capsules_extra/apds9960.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Proximity SyscallDriver for the Adafruit APDS9960 gesture/ambient
//! light/proximity sensor.
//!
//! Datasheet:
//! <https://content.arduino.cc/assets/Nano_BLE_Sense_av02-4191en_ds_apds-9960.pdf>
//!
//! > The APDS-9960 device features advanced Gesture detection, Proximity
//! > detection, Digital Ambient Light Sense (ALS) and Color Sense (RGBC). The
//! > slim modular package, L 3.94 x W 2.36 x H 1.35 mm, incorporates an IR LED
//! > and factory calibrated LED driver for drop-in compatibility with existing
//! > footprints
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! let apds9960_i2c = static_init!(
//! capsules::virtual_i2c::I2CDevice,
//! capsules::virtual_i2c::I2CDevice::new(sensors_i2c_bus, 0x39)
//! );
//!
//! let apds9960 = static_init!(
//! capsules::apds9960::APDS9960<'static>,
//! capsules::apds9960::APDS9960::new(
//! apds9960_i2c,
//! &nrf52840::gpio::PORT[APDS9960_PIN],
//! &mut capsules::apds9960::BUFFER
//! )
//! );
//! apds9960_i2c.set_client(apds9960);
//! nrf52840::gpio::PORT[APDS9960_PIN].set_client(apds9960);
//!
//! let grant_cap = create_capability!(capabilities::MemoryAllocationCapability);
//!
//! let proximity = static_init!(
//! capsules::proximity::ProximitySensor<'static>,
//! capsules::proximity::ProximitySensor::new(apds9960 , board_kernel.create_grant(&grant_cap)));
//!
//! kernel::hil::sensors::ProximityDriver::set_client(apds9960, proximity);
//! ```
use core::cell::Cell;
use kernel::hil::gpio;
use kernel::hil::i2c;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;
// I2C Buffer of 16 bytes
pub const BUF_LEN: usize = 16;
// BUFFER Layout: [0,... , 12 , 13 , 14 , 15]
// ^take_meas() callback stored ^take_meas_int callback stored ^low thresh ^high thresh
// Common Register Masks
const PON: u8 = 1 << 0; // Power-On
const SAI: u8 = 1 << 4; // Sleep after Interrupt
const PEN: u8 = 1 << 2; // Proximity Sensor Enable
const PIEN: u8 = 1 << 5; // Proximity Sensor Enable
const PVALID: u8 = 1 << 1; // Proximity Reading Valid Bit
// Default Proximity Int Persistence (amount of times a prox reading can be within the interrupt-generating range before an int is actually fired;
// this is to prevent false triggers)
static PERS: u8 = 4;
// Device Registers
#[repr(u8)]
enum Registers {
ENABLE = 0x80,
ID = 0x92,
PILT = 0x89,
PIHT = 0x8B,
CONFIG3 = 0x9f,
PICCLR = 0xe5,
PERS = 0x8c,
PDATA = 0x9c,
CONTROLREG1 = 0x8f,
PROXPULSEREG = 0x8e,
STATUS = 0x93,
}
// States
#[derive(Clone, Copy, PartialEq)]
enum State {
ReadId,
/// States visited in take_measurement_on_interrupt() function
StartingProximity,
ConfiguringProximity1,
ConfiguringProximity2,
ConfiguringProximity3,
SendSAI, // Send sleep-after-interrupt bit to Config3 reg
PowerOn, // Send sensor activation and power on info to device
Idle, // Waiting for Data (interrupt)
PowerOff, // Sending power off command to device (to latch values in device data registers)
ReadData, // Read data from reg
/// States visited in take_measurement() function
TakeMeasurement1,
TakeMeasurement2,
TakeMeasurement3,
TakeMeasurement4,
/// States for optional chip functionality
SetPulse, // Set proximity pulse
SetLdrive, // Set LED Current for Prox and ALS sensors
Done, // Final state for take_measurement() state sequence
}
pub struct APDS9960<'a, I: i2c::I2CDevice> {
i2c: &'a I,
interrupt_pin: &'a dyn gpio::InterruptPin<'a>,
prox_callback: OptionalCell<&'a dyn kernel::hil::sensors::ProximityClient>,
state: Cell<State>,
buffer: TakeCell<'static, [u8]>,
}
impl<'a, I: i2c::I2CDevice> APDS9960<'a, I> {
pub fn new(
i2c: &'a I,
interrupt_pin: &'a dyn gpio::InterruptPin<'a>,
buffer: &'static mut [u8],
) -> APDS9960<'a, I> {
// setup and return struct
APDS9960 {
i2c,
interrupt_pin,
prox_callback: OptionalCell::empty(),
state: Cell::new(State::Idle),
buffer: TakeCell::new(buffer),
}
}
// Read I2C-based ID of device (should be 0xAB)
pub fn read_id(&self) -> Result<(), ErrorCode> {
if self.state.get() == State::Idle {
self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
self.i2c.enable();
buffer[0] = Registers::ID as u8;
match self.i2c.write_read(buffer, 1, 1) {
Ok(()) => {
self.state.set(State::ReadId); // Reading ID
Ok(())
}
Err((err, buffer)) => {
self.buffer.replace(buffer);
self.i2c.disable();
Err(err.into())
}
}
})
} else {
Err(ErrorCode::BUSY)
}
}
// Set Proximity Pulse Count and Length(1 = default)
pub fn set_proximity_pulse(&self, mut length: u8, mut count: u8) -> Result<(), ErrorCode> {
if self.state.get() == State::Idle {
self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
self.i2c.enable();
if length > 3 {
length = 3;
}
if count > 63 {
count = 63;
}
buffer[0] = Registers::PROXPULSEREG as u8;
buffer[1] = length << 6 | count;
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::SetPulse); // Send pulse control command to device
Ok(())
}
Err((err, buffer)) => {
self.buffer.replace(buffer);
self.i2c.disable();
Err(err.into())
}
}
})
} else {
Err(ErrorCode::BUSY)
}
}
// Set LED Current Strength (0 -> 100 mA , 3 --> 12.5 mA)
pub fn set_ldrive(&self, mut ldrive: u8) -> Result<(), ErrorCode> {
if self.state.get() == State::Idle {
self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
self.i2c.enable();
if ldrive > 3 {
ldrive = 3;
}
buffer[0] = Registers::CONTROLREG1 as u8;
buffer[1] = ldrive << 6;
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::SetLdrive); // Send LED Current Control gain
Ok(())
}
Err((err, buffer)) => {
self.buffer.replace(buffer);
self.i2c.disable();
Err(err.into())
}
}
})
} else {
Err(ErrorCode::BUSY)
}
}
// Take measurement immediately
pub fn take_measurement(&self) -> Result<(), ErrorCode> {
if self.state.get() == State::Idle {
// Enable power and proximity sensor
self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
self.i2c.enable();
buffer[0] = Registers::ENABLE as u8;
buffer[1] = PON | PEN;
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::TakeMeasurement1);
Ok(())
}
Err((err, buffer)) => {
self.buffer.replace(buffer);
self.i2c.disable();
Err(err.into())
}
}
})
} else {
Err(ErrorCode::BUSY)
}
}
// Take Simple proximity measurement with interrupt persistence set to 4; `low` and `high` indicate upper interrupt threshold values
// IC fires interrupt when (prox_reading < low) || (prox_reading > high)
pub fn take_measurement_on_interrupt(&self, low: u8, high: u8) -> Result<(), ErrorCode> {
if self.state.get() == State::Idle {
// Set threshold values
self.buffer.take().map(|buffer| {
// Save proximity thresholds to buffer unused space
buffer[14] = low;
buffer[15] = high;
self.buffer.replace(buffer);
});
// Configure interrupt pin
self.interrupt_pin.make_input();
self.interrupt_pin
.set_floating_state(gpio::FloatingState::PullUp);
self.interrupt_pin.disable_interrupts();
self.interrupt_pin
.enable_interrupts(gpio::InterruptEdge::FallingEdge);
self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
// Set the device to Sleep-After-Interrupt Mode
self.i2c.enable();
buffer[0] = Registers::CONFIG3 as u8;
buffer[1] = SAI;
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::SendSAI);
Ok(())
}
Err((err, buffer)) => {
self.buffer.replace(buffer);
self.i2c.disable();
Err(err.into())
}
}
})
} else {
Err(ErrorCode::BUSY)
}
}
}
impl<I: i2c::I2CDevice> i2c::I2CClient for APDS9960<'_, I> {
fn command_complete(&self, buffer: &'static mut [u8], _status: Result<(), i2c::Error>) {
match self.state.get() {
State::ReadId => {
// The ID is in `buffer[0]`, and should be 0xAB.
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Idle);
}
State::SendSAI => {
// Set persistence to 4
buffer[0] = Registers::PERS as u8;
buffer[1] = (PERS) << 4;
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::StartingProximity);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
State::StartingProximity => {
// Set low prox thresh to value in buffer
buffer[0] = Registers::PILT as u8;
buffer[1] = buffer[14];
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::ConfiguringProximity1);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
State::ConfiguringProximity1 => {
// Set high prox thresh to value in buffer
buffer[0] = Registers::PIHT as u8;
buffer[1] = buffer[15];
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::ConfiguringProximity2);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
State::ConfiguringProximity2 => {
// Clear proximity interrupt.
buffer[0] = Registers::PICCLR as u8;
match self.i2c.write(buffer, 1) {
Ok(()) => {
self.state.set(State::ConfiguringProximity3);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
State::ConfiguringProximity3 => {
// Enable Device
buffer[0] = Registers::ENABLE as u8;
buffer[1] = PON | PEN | PIEN;
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::PowerOn);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
State::PowerOn => {
// Go into idle state and wait for interrupt for data
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Idle);
}
State::ReadData => {
// read prox_data from buffer and return it in callback
buffer[13] = buffer[0]; // save callback to an unused place in buffer
// Clear proximity interrupt
buffer[0] = Registers::PICCLR as u8;
match self.i2c.write(buffer, 1) {
Ok(()) => {
self.interrupt_pin.disable_interrupts();
self.state.set(State::PowerOff);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
State::PowerOff => {
// Deactivate the device
buffer[0] = Registers::ENABLE as u8;
buffer[1] = 0_u8;
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::Done);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
State::Done => {
// Return to IDLE and perform callback
let prox_data: u8 = buffer[13];
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Idle);
self.prox_callback.map(|cb| cb.callback(prox_data));
}
State::TakeMeasurement1 => {
// Read status reg
buffer[0] = Registers::STATUS as u8;
match self.i2c.write_read(buffer, 1, 1) {
Ok(()) => {
self.state.set(State::TakeMeasurement2);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
State::TakeMeasurement2 => {
// Determine if prox data is valid by checking PVALID bit in status reg
let status_reg: u8 = buffer[0];
if status_reg & PVALID > 0 {
buffer[0] = Registers::PDATA as u8;
match self.i2c.write_read(buffer, 1, 1) {
Ok(()) => {
self.state.set(State::TakeMeasurement3);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
} else {
// If not valid then keep rechecking status reg
buffer[0] = Registers::STATUS as u8;
match self.i2c.write_read(buffer, 1, 1) {
Ok(()) => {
self.state.set(State::TakeMeasurement2);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
}
State::TakeMeasurement3 => {
buffer[12] = buffer[0]; // Save callback value
// Reset callback value
buffer[0] = Registers::ENABLE as u8;
buffer[1] = 0;
match self.i2c.write(buffer, 2) {
Ok(()) => {
self.state.set(State::TakeMeasurement4);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.state.set(State::Idle);
self.i2c.disable();
}
}
}
State::TakeMeasurement4 => {
// Return to IDLE and perform callback
let prox_data: u8 = buffer[12]; // Get callback value
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Idle);
self.prox_callback.map(|cb| cb.callback(prox_data));
}
State::SetPulse => {
// Return to IDLE
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Idle);
}
State::SetLdrive => {
// Return to IDLE
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Idle);
}
_ => {}
}
}
}
/// Interrupt Service Routine
impl<I: i2c::I2CDevice> gpio::Client for APDS9960<'_, I> {
fn fired(&self) {
self.buffer.take().map(|buffer| {
// Read value in PDATA reg
self.i2c.enable();
buffer[0] = Registers::PDATA as u8;
match self.i2c.write_read(buffer, 1, 1) {
Ok(()) => {
self.state.set(State::ReadData);
}
Err((_err, buffer)) => {
self.buffer.replace(buffer);
self.i2c.disable();
}
}
});
}
}
/// Proximity Driver Trait Implementation
impl<'a, I: i2c::I2CDevice> kernel::hil::sensors::ProximityDriver<'a> for APDS9960<'a, I> {
fn read_proximity(&self) -> Result<(), ErrorCode> {
self.take_measurement()
}
fn read_proximity_on_interrupt(&self, low: u8, high: u8) -> Result<(), ErrorCode> {
self.take_measurement_on_interrupt(low, high)
}
fn set_client(&self, client: &'a dyn kernel::hil::sensors::ProximityClient) {
self.prox_callback.set(client);
}
}