capsules_extra/
apds9960.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Proximity SyscallDriver for the Adafruit APDS9960 gesture/ambient
//! light/proximity sensor.
//!
//! Datasheet:
//! <https://content.arduino.cc/assets/Nano_BLE_Sense_av02-4191en_ds_apds-9960.pdf>
//!
//! > The APDS-9960 device features advanced Gesture detection, Proximity
//! > detection, Digital Ambient Light Sense (ALS) and Color Sense (RGBC). The
//! > slim modular package, L 3.94 x W 2.36 x H 1.35 mm, incorporates an IR LED
//! > and factory calibrated LED driver for drop-in compatibility with existing
//! > footprints
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! let apds9960_i2c = static_init!(
//!    capsules::virtual_i2c::I2CDevice,
//!    capsules::virtual_i2c::I2CDevice::new(sensors_i2c_bus, 0x39)
//! );
//!
//! let apds9960 = static_init!(
//!    capsules::apds9960::APDS9960<'static>,
//!    capsules::apds9960::APDS9960::new(
//!        apds9960_i2c,
//!        &nrf52840::gpio::PORT[APDS9960_PIN],
//!        &mut capsules::apds9960::BUFFER
//!    )
//! );
//! apds9960_i2c.set_client(apds9960);
//! nrf52840::gpio::PORT[APDS9960_PIN].set_client(apds9960);
//!
//! let grant_cap = create_capability!(capabilities::MemoryAllocationCapability);
//!
//! let proximity = static_init!(
//!    capsules::proximity::ProximitySensor<'static>,
//!    capsules::proximity::ProximitySensor::new(apds9960 , board_kernel.create_grant(&grant_cap)));
//!
//! kernel::hil::sensors::ProximityDriver::set_client(apds9960, proximity);
//! ```

use core::cell::Cell;
use kernel::hil::gpio;
use kernel::hil::i2c;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;

// I2C Buffer of 16 bytes
pub const BUF_LEN: usize = 16;

// BUFFER Layout:  [0,...  ,   12                            , 13               ,                   14                ,   15]
//                             ^take_meas() callback stored    ^take_meas_int callback stored       ^low thresh           ^high thresh

// Common Register Masks
const PON: u8 = 1 << 0; // Power-On
const SAI: u8 = 1 << 4; // Sleep after Interrupt
const PEN: u8 = 1 << 2; // Proximity Sensor Enable
const PIEN: u8 = 1 << 5; // Proximity Sensor Enable
const PVALID: u8 = 1 << 1; // Proximity Reading Valid Bit

// Default Proximity Int Persistence  (amount of times a prox reading can be within the interrupt-generating range before an int is actually fired;
// this is to prevent false triggers)
static PERS: u8 = 4;

// Device Registers
#[repr(u8)]
enum Registers {
    ENABLE = 0x80,
    ID = 0x92,
    PILT = 0x89,
    PIHT = 0x8B,
    CONFIG3 = 0x9f,
    PICCLR = 0xe5,
    PERS = 0x8c,
    PDATA = 0x9c,
    CONTROLREG1 = 0x8f,
    PROXPULSEREG = 0x8e,
    STATUS = 0x93,
}

// States
#[derive(Clone, Copy, PartialEq)]
enum State {
    ReadId,

    /// States visited in take_measurement_on_interrupt() function
    StartingProximity,
    ConfiguringProximity1,
    ConfiguringProximity2,
    ConfiguringProximity3,
    SendSAI,  // Send sleep-after-interrupt bit to Config3 reg
    PowerOn,  // Send sensor activation and power on info to device
    Idle,     // Waiting for Data (interrupt)
    PowerOff, // Sending power off command to device (to latch values in device data registers)
    ReadData, // Read data from reg

    /// States visited in take_measurement() function
    TakeMeasurement1,
    TakeMeasurement2,
    TakeMeasurement3,
    TakeMeasurement4,

    /// States for optional chip functionality
    SetPulse, // Set proximity pulse
    SetLdrive, // Set LED Current for Prox and ALS sensors
    Done,      // Final state for take_measurement() state sequence
}

pub struct APDS9960<'a, I: i2c::I2CDevice> {
    i2c: &'a I,
    interrupt_pin: &'a dyn gpio::InterruptPin<'a>,
    prox_callback: OptionalCell<&'a dyn kernel::hil::sensors::ProximityClient>,
    state: Cell<State>,
    buffer: TakeCell<'static, [u8]>,
}

impl<'a, I: i2c::I2CDevice> APDS9960<'a, I> {
    pub fn new(
        i2c: &'a I,
        interrupt_pin: &'a dyn gpio::InterruptPin<'a>,
        buffer: &'static mut [u8],
    ) -> APDS9960<'a, I> {
        // setup and return struct
        APDS9960 {
            i2c,
            interrupt_pin,
            prox_callback: OptionalCell::empty(),
            state: Cell::new(State::Idle),
            buffer: TakeCell::new(buffer),
        }
    }

    // Read I2C-based ID of device (should be 0xAB)
    pub fn read_id(&self) -> Result<(), ErrorCode> {
        if self.state.get() == State::Idle {
            self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
                self.i2c.enable();

                buffer[0] = Registers::ID as u8;

                match self.i2c.write_read(buffer, 1, 1) {
                    Ok(()) => {
                        self.state.set(State::ReadId); // Reading ID
                        Ok(())
                    }
                    Err((err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.i2c.disable();
                        Err(err.into())
                    }
                }
            })
        } else {
            Err(ErrorCode::BUSY)
        }
    }

    // Set Proximity Pulse Count and Length(1 = default)
    pub fn set_proximity_pulse(&self, mut length: u8, mut count: u8) -> Result<(), ErrorCode> {
        if self.state.get() == State::Idle {
            self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
                self.i2c.enable();

                if length > 3 {
                    length = 3;
                }
                if count > 63 {
                    count = 63;
                }

                buffer[0] = Registers::PROXPULSEREG as u8;
                buffer[1] = length << 6 | count;

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::SetPulse); // Send pulse control command to device
                        Ok(())
                    }
                    Err((err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.i2c.disable();
                        Err(err.into())
                    }
                }
            })
        } else {
            Err(ErrorCode::BUSY)
        }
    }

    // Set LED Current Strength (0 -> 100 mA , 3 --> 12.5 mA)
    pub fn set_ldrive(&self, mut ldrive: u8) -> Result<(), ErrorCode> {
        if self.state.get() == State::Idle {
            self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
                self.i2c.enable();

                if ldrive > 3 {
                    ldrive = 3;
                }

                buffer[0] = Registers::CONTROLREG1 as u8;
                buffer[1] = ldrive << 6;

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::SetLdrive); // Send LED Current Control gain
                        Ok(())
                    }
                    Err((err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.i2c.disable();
                        Err(err.into())
                    }
                }
            })
        } else {
            Err(ErrorCode::BUSY)
        }
    }

    // Take measurement immediately
    pub fn take_measurement(&self) -> Result<(), ErrorCode> {
        if self.state.get() == State::Idle {
            // Enable power and proximity sensor
            self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
                self.i2c.enable();

                buffer[0] = Registers::ENABLE as u8;
                buffer[1] = PON | PEN;

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::TakeMeasurement1);
                        Ok(())
                    }
                    Err((err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.i2c.disable();
                        Err(err.into())
                    }
                }
            })
        } else {
            Err(ErrorCode::BUSY)
        }
    }

    // Take Simple proximity measurement with interrupt persistence set to 4; `low` and `high` indicate upper interrupt threshold values
    // IC fires interrupt when (prox_reading < low) || (prox_reading > high)
    pub fn take_measurement_on_interrupt(&self, low: u8, high: u8) -> Result<(), ErrorCode> {
        if self.state.get() == State::Idle {
            // Set threshold values
            self.buffer.take().map(|buffer| {
                // Save proximity thresholds to buffer unused space
                buffer[14] = low;
                buffer[15] = high;

                self.buffer.replace(buffer);
            });

            // Configure interrupt pin
            self.interrupt_pin.make_input();
            self.interrupt_pin
                .set_floating_state(gpio::FloatingState::PullUp);
            self.interrupt_pin.disable_interrupts();
            self.interrupt_pin
                .enable_interrupts(gpio::InterruptEdge::FallingEdge);

            self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
                // Set the device to Sleep-After-Interrupt Mode
                self.i2c.enable();

                buffer[0] = Registers::CONFIG3 as u8;
                buffer[1] = SAI;

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::SendSAI);
                        Ok(())
                    }
                    Err((err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.i2c.disable();
                        Err(err.into())
                    }
                }
            })
        } else {
            Err(ErrorCode::BUSY)
        }
    }
}

impl<I: i2c::I2CDevice> i2c::I2CClient for APDS9960<'_, I> {
    fn command_complete(&self, buffer: &'static mut [u8], _status: Result<(), i2c::Error>) {
        match self.state.get() {
            State::ReadId => {
                // The ID is in `buffer[0]`, and should be 0xAB.
                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Idle);
            }
            State::SendSAI => {
                // Set persistence to 4
                buffer[0] = Registers::PERS as u8;
                buffer[1] = (PERS) << 4;

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::StartingProximity);
                    }
                    Err((_err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.state.set(State::Idle);
                        self.i2c.disable();
                    }
                }
            }
            State::StartingProximity => {
                // Set low prox thresh to value in buffer
                buffer[0] = Registers::PILT as u8;
                buffer[1] = buffer[14];

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::ConfiguringProximity1);
                    }
                    Err((_err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.state.set(State::Idle);
                        self.i2c.disable();
                    }
                }
            }
            State::ConfiguringProximity1 => {
                // Set high prox thresh to value in buffer
                buffer[0] = Registers::PIHT as u8;
                buffer[1] = buffer[15];

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::ConfiguringProximity2);
                    }
                    Err((_err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.state.set(State::Idle);
                        self.i2c.disable();
                    }
                }
            }
            State::ConfiguringProximity2 => {
                // Clear proximity interrupt.
                buffer[0] = Registers::PICCLR as u8;

                match self.i2c.write(buffer, 1) {
                    Ok(()) => {
                        self.state.set(State::ConfiguringProximity3);
                    }
                    Err((_err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.state.set(State::Idle);
                        self.i2c.disable();
                    }
                }
            }
            State::ConfiguringProximity3 => {
                // Enable Device
                buffer[0] = Registers::ENABLE as u8;
                buffer[1] = PON | PEN | PIEN;

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::PowerOn);
                    }
                    Err((_err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.state.set(State::Idle);
                        self.i2c.disable();
                    }
                }
            }
            State::PowerOn => {
                // Go into idle state and wait for interrupt for data
                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Idle);
            }
            State::ReadData => {
                // read prox_data from buffer and return it in callback
                buffer[13] = buffer[0]; // save callback to an unused place in buffer

                // Clear proximity interrupt
                buffer[0] = Registers::PICCLR as u8;

                match self.i2c.write(buffer, 1) {
                    Ok(()) => {
                        self.interrupt_pin.disable_interrupts();
                        self.state.set(State::PowerOff);
                    }
                    Err((_err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.state.set(State::Idle);
                        self.i2c.disable();
                    }
                }
            }
            State::PowerOff => {
                // Deactivate the device

                buffer[0] = Registers::ENABLE as u8;
                buffer[1] = 0_u8;

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::Done);
                    }
                    Err((_err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.state.set(State::Idle);
                        self.i2c.disable();
                    }
                }
            }
            State::Done => {
                // Return to IDLE and perform callback
                let prox_data: u8 = buffer[13];

                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Idle);

                self.prox_callback.map(|cb| cb.callback(prox_data));
            }
            State::TakeMeasurement1 => {
                // Read status reg
                buffer[0] = Registers::STATUS as u8;

                match self.i2c.write_read(buffer, 1, 1) {
                    Ok(()) => {
                        self.state.set(State::TakeMeasurement2);
                    }
                    Err((_err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.state.set(State::Idle);
                        self.i2c.disable();
                    }
                }
            }
            State::TakeMeasurement2 => {
                // Determine if prox data is valid by checking PVALID bit in status reg

                let status_reg: u8 = buffer[0];

                if status_reg & PVALID > 0 {
                    buffer[0] = Registers::PDATA as u8;

                    match self.i2c.write_read(buffer, 1, 1) {
                        Ok(()) => {
                            self.state.set(State::TakeMeasurement3);
                        }
                        Err((_err, buffer)) => {
                            self.buffer.replace(buffer);
                            self.state.set(State::Idle);
                            self.i2c.disable();
                        }
                    }
                } else {
                    // If not valid then keep rechecking status reg
                    buffer[0] = Registers::STATUS as u8;

                    match self.i2c.write_read(buffer, 1, 1) {
                        Ok(()) => {
                            self.state.set(State::TakeMeasurement2);
                        }
                        Err((_err, buffer)) => {
                            self.buffer.replace(buffer);
                            self.state.set(State::Idle);
                            self.i2c.disable();
                        }
                    }
                }
            }
            State::TakeMeasurement3 => {
                buffer[12] = buffer[0]; // Save callback value

                // Reset callback value
                buffer[0] = Registers::ENABLE as u8;
                buffer[1] = 0;

                match self.i2c.write(buffer, 2) {
                    Ok(()) => {
                        self.state.set(State::TakeMeasurement4);
                    }
                    Err((_err, buffer)) => {
                        self.buffer.replace(buffer);
                        self.state.set(State::Idle);
                        self.i2c.disable();
                    }
                }
            }
            State::TakeMeasurement4 => {
                // Return to IDLE and perform callback

                let prox_data: u8 = buffer[12]; // Get callback value
                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Idle);

                self.prox_callback.map(|cb| cb.callback(prox_data));
            }

            State::SetPulse => {
                // Return to IDLE
                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Idle);
            }
            State::SetLdrive => {
                // Return to IDLE
                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Idle);
            }

            _ => {}
        }
    }
}

/// Interrupt Service Routine
impl<I: i2c::I2CDevice> gpio::Client for APDS9960<'_, I> {
    fn fired(&self) {
        self.buffer.take().map(|buffer| {
            // Read value in PDATA reg
            self.i2c.enable();

            buffer[0] = Registers::PDATA as u8;

            match self.i2c.write_read(buffer, 1, 1) {
                Ok(()) => {
                    self.state.set(State::ReadData);
                }
                Err((_err, buffer)) => {
                    self.buffer.replace(buffer);
                    self.i2c.disable();
                }
            }
        });
    }
}

/// Proximity Driver Trait Implementation
impl<'a, I: i2c::I2CDevice> kernel::hil::sensors::ProximityDriver<'a> for APDS9960<'a, I> {
    fn read_proximity(&self) -> Result<(), ErrorCode> {
        self.take_measurement()
    }

    fn read_proximity_on_interrupt(&self, low: u8, high: u8) -> Result<(), ErrorCode> {
        self.take_measurement_on_interrupt(low, high)
    }

    fn set_client(&self, client: &'a dyn kernel::hil::sensors::ProximityClient) {
        self.prox_callback.set(client);
    }
}