity {
Parity::None => lcr.modify(LCR::Parity.val(0b000)),
Parity::Odd => lcr.modify(LCR::Parity.val(0b001)),
Parity::Even => lcr.modify(LCR::Parity.val(0b011)),
};
match params.hw_flow_control {
true => lcr.modify(LCR::BreakSignal::SET),
false => lcr.modify(LCR::BreakSignal::CLEAR),
};
self.regs.lcr.set(lcr.get());
Ok(())
}
}
impl<'a> hil::uart::Transmit<'a> for Uart16550<'a> {
fn set_transmit_client(&self, client: &'a dyn hil::uart::TransmitClient) {
self.tx_client.set(client);
}
fn transmit_buffer(
&self,
tx_data: &'static mut [u8],
tx_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
if tx_len > tx_data.len() {
return Err((ErrorCode::INVAL, tx_data));
}
if self.tx_buffer.is_some() {
return Err((ErrorCode::BUSY, tx_data));
}
// Enable interrupts for the transmitter holding register
// being empty such that we can callback to the client
self.regs
.ier
.modify(IER::TransmitterHoldingRegisterEmpty::SET);
// Start transmitting the first data word(s) already
let mut index = 0;
while index < tx_len && self.regs.lsr.is_set(LSR::THREmpty) {
self.regs.rbr_thr.write(THR::Data.val(tx_data[index]));
index += 1;
}
// Store the required buffer and information for the interrupt
// handler
self.tx_buffer.replace(tx_data);
self.tx_len.set(tx_len);
self.tx_index.set(index);
Ok(())
}
fn transmit_abort(&self) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
fn transmit_word(&self, _word: u32) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
}
impl<'a> hil::uart::Receive<'a> for Uart16550<'a> {
fn set_receive_client(&self, client: &'a dyn hil::uart::ReceiveClient) {
self.rx_client.set(client);
}
fn receive_buffer(
&self,
rx_buffer: &'static mut [u8],
rx_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
// Ensure the provided buffer holds at least `rx_len` bytes, and
// `rx_len` is strictly positive (otherwise we'd need to use deferred
// calls):
if rx_buffer.len() < rx_len && rx_len > 0 {
return Err((ErrorCode::SIZE, rx_buffer));
}
// Store the receive buffer and byte count. We cannot call into the
// generic receive routine here, as the client callback needs to be
// called from another call stack. Hence simply enable interrupts here.
self.rx_buffer.replace(rx_buffer);
self.rx_len.set(rx_len);
self.rx_index.set(0);
// Enable receive interrupts:
self.regs.ier.modify(IER::ReceivedDataAvailable::SET);
Ok(())
}
fn receive_abort(&self) -> Result<(), ErrorCode> {
// Currently unsupported as we'd like to avoid using deferred
// calls. Needs to be migrated to the new UART HIL anyways.
Err(ErrorCode::FAIL)
}
fn receive_word(&self) -> Result<(), ErrorCode> {
// Currently unsupported.
Err(ErrorCode::FAIL)
}
}