cortexv7m/
lib.rs

1// Licensed under the Apache License, Version 2.0 or the MIT License.
2// SPDX-License-Identifier: Apache-2.0 OR MIT
3// Copyright Tock Contributors 2024.
4
5//! Generic support for all Cortex-M platforms.
6
7#![no_std]
8
9// These constants are defined in the linker script.
10extern "C" {
11    static _estack: u8;
12    static _sstack: u8;
13}
14
15/// ARMv7-M systick handler function.
16///
17/// For documentation of this function, please see
18/// `CortexMVariant::SYSTICK_HANDLER`.
19#[cfg(any(doc, all(target_arch = "arm", target_os = "none")))]
20#[unsafe(naked)]
21pub unsafe extern "C" fn systick_handler_arm_v7m() {
22    use core::arch::naked_asm;
23    naked_asm!(
24        "
25    // Use the CONTROL register to set the thread mode to privileged to switch
26    // back to kernel mode.
27    //
28    // CONTROL[1]: Stack status
29    //   0 = Default stack (MSP) is used
30    //   1 = Alternate stack is used
31    // CONTROL[0]: Mode
32    //   0 = Privileged in thread mode
33    //   1 = User state in thread mode
34    mov r0, #0                        // r0 = 0
35    msr CONTROL, r0                   // CONTROL = 0
36    // CONTROL writes must be followed by an Instruction Synchronization Barrier
37    // (ISB). https://developer.arm.com/documentation/dai0321/latest
38    isb                               // synchronization barrier
39
40    // The link register is set to the `EXC_RETURN` value on exception entry. To
41    // ensure we continue executing in the kernel we ensure the SPSEL bit is set
42    // to 0 to use the main (kernel) stack.
43    bfc lr, #2, #1                    // LR = LR & !(0x1<<2)
44
45    // This will resume in the switch_to_user function where application state
46    // is saved and the scheduler can choose what to do next.
47    bx lr
48        "
49    );
50}
51
52/// Handler of `svc` instructions on ARMv7-M.
53///
54/// For documentation of this function, please see
55/// `CortexMVariant::SVC_HANDLER`.
56#[cfg(any(doc, all(target_arch = "arm", target_os = "none")))]
57#[unsafe(naked)]
58pub unsafe extern "C" fn svc_handler_arm_v7m() {
59    use core::arch::naked_asm;
60    naked_asm!(
61        "
62    // First check to see which direction we are going in. If the link register
63    // (containing EXC_RETURN) has a 1 in the SPSEL bit (meaning the
64    // alternative/process stack was in use) then we are coming from a process
65    // which has called a syscall.
66    ubfx r0, lr, #2, #1               // r0 = (LR & (0x1<<2)) >> 2
67    cmp r0, #0                        // r0 (SPSEL bit) =≟ 0
68    bne 100f // to_kernel             // if SPSEL == 1, jump to to_kernel
69
70    // If we get here, then this is a context switch from the kernel to the
71    // application. Use the CONTROL register to set the thread mode to
72    // unprivileged to run the application.
73    //
74    // CONTROL[1]: Stack status
75    //   0 = Default stack (MSP) is used
76    //   1 = Alternate stack is used
77    // CONTROL[0]: Mode
78    //   0 = Privileged in thread mode
79    //   1 = User state in thread mode
80    mov r0, #1                        // r0 = 1
81    msr CONTROL, r0                   // CONTROL = 1
82    // CONTROL writes must be followed by an Instruction Synchronization Barrier
83    // (ISB). https://developer.arm.com/documentation/dai0321/latest
84    isb
85
86    // The link register is set to the `EXC_RETURN` value on exception entry. To
87    // ensure we execute using the process stack we set the SPSEL bit to 1
88    // to use the alternate (process) stack.
89    orr lr, lr, #4                    // LR = LR | 0b100
90
91    // Switch to the app.
92    bx lr
93
94100: // to_kernel
95    // An application called a syscall. We mark this in the global variable
96    // `SYSCALL_FIRED` which is stored in the syscall file.
97    // `UserspaceKernelBoundary` will use this variable to decide why the app
98    // stopped executing.
99    ldr r0, =SYSCALL_FIRED            // r0 = &SYSCALL_FIRED
100    mov r1, #1                        // r1 = 1
101    str r1, [r0]                      // *SYSCALL_FIRED = 1
102
103    // Use the CONTROL register to set the thread mode to privileged to switch
104    // back to kernel mode.
105    //
106    // CONTROL[1]: Stack status
107    //   0 = Default stack (MSP) is used
108    //   1 = Alternate stack is used
109    // CONTROL[0]: Mode
110    //   0 = Privileged in thread mode
111    //   1 = User state in thread mode
112    mov r0, #0                        // r0 = 0
113    msr CONTROL, r0                   // CONTROL = 0
114    // CONTROL writes must be followed by an Instruction Synchronization Barrier
115    // (ISB). https://developer.arm.com/documentation/dai0321/latest
116    isb
117
118    // The link register is set to the `EXC_RETURN` value on exception entry. To
119    // ensure we continue executing in the kernel we ensure the SPSEL bit is set
120    // to 0 to use the main (kernel) stack.
121    bfc lr, #2, #1                    // LR = LR & !(0x1<<2)
122
123    // Return to the kernel.
124    bx lr
125        "
126    );
127}
128
129/// Generic interrupt handler for ARMv7-M instruction sets.
130///
131/// For documentation of this function, see `CortexMVariant::GENERIC_ISR`.
132#[cfg(any(doc, all(target_arch = "arm", target_os = "none")))]
133#[unsafe(naked)]
134pub unsafe extern "C" fn generic_isr_arm_v7m() {
135    use core::arch::naked_asm;
136    naked_asm!(
137        "
138    // Use the CONTROL register to set the thread mode to privileged to ensure
139    // we are executing as the kernel. This may be redundant if the interrupt
140    // happened while the kernel code was executing.
141    //
142    // CONTROL[1]: Stack status
143    //   0 = Default stack (MSP) is used
144    //   1 = Alternate stack is used
145    // CONTROL[0]: Mode
146    //   0 = Privileged in thread mode
147    //   1 = User state in thread mode
148    mov r0, #0                        // r0 = 0
149    msr CONTROL, r0                   // CONTROL = 0
150    // CONTROL writes must be followed by an Instruction Synchronization Barrier
151    // (ISB). https://developer.arm.com/documentation/dai0321/latest
152    isb
153
154    // Now need to disable the interrupt that fired in the NVIC to ensure it
155    // does not trigger again before the scheduler has a chance to handle it. We
156    // do this here in assembly for performance.
157    //
158    // The general idea is:
159    // 1. Get the index of the interrupt that occurred.
160    // 2. Set the disable bit for that interrupt in the NVIC.
161
162    // Find the ISR number (`index`) by looking at the low byte of the IPSR
163    // registers.
164    mrs r0, IPSR                      // r0 = Interrupt Program Status Register (IPSR)
165    and r0, #0xff                     // r0 = r0 & 0xFF; Get lowest 8 bits
166    sub r0, #16                       // r0 = r0 - 16;   ISRs start at 16, so subtract 16 to get zero-indexed.
167
168    // Now disable that interrupt in the NVIC.
169    // High level:
170    //    r0 = index
171    //    NVIC.ICER[r0 / 32] = 1 << (r0 & 31)
172    lsrs r2, r0, #5                   // r2 = r0 / 32
173    // r0 = 1 << (r0 & 31)
174    movs r3, #1                       // r3 = 1
175    and r0, r0, #31                   // r0 = r0 & 31
176    lsl r0, r3, r0                    // r0 = r3 << r0
177
178    // Load the ICER register address.
179    ldr r3, =0xe000e180               // r3 = &NVIC.ICER
180
181    // Here:
182    // - `r2` is index / 32
183    // - `r3` is &NVIC.ICER
184    // - `r0` is 1 << (index & 31)
185    str r0, [r3, r2, lsl #2]          // *(r3 + r2 * 4) = r0
186
187    // The pending bit in ISPR might be reset by hardware for pulse interrupts
188    // at this point. So set it here again so the interrupt does not get lost in
189    // `service_pending_interrupts()`.
190    ldr r3, =0xe000e200               // r3 = &NVIC.ISPR
191    str r0, [r3, r2, lsl #2]          // *(r3 + r2 * 4) = r0
192
193    // The link register is set to the `EXC_RETURN` value on exception entry. To
194    // ensure we continue executing in the kernel we ensure the SPSEL bit is set
195    // to 0 to use the main (kernel) stack.
196    bfc lr, #2, #1                    // LR = LR & !(0x1<<2)
197
198    // Now we can return from the interrupt context and resume what we were
199    // doing. If an app was executing we will switch to the kernel so it can
200    // choose whether to service the interrupt.
201    bx lr
202        "
203    );
204}
205
206/// Assembly function to switch into userspace and store/restore application
207/// state.
208///
209/// For documentation of this function, please see
210/// `CortexMVariant::switch_to_user`.
211#[cfg(any(doc, all(target_arch = "arm", target_os = "none")))]
212pub unsafe fn switch_to_user_arm_v7m(
213    mut user_stack: *const usize,
214    process_regs: &mut [usize; 8],
215) -> *const usize {
216    use core::arch::asm;
217    asm!(
218        "
219    // Rust `asm!()` macro (as of May 2021) will not let us mark r6, r7 and r9
220    // as clobbers. r6 and r9 is used internally by LLVM, and r7 is used for
221    // the frame pointer. However, in the process of restoring and saving the
222    // process's registers, we do in fact clobber r6, r7 and r9. So, we work
223    // around this by doing our own manual saving of r6 using r2, r7 using r3,
224    // r9 using r12, and then mark those as clobbered.
225    mov r2, r6                        // r2 = r6
226    mov r3, r7                        // r3 = r7
227    mov r12, r9                       // r12 = r9
228
229    // The arguments passed in are:
230    // - `r0` is the bottom of the user stack
231    // - `r1` is a reference to `CortexMStoredState.regs`
232
233    // Load bottom of stack into Process Stack Pointer.
234    msr psp, r0                       // PSP = r0
235
236    // Load non-hardware-stacked registers from the process stored state. Ensure
237    // that the address register (right now r1) is stored in a callee saved
238    // register.
239    ldmia r1, {{r4-r11}}              // r4 = r1[0], r5 = r1[1], ...
240
241    // Generate a SVC exception to handle the context switch from kernel to
242    // userspace. It doesn't matter which SVC number we use here as it is not
243    // used in the exception handler. Data being returned from a syscall is
244    // transferred on the app's stack.
245    svc 0xff
246
247    // When execution returns here we have switched back to the kernel from the
248    // application.
249
250    // Push non-hardware-stacked registers into the saved state for the
251    // application.
252    stmia r1, {{r4-r11}}              // r1[0] = r4, r1[1] = r5, ...
253
254    // Update the user stack pointer with the current value after the
255    // application has executed.
256    mrs r0, PSP                       // r0 = PSP
257
258    // Need to restore r6, r7 and r12 since we clobbered them when switching to
259    // and from the app.
260    mov r6, r2                        // r6 = r2
261    mov r7, r3                        // r7 = r3
262    mov r9, r12                       // r9 = r12
263        ",
264        inout("r0") user_stack,
265        in("r1") process_regs,
266        out("r2") _,
267        out("r3") _,
268        out("r4") _,
269        out("r5") _,
270        out("r8") _,
271        out("r10") _,
272        out("r11") _,
273        out("r12") _,
274    );
275
276    user_stack
277}
278
279#[cfg(any(doc, all(target_arch = "arm", target_os = "none")))]
280/// Continue the hardfault handler for all hard-faults that occurred
281/// during kernel execution. This function must never return.
282unsafe extern "C" fn hard_fault_handler_arm_v7m_kernel(
283    faulting_stack: *mut u32,
284    stack_overflow: u32,
285) -> ! {
286    if stack_overflow != 0 {
287        // Panic to show the correct error.
288        panic!("kernel stack overflow");
289    } else {
290        // Show the normal kernel hardfault message.
291        let stacked_r0: u32 = *faulting_stack.offset(0);
292        let stacked_r1: u32 = *faulting_stack.offset(1);
293        let stacked_r2: u32 = *faulting_stack.offset(2);
294        let stacked_r3: u32 = *faulting_stack.offset(3);
295        let stacked_r12: u32 = *faulting_stack.offset(4);
296        let stacked_lr: u32 = *faulting_stack.offset(5);
297        let stacked_pc: u32 = *faulting_stack.offset(6);
298        let stacked_xpsr: u32 = *faulting_stack.offset(7);
299
300        let mode_str = "Kernel";
301
302        let shcsr: u32 = core::ptr::read_volatile(0xE000ED24 as *const u32);
303        let cfsr: u32 = core::ptr::read_volatile(0xE000ED28 as *const u32);
304        let hfsr: u32 = core::ptr::read_volatile(0xE000ED2C as *const u32);
305        let mmfar: u32 = core::ptr::read_volatile(0xE000ED34 as *const u32);
306        let bfar: u32 = core::ptr::read_volatile(0xE000ED38 as *const u32);
307
308        let iaccviol = (cfsr & 0x01) == 0x01;
309        let daccviol = (cfsr & 0x02) == 0x02;
310        let munstkerr = (cfsr & 0x08) == 0x08;
311        let mstkerr = (cfsr & 0x10) == 0x10;
312        let mlsperr = (cfsr & 0x20) == 0x20;
313        let mmfarvalid = (cfsr & 0x80) == 0x80;
314
315        let ibuserr = ((cfsr >> 8) & 0x01) == 0x01;
316        let preciserr = ((cfsr >> 8) & 0x02) == 0x02;
317        let impreciserr = ((cfsr >> 8) & 0x04) == 0x04;
318        let unstkerr = ((cfsr >> 8) & 0x08) == 0x08;
319        let stkerr = ((cfsr >> 8) & 0x10) == 0x10;
320        let lsperr = ((cfsr >> 8) & 0x20) == 0x20;
321        let bfarvalid = ((cfsr >> 8) & 0x80) == 0x80;
322
323        let undefinstr = ((cfsr >> 16) & 0x01) == 0x01;
324        let invstate = ((cfsr >> 16) & 0x02) == 0x02;
325        let invpc = ((cfsr >> 16) & 0x04) == 0x04;
326        let nocp = ((cfsr >> 16) & 0x08) == 0x08;
327        let unaligned = ((cfsr >> 16) & 0x100) == 0x100;
328        let divbysero = ((cfsr >> 16) & 0x200) == 0x200;
329
330        let vecttbl = (hfsr & 0x02) == 0x02;
331        let forced = (hfsr & 0x40000000) == 0x40000000;
332
333        let ici_it = (((stacked_xpsr >> 25) & 0x3) << 6) | ((stacked_xpsr >> 10) & 0x3f);
334        let thumb_bit = ((stacked_xpsr >> 24) & 0x1) == 1;
335        let exception_number = (stacked_xpsr & 0x1ff) as usize;
336
337        panic!(
338            "{} HardFault.\r\n\
339         \tr0  0x{:x}\r\n\
340         \tr1  0x{:x}\r\n\
341         \tr2  0x{:x}\r\n\
342         \tr3  0x{:x}\r\n\
343         \tr12 0x{:x}\r\n\
344         \tlr  0x{:x}\r\n\
345         \tpc  0x{:x}\r\n\
346         \tpsr 0x{:x} [ N {} Z {} C {} V {} Q {} GE {}{}{}{} ; ICI.IT {} T {} ; Exc {}-{} ]\r\n\
347         \tsp  0x{:x}\r\n\
348         \ttop of stack     0x{:x}\r\n\
349         \tbottom of stack  0x{:x}\r\n\
350         \tSHCSR 0x{:x}\r\n\
351         \tCFSR  0x{:x}\r\n\
352         \tHSFR  0x{:x}\r\n\
353         \tInstruction Access Violation:       {}\r\n\
354         \tData Access Violation:              {}\r\n\
355         \tMemory Management Unstacking Fault: {}\r\n\
356         \tMemory Management Stacking Fault:   {}\r\n\
357         \tMemory Management Lazy FP Fault:    {}\r\n\
358         \tInstruction Bus Error:              {}\r\n\
359         \tPrecise Data Bus Error:             {}\r\n\
360         \tImprecise Data Bus Error:           {}\r\n\
361         \tBus Unstacking Fault:               {}\r\n\
362         \tBus Stacking Fault:                 {}\r\n\
363         \tBus Lazy FP Fault:                  {}\r\n\
364         \tUndefined Instruction Usage Fault:  {}\r\n\
365         \tInvalid State Usage Fault:          {}\r\n\
366         \tInvalid PC Load Usage Fault:        {}\r\n\
367         \tNo Coprocessor Usage Fault:         {}\r\n\
368         \tUnaligned Access Usage Fault:       {}\r\n\
369         \tDivide By Zero:                     {}\r\n\
370         \tBus Fault on Vector Table Read:     {}\r\n\
371         \tForced Hard Fault:                  {}\r\n\
372         \tFaulting Memory Address: (valid: {}) {:#010X}\r\n\
373         \tBus Fault Address:       (valid: {}) {:#010X}\r\n\
374         ",
375            mode_str,
376            stacked_r0,
377            stacked_r1,
378            stacked_r2,
379            stacked_r3,
380            stacked_r12,
381            stacked_lr,
382            stacked_pc,
383            stacked_xpsr,
384            (stacked_xpsr >> 31) & 0x1,
385            (stacked_xpsr >> 30) & 0x1,
386            (stacked_xpsr >> 29) & 0x1,
387            (stacked_xpsr >> 28) & 0x1,
388            (stacked_xpsr >> 27) & 0x1,
389            (stacked_xpsr >> 19) & 0x1,
390            (stacked_xpsr >> 18) & 0x1,
391            (stacked_xpsr >> 17) & 0x1,
392            (stacked_xpsr >> 16) & 0x1,
393            ici_it,
394            thumb_bit,
395            exception_number,
396            ipsr_isr_number_to_str(exception_number),
397            faulting_stack as u32,
398            core::ptr::addr_of!(_estack) as u32,
399            core::ptr::addr_of!(_sstack) as u32,
400            shcsr,
401            cfsr,
402            hfsr,
403            iaccviol,
404            daccviol,
405            munstkerr,
406            mstkerr,
407            mlsperr,
408            ibuserr,
409            preciserr,
410            impreciserr,
411            unstkerr,
412            stkerr,
413            lsperr,
414            undefinstr,
415            invstate,
416            invpc,
417            nocp,
418            unaligned,
419            divbysero,
420            vecttbl,
421            forced,
422            mmfarvalid,
423            mmfar,
424            bfarvalid,
425            bfar
426        );
427    }
428}
429
430/// ARMv7-M hardfault handler.
431///
432/// For documentation of this function, please see
433/// `CortexMVariant::HARD_FAULT_HANDLER_HANDLER`.
434#[cfg(any(doc, all(target_arch = "arm", target_os = "none")))]
435#[unsafe(naked)]
436pub unsafe extern "C" fn hard_fault_handler_arm_v7m() {
437    use core::arch::naked_asm;
438    // First need to determine if this a kernel fault or a userspace fault, and store
439    // the unmodified stack pointer. Place these values in registers, then call
440    // a non-naked function, to allow for use of rust code alongside inline asm.
441    // Because calling a function increases the stack pointer, we have to check for a kernel
442    // stack overflow and adjust the stack pointer before we branch
443    naked_asm!(
444        "
445    mov    r2, 0     // r2 = 0
446    tst    lr, #4    // bitwise AND link register to 0b100
447    itte   eq        // if lr==4, run next two instructions, else, run 3rd instruction.
448    mrseq  r0, msp   // r0 = kernel stack pointer
449    addeq  r2, 1     // r2 = 1, kernel was executing
450    mrsne  r0, psp   // r0 = userland stack pointer
451    // Need to determine if we had a stack overflow before we push anything
452    // on to the stack. We check this by looking at the BusFault Status
453    // Register's (BFSR) `LSPERR` and `STKERR` bits to see if the hardware
454    // had any trouble stacking important registers to the stack during the
455    // fault. If so, then we cannot use this stack while handling this fault
456    // or we will trigger another fault.
457    ldr   r3, =0xE000ED29  // SCB BFSR register address
458    ldrb  r3, [r3]         // r3 = BFSR
459    tst   r3, #0x30        // r3 = BFSR & 0b00110000; LSPERR & STKERR bits
460    ite   ne               // check if the result of that bitwise AND was not 0
461    movne r1, #1           // BFSR & 0b00110000 != 0; r1 = 1
462    moveq r1, #0           // BFSR & 0b00110000 == 0; r1 = 0
463    and r5, r2, r1         // bitwise and r1 and r2, store in r5
464    cmp  r5, #1            //  update condition codes to reflect if r1 == 1 && r2 == 1
465    itt  eq                // if r5==1 run the next 2 instructions, else skip to branch
466    // if true, The hardware couldn't use the stack, so we have no saved data and
467    // we cannot use the kernel stack as is. We just want to report that
468    // the kernel's stack overflowed, since that is essential for
469    // debugging.
470    //
471    // To make room for a panic!() handler stack, we just re-use the
472    // kernel's original stack. This should in theory leave the bottom
473    // of the stack where the problem occurred untouched should one want
474    // to further debug.
475    ldreq  r4, ={estack} // load _estack into r4
476    moveq  sp, r4        // Set the stack pointer to _estack
477    // finally, if the fault occurred in privileged mode (r2 == 1), branch
478    // to non-naked handler.
479    cmp r2, #0
480    // Per ARM calling convention, faulting stack is passed in r0, whether
481    // there was a stack overflow in r1. This function must never return.
482    bne {kernel_hard_fault_handler} // branch to kernel hard fault handler
483    // Otherwise, the hard fault occurred in userspace. In this case, read
484    // the relevant SCB registers:
485    ldr r0, =SCB_REGISTERS    // Global variable address
486    ldr r1, =0xE000ED14       // SCB CCR register address
487    ldr r2, [r1, #0]          // CCR
488    str r2, [r0, #0]
489    ldr r2, [r1, #20]         // CFSR
490    str r2, [r0, #4]
491    ldr r2, [r1, #24]         // HFSR
492    str r2, [r0, #8]
493    ldr r2, [r1, #32]         // MMFAR
494    str r2, [r0, #12]
495    ldr r2, [r1, #36]         // BFAR
496    str r2, [r0, #16]
497
498    ldr r0, =APP_HARD_FAULT  // Global variable address
499    mov r1, #1               // r1 = 1
500    str r1, [r0, #0]         // APP_HARD_FAULT = 1
501
502    // Set thread mode to privileged
503    mov r0, #0
504    msr CONTROL, r0
505    // CONTROL writes must be followed by ISB
506    // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0321a/BIHFJCAC.html
507    isb
508
509    // The link register is set to the `EXC_RETURN` value on exception
510    // entry. To ensure we continue executing in the kernel we ensure the
511    // SPSEL bit is set to 0 to use the main (kernel) stack.
512    bfc lr, #2, #1                    // LR = LR & !(0x1<<2)
513
514    bx lr
515        ",
516        estack = sym _estack,
517        kernel_hard_fault_handler = sym hard_fault_handler_arm_v7m_kernel,
518    );
519}
520
521// Table 2.5
522// http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/CHDBIBGJ.html
523pub fn ipsr_isr_number_to_str(isr_number: usize) -> &'static str {
524    match isr_number {
525        0 => "Thread Mode",
526        1 => "Reserved",
527        2 => "NMI",
528        3 => "HardFault",
529        4 => "MemManage",
530        5 => "BusFault",
531        6 => "UsageFault",
532        7..=10 => "Reserved",
533        11 => "SVCall",
534        12 => "Reserved for Debug",
535        13 => "Reserved",
536        14 => "PendSV",
537        15 => "SysTick",
538        16..=255 => "IRQn",
539        _ => "(Unknown! Illegal value?)",
540    }
541}
542
543///////////////////////////////////////////////////////////////////
544// Mock implementations for running tests on CI.
545//
546// Since tests run on the local architecture, we have to remove any
547// ARM assembly since it will not compile.
548///////////////////////////////////////////////////////////////////
549
550#[cfg(not(any(doc, all(target_arch = "arm", target_os = "none"))))]
551pub unsafe extern "C" fn systick_handler_arm_v7m() {
552    unimplemented!()
553}
554
555#[cfg(not(any(doc, all(target_arch = "arm", target_os = "none"))))]
556pub unsafe extern "C" fn svc_handler_arm_v7m() {
557    unimplemented!()
558}
559
560#[cfg(not(any(doc, all(target_arch = "arm", target_os = "none"))))]
561pub unsafe extern "C" fn generic_isr_arm_v7m() {
562    unimplemented!()
563}
564
565#[cfg(not(any(doc, all(target_arch = "arm", target_os = "none"))))]
566pub unsafe extern "C" fn switch_to_user_arm_v7m(
567    _user_stack: *const u8,
568    _process_regs: &mut [usize; 8],
569) -> *const usize {
570    unimplemented!()
571}
572
573#[cfg(not(any(doc, all(target_arch = "arm", target_os = "none"))))]
574pub unsafe extern "C" fn hard_fault_handler_arm_v7m() {
575    unimplemented!()
576}