stm32f4xx/adc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
use crate::clocks::{phclk, Stm32f4Clocks};
use core::cell::Cell;
use kernel::hil;
use kernel::platform::chip::ClockInterface;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable};
use kernel::utilities::registers::{register_bitfields, ReadOnly, ReadWrite};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
#[repr(C)]
struct AdcRegisters {
sr: ReadWrite<u32, SR::Register>,
cr1: ReadWrite<u32, CR1::Register>,
cr2: ReadWrite<u32, CR2::Register>,
smpr1: ReadWrite<u32, SMPR1::Register>,
smpr2: ReadWrite<u32, SMPR2::Register>,
jofr1: ReadWrite<u32, JOFR::Register>,
jofr2: ReadWrite<u32, JOFR::Register>,
jofr3: ReadWrite<u32, JOFR::Register>,
jofr4: ReadWrite<u32, JOFR::Register>,
htr: ReadWrite<u32, HTR::Register>,
ltr: ReadWrite<u32, LTR::Register>,
sqr1: ReadWrite<u32, SQR1::Register>,
sqr2: ReadWrite<u32, SQR2::Register>,
sqr3: ReadWrite<u32, SQR3::Register>,
jsqr: ReadWrite<u32, JSQR::Register>,
jdr1: ReadOnly<u32, JDR::Register>,
jdr2: ReadOnly<u32, JDR::Register>,
jdr3: ReadOnly<u32, JDR::Register>,
jdr4: ReadOnly<u32, JDR::Register>,
dr: ReadOnly<u32, DR::Register>,
}
#[repr(C)]
struct AdcCommonRegisters {
csr: ReadOnly<u32, CSR::Register>,
ccr: ReadWrite<u32, CCR::Register>,
}
register_bitfields![u32,
/// Status register
SR [
/// Overrun
OVR OFFSET(5) NUMBITS(1) [],
/// Regular channel start flag
STRT OFFSET(4) NUMBITS(1) [],
/// Injected channel start flag
JSTRT OFFSET(3) NUMBITS(1) [],
/// Injected channel end of conversion
JEOC OFFSET(2) NUMBITS(1) [],
/// Regular channel end of conversion
EOC OFFSET(1) NUMBITS(1) [],
/// Analog watchdog flag
AWD OFFSET(0) NUMBITS(1) []
],
/// Control register 1
CR1 [
/// Overrun interrupt enable
OVRIE OFFSET(26) NUMBITS(1) [],
/// Resolution
RES OFFSET(24) NUMBITS(2) [],
/// Analog watchdog enable on regular channels
AWDEN OFFSET(23) NUMBITS(1) [],
/// Analog watchdog enable on injected channels
JAWDEN OFFSET(22) NUMBITS(1) [],
/// Discontinuous mode channel count
DISCNUM OFFSET(13) NUMBITS(3) [],
/// Discontinuous mode on injected channels
JDISCEN OFFSET(12) NUMBITS(1) [],
/// Discontinuous mode on regular channels
DISCEN OFFSET(11) NUMBITS(1) [],
/// Automatic injected group conversion
JAUTO OFFSET(10) NUMBITS(1) [],
/// Enable the watchdog on a single channel in scan mode
AWDSGL OFFSET(9) NUMBITS(1) [],
/// Scan mode
SCAN OFFSET(8) NUMBITS(1) [],
/// Interrupt enable for injected channels
JEOCIE OFFSET(7) NUMBITS(1) [],
/// Analog watchdog interrupt enable
AWDIE OFFSET(6) NUMBITS(1) [],
/// Interrupt enable for EOC
EOCIE OFFSET(5) NUMBITS(1) [],
/// Analog watchdog channel select bits
AWDCH OFFSET(0) NUMBITS(4) []
],
/// Control register 2
CR2 [
/// Start conversion of regular channels
SWSTART OFFSET(30) NUMBITS(1) [],
/// External trigger enable for regular channels
EXTEN OFFSET(28) NUMBITS(2) [],
/// External event select for regular group
EXTSEL OFFSET(24) NUMBITS(4) [],
/// Start conversion of injected channels
JSWSTART OFFSET(22) NUMBITS(1) [],
/// External trigger enable for injected channels
JEXTEN OFFSET(20) NUMBITS(2) [],
/// External event select for injected group
JEXTSEL OFFSET(16) NUMBITS(4) [],
/// Data alignment
ALIGN OFFSET(11) NUMBITS(1) [],
/// End of conversion selection
EOCS OFFSET(10) NUMBITS(1) [],
/// DMA disable selection (for single ADC mode)
DDS OFFSET(9) NUMBITS(1) [],
/// Direct memory access mode (for single ADC mode)
DMA OFFSET(8) NUMBITS(1) [],
/// Continuous conversion
CONT OFFSET(1) NUMBITS(1) [],
/// A/D Converter ON / OFF
ADON OFFSET(0) NUMBITS(1) []
],
/// Sample time register 1
SMPR1 [
/// Channel x sampling time selection
SMP18 OFFSET(24) NUMBITS(3) [],
SMP17 OFFSET(21) NUMBITS(3) [],
SMP16 OFFSET(18) NUMBITS(3) [],
SMP15 OFFSET(15) NUMBITS(3) [],
SMP14 OFFSET(12) NUMBITS(3) [],
SMP13 OFFSET(9) NUMBITS(3) [],
SMP12 OFFSET(6) NUMBITS(3) [],
SMP11 OFFSET(3) NUMBITS(3) [],
SMP10 OFFSET(0) NUMBITS(3) []
],
/// Sample time register 2
SMPR2 [
/// Channel x sampling time selection
SMP9 OFFSET(27) NUMBITS(3) [],
SMP8 OFFSET(24) NUMBITS(3) [],
SMP7 OFFSET(21) NUMBITS(3) [],
SMP6 OFFSET(18) NUMBITS(3) [],
SMP5 OFFSET(15) NUMBITS(3) [],
SMP4 OFFSET(12) NUMBITS(3) [],
SMP3 OFFSET(9) NUMBITS(3) [],
SMP2 OFFSET(6) NUMBITS(3) [],
SMP1 OFFSET(3) NUMBITS(3) [],
SMP0 OFFSET(0) NUMBITS(3) []
],
/// injected channel data offsetregister x
JOFR [
/// Data offsetfor injected channel x
JOFFSET OFFSET(0) NUMBITS(12) []
],
/// Watchdog higher threshold register
HTR [
/// Analog watchdog higher threshold
HT OFFSET(0) NUMBITS(12) []
],
/// Watchdog lower threshold register
LTR [
/// Analog watchdog lower threshold
LT OFFSET(0) NUMBITS(12) []
],
/// Regular sequence register 1
SQR1 [
/// Regular channel sequence length
L OFFSET(20) NUMBITS(3) [],
/// 16th conversion in regular sequence
SQ16 OFFSET(15) NUMBITS(5) [],
/// 15th conversion in regular sequence
SQ15 OFFSET(10) NUMBITS(5) [],
/// 14th conversion in regular sequence
SQ14 OFFSET(5) NUMBITS(5) [],
/// 13th conversion in regular sequence
SQ13 OFFSET(0) NUMBITS(5) []
],
/// Regular sequence register 2
SQR2 [
/// 12th conversion in regular sequence
SQ12 OFFSET(25) NUMBITS(5) [],
/// 11th conversion in regular sequence
SQ11 OFFSET(20) NUMBITS(5) [],
/// 10th conversion in regular sequence
SQ10 OFFSET(15) NUMBITS(5) [],
/// 9th conversion in regular sequence
SQ9 OFFSET(10) NUMBITS(5) [],
/// 8th conversion in regular sequence
SQ8 OFFSET(5) NUMBITS(5) [],
/// 7th conversion in regular sequence
SQ7 OFFSET(0) NUMBITS(5) []
],
/// Regular sequence register 3
SQR3 [
/// 6th conversion in regular sequence
SQ6 OFFSET(25) NUMBITS(5) [],
/// 5th conversion in regular sequence
SQ5 OFFSET(20) NUMBITS(5) [],
/// 4th conversion in regular sequence
SQ4 OFFSET(15) NUMBITS(5) [],
/// 3rd conversion in regular sequence
SQ3 OFFSET(10) NUMBITS(5) [],
/// 2nd conversion in regular sequence
SQ2 OFFSET(5) NUMBITS(5) [],
/// 1st conversion in regular sequence
SQ1 OFFSET(0) NUMBITS(5) []
],
/// Injected sequence register
JSQR [
/// Note: When JL[1:0]=3 (4 injected conversions in the sequencer), the ADC converts the channels
/// in the following order: JSQ1[4:0], JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].
/// When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in the
/// following order: JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].
/// When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in
/// starting from JSQ3[4:0], and then JSQ4[4:0].
/// When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0]
/// channel.
/// Injected sequence length
JL OFFSET(20) NUMBITS(2) [],
/// 4th conversion in injected sequence
JSQ4 OFFSET(15) NUMBITS(5) [],
/// 3rd conversion in injected sequence
JSQ3 OFFSET(15) NUMBITS(5) [],
/// 2nd conversion in injected sequence
JSQ2 OFFSET(15) NUMBITS(5) [],
/// 1st conversion in injected sequence
JSQ1 OFFSET(15) NUMBITS(5) []
],
/// Injected data register x
JDR [
/// Injected data
JDATA OFFSET(0) NUMBITS(16) []
],
/// Regular data register
DR [
/// Regular data
DATA OFFSET(0) NUMBITS(16) []
],
/// Common status register
CSR [
/// Overrun flag of ADC1
OVR1 OFFSET(5) NUMBITS(1) [],
/// Regular channel Start flag of ADC1
STRT1 OFFSET(4) NUMBITS(1) [],
/// Injected channel Start flag of ADC1
JSTRT1 OFFSET(3) NUMBITS(1) [],
/// Injected channel end of conversion of ADC1
JEOC1 OFFSET(2) NUMBITS(1) [],
/// End of conversion of ADC1
EOC1 OFFSET(1) NUMBITS(1) [],
/// Analog watchdog flag of ADC1
AWD1 OFFSET(0) NUMBITS(1) []
],
/// Common control register
CCR [
/// Temperature sensor and VREFINT enable
TSVREFE OFFSET(23) NUMBITS(1) [],
/// VBAT enable
VBATE OFFSET(22) NUMBITS(1) [],
/// ADC prescaler
ADCPRE OFFSET(16) NUMBITS(2) []
]
];
const ADC1_BASE: StaticRef<AdcRegisters> =
unsafe { StaticRef::new(0x4001_2000 as *const AdcRegisters) };
const ADC_COMMON_BASE: StaticRef<AdcCommonRegisters> =
unsafe { StaticRef::new(0x4001_2300 as *const AdcCommonRegisters) };
#[allow(dead_code)]
#[repr(u32)]
#[derive(Copy, Clone, PartialEq)]
pub enum Channel {
Channel0 = 0b00000,
Channel1 = 0b00001,
Channel2 = 0b00010,
Channel3 = 0b00011,
Channel4 = 0b00100,
Channel5 = 0b00101,
Channel6 = 0b00110,
Channel7 = 0b00111,
Channel8 = 0b01000,
Channel9 = 0b01001,
Channel10 = 0b01010,
Channel11 = 0b01011,
Channel12 = 0b01100,
Channel13 = 0b01101,
Channel14 = 0b01110,
Channel15 = 0b01111,
Channel16 = 0b10000,
Channel17 = 0b10001,
Channel18 = 0b10010,
}
#[allow(dead_code)]
#[repr(u32)]
enum DataResolution {
Bit12 = 0b00,
Bit10 = 0b01,
Bit8 = 0b10,
Bit6 = 0b11,
}
#[derive(Copy, Clone, PartialEq)]
enum ADCStatus {
Idle,
Off,
OneSample,
}
pub struct Adc<'a> {
registers: StaticRef<AdcRegisters>,
common_registers: StaticRef<AdcCommonRegisters>,
clock: AdcClock<'a>,
status: Cell<ADCStatus>,
client: OptionalCell<&'a dyn hil::adc::Client>,
}
impl<'a> Adc<'a> {
pub const fn new(clocks: &'a dyn Stm32f4Clocks) -> Self {
Self {
registers: ADC1_BASE,
common_registers: ADC_COMMON_BASE,
clock: AdcClock(phclk::PeripheralClock::new(
phclk::PeripheralClockType::APB2(phclk::PCLK2::ADC1),
clocks,
)),
status: Cell::new(ADCStatus::Off),
client: OptionalCell::empty(),
}
}
pub fn enable(&self) {
// Enable adc clock
self.enable_clock();
// Enable ADC
self.registers.cr2.modify(CR2::ADON::SET);
// set idle state
self.status.set(ADCStatus::Idle);
}
pub fn handle_interrupt(&self) {
// Check if regular group conversion ended
if self.registers.sr.is_set(SR::EOC) {
// Clear interrupt
self.registers.cr1.modify(CR1::EOCIE::CLEAR);
if self.status.get() == ADCStatus::OneSample {
// set state
self.status.set(ADCStatus::Idle);
}
self.client
.map(|client| client.sample_ready((self.registers.dr.read(DR::DATA) as u16) << 4));
}
}
pub fn is_enabled_clock(&self) -> bool {
self.clock.is_enabled()
}
pub fn enable_clock(&self) {
self.clock.enable();
}
pub fn disable_clock(&self) {
self.clock.disable();
}
pub fn enable_temperature(&self) {
self.common_registers.ccr.modify(CCR::TSVREFE::SET);
}
}
struct AdcClock<'a>(phclk::PeripheralClock<'a>);
impl ClockInterface for AdcClock<'_> {
fn is_enabled(&self) -> bool {
self.0.is_enabled()
}
fn enable(&self) {
self.0.enable();
}
fn disable(&self) {
self.0.disable();
}
}
impl<'a> hil::adc::Adc<'a> for Adc<'a> {
type Channel = Channel;
fn sample(&self, channel: &Self::Channel) -> Result<(), ErrorCode> {
if self.status.get() == ADCStatus::Off {
self.enable();
}
if *channel as u32 == 18 {
self.enable_temperature();
}
if self.status.get() == ADCStatus::Idle {
self.status.set(ADCStatus::OneSample);
self.registers.sqr1.modify(SQR1::L.val(0b0000));
self.registers.sqr3.modify(SQR3::SQ1.val(*channel as u32));
self.registers.cr1.modify(CR1::EOCIE::SET);
self.registers.cr2.modify(CR2::SWSTART::SET);
Ok(())
} else {
Err(ErrorCode::BUSY)
}
}
fn sample_continuous(
&self,
_channel: &Self::Channel,
_frequency: u32,
) -> Result<(), ErrorCode> {
Err(ErrorCode::NOSUPPORT)
}
fn stop_sampling(&self) -> Result<(), ErrorCode> {
Err(ErrorCode::NOSUPPORT)
}
fn get_resolution_bits(&self) -> usize {
12
}
fn get_voltage_reference_mv(&self) -> Option<usize> {
Some(3300)
}
fn set_client(&self, client: &'a dyn hil::adc::Client) {
self.client.set(client);
}
}
/// Not yet supported
impl<'a> hil::adc::AdcHighSpeed<'a> for Adc<'a> {
/// Capture buffered samples from the ADC continuously at a given
/// frequency, calling the client whenever a buffer fills up. The client is
/// then expected to either stop sampling or provide an additional buffer
/// to sample into. Note that due to hardware constraints the maximum
/// frequency range of the ADC is from 187 kHz to 23 Hz (although its
/// precision is limited at higher frequencies due to aliasing).
///
/// - `channel`: the ADC channel to sample
/// - `frequency`: frequency to sample at
/// - `buffer1`: first buffer to fill with samples
/// - `length1`: number of samples to collect (up to buffer length)
/// - `buffer2`: second buffer to fill once the first is full
/// - `length2`: number of samples to collect (up to buffer length)
fn sample_highspeed(
&self,
_channel: &Self::Channel,
_frequency: u32,
buffer1: &'static mut [u16],
_length1: usize,
buffer2: &'static mut [u16],
_length2: usize,
) -> Result<(), (ErrorCode, &'static mut [u16], &'static mut [u16])> {
Err((ErrorCode::NOSUPPORT, buffer1, buffer2))
}
/// Provide a new buffer to send on-going buffered continuous samples to.
/// This is expected to be called after the `samples_ready` callback.
///
/// - `buf`: buffer to fill with samples
/// - `length`: number of samples to collect (up to buffer length)
fn provide_buffer(
&self,
buf: &'static mut [u16],
_length: usize,
) -> Result<(), (ErrorCode, &'static mut [u16])> {
Err((ErrorCode::NOSUPPORT, buf))
}
/// Reclaim buffers after the ADC is stopped.
/// This is expected to be called after `stop_sampling`.
fn retrieve_buffers(
&self,
) -> Result<(Option<&'static mut [u16]>, Option<&'static mut [u16]>), ErrorCode> {
Err(ErrorCode::NOSUPPORT)
}
fn set_highspeed_client(&self, _client: &'a dyn hil::adc::HighSpeedClient) {}
}