litex/gpio.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! LiteX Tristate GPIO controller
//!
//! Hardware source and documentation available at
//! [`litex/soc/cores/gpio.py`](https://github.com/enjoy-digital/litex/blob/master/litex/soc/cores/gpio.py).
use core::cell::Cell;
use core::mem;
use kernel::hil;
use kernel::utilities::cells::MapCell;
use kernel::utilities::StaticRef;
use crate::event_manager::LiteXEventManager;
use crate::litex_registers::{LiteXSoCRegisterConfiguration, Read, Write};
// TODO: Make the register width adaptable, perhaps by another trait
// with the integer type as an associated type?
type LiteXGPIOEV<'a, R> = LiteXEventManager<
'a,
u32,
<R as LiteXSoCRegisterConfiguration>::ReadOnly32,
<R as LiteXSoCRegisterConfiguration>::ReadWrite32,
<R as LiteXSoCRegisterConfiguration>::ReadWrite32,
>;
/// [`LiteXGPIOController`] register layout
#[repr(C)]
pub struct LiteXGPIORegisters<R: LiteXSoCRegisterConfiguration> {
gpio_output_enable: R::ReadWrite32,
gpio_input: R::ReadOnly32,
gpio_output: R::ReadWrite32,
gpio_mode: R::ReadWrite32,
gpio_edge: R::ReadWrite32,
gpio_ev_status: R::ReadOnly32,
gpio_ev_pending: R::ReadWrite32,
gpio_ev_enable: R::ReadWrite32,
}
impl<R: LiteXSoCRegisterConfiguration> LiteXGPIORegisters<R> {
fn ev(&self) -> LiteXGPIOEV<'_, R> {
LiteXGPIOEV::<R>::new(
&self.gpio_ev_status,
&self.gpio_ev_pending,
&self.gpio_ev_enable,
)
}
}
/// LiteX Tristate GPIO controller core
pub struct LiteXGPIOController<'client, R: LiteXSoCRegisterConfiguration> {
regs: StaticRef<LiteXGPIORegisters<R>>,
gpio_count: usize,
gpio_references: Cell<u32>,
// We can't reasonably put this field only on the GPIOPin
// instances, as then the controller would need to have a way to
// call out to them. Thus, allocate space for a client for every
// pin in the controller.
gpio_clients: MapCell<[Option<&'client dyn hil::gpio::Client>; 32]>,
}
impl<'client, R: LiteXSoCRegisterConfiguration> LiteXGPIOController<'client, R> {
pub fn new(
base: StaticRef<LiteXGPIORegisters<R>>,
gpio_count: usize,
) -> LiteXGPIOController<'client, R> {
// The number of GPIOs may not be larger than the bit width of
// the supplied register layout
//
// TODO: Automatically determine based on the type
assert!(
gpio_count <= 32,
"LiteXGPIOController register width insufficient to support the requested GPIO count"
);
LiteXGPIOController {
regs: base,
gpio_count,
gpio_references: Cell::new(0),
gpio_clients: MapCell::new([None; 32]),
}
}
/// Initialize the [`LiteXGPIOController`]
///
/// This will set all GPIOs to be inputs.
pub fn initialize(&self) {
self.regs.gpio_output_enable.set(0);
self.regs.ev().disable_all();
self.regs.ev().clear_all();
}
/// Returns the number of GPIOs managed by the
/// [`LiteXGPIOController`]
pub fn gpio_count(&self) -> usize {
self.gpio_count
}
/// Create a [`LiteXGPIOPin`] instance
///
/// To avoid duplicate use of a GPIO, this will return `None` if
/// an instance for the requested GPIO already exists. Call
/// [`LiteXGPIOPin::destroy`] (or drop the [`LiteXGPIOPin`]) to be
/// able to create a new instance for this GPIO.
pub fn get_gpio_pin<'controller>(
&'controller self,
index: usize,
) -> Option<LiteXGPIOPin<'controller, 'client, R>> {
if index < self.gpio_count() && (self.gpio_references.get() & (1 << index)) == 0 {
self.gpio_references
.set(self.gpio_references.get() | (1 << index));
Some(LiteXGPIOPin::new(self, index))
} else {
None
}
}
/// Internal method to mark a [`LiteXGPIOPin`] instance as destroyed
pub(self) fn destroy_gpio_pin(&self, index: usize) {
self.gpio_clients.map(|clients| clients[index] = None);
self.gpio_references
.set(self.gpio_references.get() & !(1 << index));
}
/// Internal method to set a GPIO output enable configuration
pub(self) fn set_gpio_output_enable(&self, index: usize, oe: bool) {
if oe {
self.regs
.gpio_output_enable
.set(self.regs.gpio_output_enable.get() | (1 << index));
} else {
self.regs
.gpio_output_enable
.set(self.regs.gpio_output_enable.get() & !(1 << index));
}
}
/// Internal method to set a GPIO output
pub(self) fn set_gpio_output(&self, index: usize, output: bool) {
if output {
self.regs
.gpio_output
.set(self.regs.gpio_output.get() | (1 << index));
} else {
self.regs
.gpio_output
.set(self.regs.gpio_output.get() & !(1 << index));
}
}
/// Internal method to read the current state of a GPIO
///
/// Returns a tuple of (oe, out, in).
pub(self) fn read_gpio(&self, index: usize) -> (bool, bool, bool) {
let res = (
(self.regs.gpio_output_enable.get() & (1 << index)) != 0,
(self.regs.gpio_output.get() & (1 << index)) != 0,
(self.regs.gpio_input.get() & (1 << index)) != 0,
);
res
}
/// Internal method to set a GPIO pins' interrupt client
fn set_gpio_client(&self, index: usize, client: &'client dyn hil::gpio::Client) {
self.gpio_clients
.map(|clients| clients[index] = Some(client));
}
/// Internal method to check whether an interrupt of a GPIO pin is
/// pending.
///
/// Only GPIO pins which are in an input state will be
/// reported as having pending interrupts.
pub(self) fn gpio_interrupt_pending(&self, index: usize) -> bool {
self.regs.ev().event_asserted(index)
}
/// Internal method to configure a GPIO pin's interrupts, or
/// disable them.
pub(self) fn configure_gpio_interrupt(
&self,
index: usize,
edge: Option<hil::gpio::InterruptEdge>,
) {
if let Some(e) = edge {
// To make sure we don't cause any CPU interrupts just
// because of reconfiguration, disable the event first.
self.regs.ev().disable_event(index);
// Now, set the configuration. Interrupts are configured
// in two bits:
// - mode: 0 for a specific edge, 1 for every edge
// - edge: if mode == 1, 0 for rising edge, 1 for falling egde
match e {
hil::gpio::InterruptEdge::RisingEdge => {
self.regs
.gpio_mode
.set(self.regs.gpio_mode.get() & !(1 << index));
self.regs
.gpio_edge
.set(self.regs.gpio_edge.get() & !(1 << index));
}
hil::gpio::InterruptEdge::FallingEdge => {
self.regs
.gpio_mode
.set(self.regs.gpio_mode.get() & !(1 << index));
self.regs
.gpio_edge
.set(self.regs.gpio_edge.get() & !(1 << index));
}
hil::gpio::InterruptEdge::EitherEdge => {
self.regs
.gpio_mode
.set(self.regs.gpio_mode.get() & !(1 << index));
}
}
// (Re)enable the event associated with the GPIO pin
self.regs.ev().enable_event(index);
} else {
// Simply disable the interrupts in the EV. This will
// prevent the source from asserting the event manager's
// CPU interrupt.
self.regs.ev().disable_event(index);
}
}
pub fn service_interrupt(&self) {
while let Some(event_index) = self.regs.ev().next_asserted() {
self.regs.ev().clear_event(event_index);
self.gpio_clients
.map(|clients| clients[event_index].map(|client| client.fired()));
}
}
}
/// Single GPIO pin of a [`LiteXGPIOController`]
///
/// Can be obtained by calling [`LiteXGPIOController::get_gpio_pin`].
///
/// Only one [`LiteXGPIOPin`] instance may exist per GPIO pin. To
/// deregister this instance, call [`LiteXGPIOPin::destroy`] (or drop it).
pub struct LiteXGPIOPin<'controller, 'client, R: LiteXSoCRegisterConfiguration> {
controller: &'controller LiteXGPIOController<'client, R>,
index: usize,
}
impl<'controller, 'client, R: LiteXSoCRegisterConfiguration> LiteXGPIOPin<'controller, 'client, R> {
fn new(
controller: &'controller LiteXGPIOController<'client, R>,
index: usize,
) -> LiteXGPIOPin<'controller, 'client, R> {
LiteXGPIOPin { controller, index }
}
/// Index of this GPIO pin in the [`LiteXGPIOController`] GPIO array
pub fn index(&self) -> usize {
self.index
}
/// Returns a reference to the [`LiteXGPIOController`] of this GPIO
pub fn controller(&self) -> &'controller LiteXGPIOController<'client, R> {
self.controller
}
/// Destroy (deregister & consume) the [`LiteXGPIOPin`]
pub fn destroy(self) {
mem::drop(self);
}
}
impl<R: LiteXSoCRegisterConfiguration> hil::gpio::Configure for LiteXGPIOPin<'_, '_, R> {
fn configuration(&self) -> hil::gpio::Configuration {
let (output_enable, _, _) = self.controller.read_gpio(self.index);
if output_enable {
hil::gpio::Configuration::Output
} else {
hil::gpio::Configuration::Input
}
}
fn make_output(&self) -> hil::gpio::Configuration {
self.controller.set_gpio_output_enable(self.index, true);
hil::gpio::Configuration::Output
}
fn disable_output(&self) -> hil::gpio::Configuration {
// Only meaningful thing to do here is to switch to being an
// input.
self.make_input()
}
fn make_input(&self) -> hil::gpio::Configuration {
self.controller.set_gpio_output_enable(self.index, false);
hil::gpio::Configuration::Input
}
fn disable_input(&self) -> hil::gpio::Configuration {
// The GPIO tristate pin has to be in either output or
// input. We can't not be in input, but also not in
// output. However, switching to an output when one wants to
// "disable_input" is pretty dangerous. We can however remain
// an output if we are one. Thus, do nothing and return the
// current configuration.
self.configuration()
}
fn deactivate_to_low_power(&self) {
self.make_input();
}
fn set_floating_state(&self, _state: hil::gpio::FloatingState) {
// Do nothing, we don't have any pullups we could reasonably
// use.
}
fn floating_state(&self) -> hil::gpio::FloatingState {
hil::gpio::FloatingState::PullNone
}
}
impl<R: LiteXSoCRegisterConfiguration> hil::gpio::Output for LiteXGPIOPin<'_, '_, R> {
fn set(&self) {
self.controller.set_gpio_output(self.index, true);
}
fn clear(&self) {
self.controller.set_gpio_output(self.index, false);
}
fn toggle(&self) -> bool {
let (_, current, _) = self.controller.read_gpio(self.index);
self.controller.set_gpio_output(self.index, !current);
!current
}
}
impl<R: LiteXSoCRegisterConfiguration> hil::gpio::Input for LiteXGPIOPin<'_, '_, R> {
fn read(&self) -> bool {
// For a proper tristate, we could probably just read it and
// if the pin is an output, retrieve the current output value
// directly. However, the simulation behaves a litte
// different. Thus check the pin state and either return the
// current input or output state, depending on output_enable.
let (output_enable, output, input) = self.controller.read_gpio(self.index);
if output_enable {
output
} else {
input
}
}
}
impl<'client, R: LiteXSoCRegisterConfiguration> hil::gpio::Interrupt<'client>
for LiteXGPIOPin<'_, 'client, R>
{
fn set_client(&self, client: &'client dyn hil::gpio::Client) {
self.controller.set_gpio_client(self.index, client);
}
fn is_pending(&self) -> bool {
self.controller.gpio_interrupt_pending(self.index)
}
fn enable_interrupts(&self, mode: hil::gpio::InterruptEdge) {
self.controller
.configure_gpio_interrupt(self.index, Some(mode));
}
fn disable_interrupts(&self) {
self.controller.configure_gpio_interrupt(self.index, None);
}
}
impl<R: LiteXSoCRegisterConfiguration> Drop for LiteXGPIOPin<'_, '_, R> {
/// Deregister the GPIO with the controller
fn drop(&mut self) {
self.controller.destroy_gpio_pin(self.index);
}
}