capsules_core/virtualizers/virtual_aes_ccm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Implements and virtualizes AES-CCM* encryption/decryption/authentication using an underlying
//! AES-CBC and AES-CTR implementation.
//!
//! IEEE 802.15.4-2015: Appendix B.4.1, CCM* transformations. CCM* is
//! defined so that both encryption and decryption can be done by preparing two
//! fields: the AuthData and either the PlaintextData or the CiphertextData.
//! Then, two passes of AES are performed with one block of overlap.
//!
//! ```text
//! crypt_buf: [ -------- AuthData -------- | -------- PData/CData -------- ]
//! aes_cbc: \__________________________/
//! aes_ctr: \ 1 blk | _____________________________/
//! ```
//!
//! The overlapping block is then the encrypted authentication tag U. For
//! encryption, we append U to the data as a message integrity code (MIC).
//! For decryption, we compare U with the provided MIC.
//
//! This is true only if data confidentiality is not needed. If it is, then
//! the AuthData includes the PlaintextData. At encryption, we perform CBC over
//! both fields, then copy the last block to just before the PData. Then,
//! CTR mode is performed over the same overlapping region, forming the encrypted
//! authentication tag U.
//!
//! ```text
//! crypt_buf: [ -------- AuthData -------- | -------- PData/CData -------- ]
//! aes_cbc: \__________________________________________________________/
//! aes_ctr: \ 1 blk | _____________________________/
//! ```
//!
//! At decryption, there is no choice but the reverse the order of operations.
//! First, we zero out the overlapping block and perform ctr over it and the
//! PlaintextData. This produces Enc(Key, A_i), which we save in saved_tag.
//! Then, we restore the previous value of the last block of AuthData and re-pad
//! PlaintextData before running CBC over both fields. The last step is to
//! combine saved_tag and the unencrypted tag to form the encrypted tag and
//! verify its correctness.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use capsules_core::test::aes_ccm::Test;
//! # use capsules_core::virtual_aes_ccm;
//! # use kernel::common::deferred_call::DeferredCallClient;
//! # use kernel::hil::symmetric_encryption::{AES128, AES128CCM, AES128_BLOCK_SIZE};
//! # use kernel::static_init;
//! # use sam4l::aes::{Aes, AES};
//! type AESCCMMUX = virtual_aes_ccm::MuxAES128CCM<'static, Aes<'static>>;
//! type AESCCMCLIENT = virtual_aes_ccm::VirtualAES128CCM<'static, AESCCMMUX>;
//! // mux
//! let ccm_mux = static_init!(AESCCMMUX, virtual_aes_ccm::MuxAES128CCM::new(&AES));
//! ccm_mux.register();
//! AES.set_client(ccm_mux);
//! const CRYPT_SIZE: usize = 7 * AES128_BLOCK_SIZE;
//! let crypt_buf1 = static_init!([u8; CRYPT_SIZE], [0x00; CRYPT_SIZE]);
//! let ccm_client1 = static_init!(
//! AESCCMCLIENT,
//! virtual_aes_ccm::VirtualAES128CCM::new(ccm_mux, crypt_buf1)
//! );
//! ccm_client1.setup();
//! let data1 = static_init!([u8; 4 * AES128_BLOCK_SIZE], [0x00; 4 * AES128_BLOCK_SIZE]);
//! let t1 = static_init!(Test<'static, AESCCMCLIENT>, Test::new(ccm_client1, data1));
//! ccm_client1.set_client(t1);
//! let crypt_buf2 = static_init!([u8; CRYPT_SIZE], [0x00; CRYPT_SIZE]);
//! let ccm_client2 = static_init!(
//! AESCCMCLIENT,
//! virtual_aes_ccm::VirtualAES128CCM::new(ccm_mux, crypt_buf2)
//! );
//! ccm_client2.setup();
//! let data2 = static_init!([u8; 4 * AES128_BLOCK_SIZE], [0x00; 4 * AES128_BLOCK_SIZE]);
//! let t2 = static_init!(Test<'static, AESCCMCLIENT>, Test::new(ccm_client2, data2));
//! ccm_client2.set_client(t2);
//! t1.run();
//! t2.run();
//!
//! ```
use core::cell::Cell;
use kernel::collections::list::{List, ListLink, ListNode};
use kernel::debug;
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil::symmetric_encryption;
use kernel::hil::symmetric_encryption::{
AES128Ctr, AES128, AES128CBC, AES128ECB, AES128_BLOCK_SIZE, AES128_KEY_SIZE, CCM_NONCE_LENGTH,
};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;
use crate::stream::SResult;
use crate::stream::{encode_bytes, encode_u16};
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
enum CCMState {
Idle,
Auth,
Encrypt,
}
// to cache up the function parameters of the crypt() function
struct CryptFunctionParameters {
buf: &'static mut [u8],
a_off: usize,
m_off: usize,
m_len: usize,
mic_len: usize,
confidential: bool,
encrypting: bool,
}
impl CryptFunctionParameters {
pub fn new(
buf: &'static mut [u8],
a_off: usize,
m_off: usize,
m_len: usize,
mic_len: usize,
confidential: bool,
encrypting: bool,
) -> CryptFunctionParameters {
CryptFunctionParameters {
buf,
a_off,
m_off,
m_len,
mic_len,
confidential,
encrypting,
}
}
}
pub struct MuxAES128CCM<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> {
aes: &'a A,
client: OptionalCell<&'a dyn symmetric_encryption::Client<'a>>,
ccm_clients: List<'a, VirtualAES128CCM<'a, A>>,
inflight: OptionalCell<&'a VirtualAES128CCM<'a, A>>,
deferred_call: DeferredCall,
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> MuxAES128CCM<'a, A> {
pub fn new(aes: &'a A) -> Self {
aes.enable(); // enable the hardware, in case it's forgotten elsewhere
Self {
aes,
client: OptionalCell::empty(),
ccm_clients: List::new(),
inflight: OptionalCell::empty(),
deferred_call: DeferredCall::new(),
}
}
/// Asynchronously executes the next operation, if any. Used by calls
/// to trigger do_next_op such that it will execute after the call
/// returns.
/// See virtual_uart::MuxUart<'a>::do_next_op_async
fn do_next_op_async(&self) {
self.deferred_call.set();
}
fn do_next_op(&self) {
if self.inflight.is_none() {
let mnode = self
.ccm_clients
.iter()
.find(|node| node.queued_up.is_some());
mnode.map(|node| {
self.inflight.set(node);
let parameters: CryptFunctionParameters = node.queued_up.take().unwrap();
// now, eat the parameters
let _ = node.crypt_r(parameters).map_err(|(ecode, _)| {
// notice that we didn't put the parameters back...
// because it's already eaten
if node.ccm_client.is_none() {
debug!("virtual_aes_ccm: no ccm_client is registered in VirtualAES128CCM");
}
if node.buf.is_none() {
debug!("virtual_aes_ccm: no buffer is binded with VirtualAES128CCM");
}
// notify the client that there's a failure
node.buf.take().map(|buf| {
node.ccm_client.map(move |client| {
client.crypt_done(buf, Err(ecode), false);
});
});
// if it fails to trigger encryption, remove it and perform the next
node.remove_from_queue();
self.do_next_op();
});
// otherwise, wait for crypt_done
});
}
}
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> DeferredCallClient
for MuxAES128CCM<'a, A>
{
fn handle_deferred_call(&self) {
self.do_next_op();
}
fn register(&'static self) {
self.deferred_call.register(self);
}
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> symmetric_encryption::Client<'a>
for MuxAES128CCM<'a, A>
{
fn crypt_done(&'a self, source: Option<&'static mut [u8]>, dest: &'static mut [u8]) {
if self.inflight.is_none() {
self.client.map(move |client| {
client.crypt_done(source, dest);
});
return;
}
self.inflight.map(move |vaes_ccm| {
// vaes_ccm.crypt_done might call additional start_ccm_crypt / start_ccm_auth
// when the encryption is *really* done, inflight will be cleared by remove_from_queue
// and it will call do_next_op to perform the next operation
// self.do_next_op() will be called when the encryption is failed or is really done
// search for self.ccm_client
vaes_ccm.crypt_done(source, dest);
});
}
}
pub struct VirtualAES128CCM<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> {
mux: &'a MuxAES128CCM<'a, A>,
aes: &'a A,
next: ListLink<'a, VirtualAES128CCM<'a, A>>,
crypt_buf: TakeCell<'static, [u8]>,
crypt_auth_len: Cell<usize>,
crypt_enc_len: Cell<usize>,
ccm_client: OptionalCell<&'a dyn symmetric_encryption::CCMClient>,
state: Cell<CCMState>,
confidential: Cell<bool>,
encrypting: Cell<bool>,
buf: TakeCell<'static, [u8]>,
pos: Cell<(usize, usize, usize, usize)>,
key: Cell<[u8; AES128_KEY_SIZE]>,
nonce: Cell<[u8; CCM_NONCE_LENGTH]>,
saved_tag: Cell<[u8; AES128_BLOCK_SIZE]>,
queued_up: OptionalCell<CryptFunctionParameters>,
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> VirtualAES128CCM<'a, A> {
pub fn new(
mux: &'a MuxAES128CCM<'a, A>,
crypt_buf: &'static mut [u8],
) -> VirtualAES128CCM<'a, A> {
VirtualAES128CCM {
mux,
aes: mux.aes,
next: ListLink::empty(),
crypt_buf: TakeCell::new(crypt_buf),
crypt_auth_len: Cell::new(0),
crypt_enc_len: Cell::new(0),
ccm_client: OptionalCell::empty(),
state: Cell::new(CCMState::Idle),
confidential: Cell::new(false),
encrypting: Cell::new(false),
buf: TakeCell::empty(),
pos: Cell::new((0, 0, 0, 0)),
key: Cell::new(Default::default()),
nonce: Cell::new(Default::default()),
saved_tag: Cell::new(Default::default()),
queued_up: OptionalCell::empty(),
}
}
/// bind itself to self.mux, should be called after static_init!
pub fn setup(&'a self) {
self.mux.ccm_clients.push_head(self);
}
/// Prepares crypt_buf with the input for the CCM* authentication and
/// encryption/decryption transformations. Returns NOMEM if crypt_buf is
/// not present or if it is not long enough.
fn prepare_ccm_buffer(
&self,
nonce: &[u8; CCM_NONCE_LENGTH],
mic_len: usize,
a_data: &[u8],
m_data: &[u8],
) -> Result<(), ErrorCode> {
self.crypt_buf.map_or(Err(ErrorCode::NOMEM), |cbuf| {
let (auth_len, enc_len) =
match Self::encode_ccm_buffer(cbuf, nonce, mic_len, a_data, m_data) {
SResult::Done(_, out) => out,
SResult::Needed(_) => {
return Err(ErrorCode::NOMEM);
}
SResult::Error(()) => {
return Err(ErrorCode::FAIL);
}
};
// debug!("auth: ({})", auth_len);
// for i in 0..auth_len {
// debug!("{:02x}", cbuf[i]);
// }
// debug!("enc: ({})", enc_len);
// for i in auth_len..enc_len {
// debug!("{:02x}", cbuf[i]);
// }
self.crypt_auth_len.set(auth_len);
self.crypt_enc_len.set(enc_len);
Ok(())
})
}
/// This function encodes AuthData (a_data) and PData/CData (m_data) into a
/// buffer, along with the prerequisite metadata/padding bytes. On success,
/// `auth_len` (the length of the AuthData field) and `enc_len` (the
/// combined length of AuthData and PData/CData) are returned. `auth_len` is
/// guaranteed to be >= AES128_BLOCK_SIZE
fn encode_ccm_buffer(
buf: &mut [u8],
nonce: &[u8; CCM_NONCE_LENGTH],
mic_len: usize,
a_data: &[u8],
m_data: &[u8],
) -> SResult<(usize, usize)> {
// IEEE 802.15.4-2015: Appendix B.4.1.2, CCM* authentication
// The authentication tag T is computed with AES128-CBC-MAC on
// B_0 | AuthData, where
// B_0 = Flags (1 byte) | nonce (13 bytes) | m length (2 bytes)
// Flags = 0 | A data present? (1 bit) | M (3 bits) | L (3 bits)
// AuthData = AddAuthData | PlaintextData
// AddAuthData = L(a) (encoding of a_data.len()) | a_data
// PlaintextData = m_data
// Both AddAuthData and PlaintextData are 0-padded to 16-byte blocks.
// The following code places B_0 | AuthData into crypt_buf.
// flags = reserved | Adata | (M - 2) / 2 | (L - 1)
let mut flags: u8 = 0;
if a_data.len() != 0 {
flags |= 1 << 6;
}
if mic_len != 0 {
flags |= (((mic_len - 2) / 2) as u8) << 3;
}
flags |= 1;
stream_len_cond!(buf, AES128_BLOCK_SIZE);
// The first block is flags | nonce | m length
buf[0] = flags;
buf[1..14].copy_from_slice(nonce.as_ref());
let mut off = enc_consume!(buf, 14; encode_u16,
(m_data.len() as u16).to_le());
// After that comes L(a) | a, where L(a) is the following
// encoding of a_len:
if a_data.len() == 0 {
// L(a) is empty, and the Adata flag is zero
} else if a_data.len() < 0xff00_usize {
// L(a) is l(a) in 2 bytes of little-endian
off = enc_consume!(buf, off; encode_u16,
(a_data.len() as u16).to_le());
} else {
// These length encoding branches are defined in the specification
// but should never be reached because our MTU is 127.
stream_err!(());
}
// Append the auth data and 0-pad to a multiple of 16 bytes
off = enc_consume!(buf, off; encode_bytes, a_data);
let auth_len = off.div_ceil(AES128_BLOCK_SIZE) * AES128_BLOCK_SIZE;
stream_len_cond!(buf, auth_len);
buf[off..auth_len].iter_mut().for_each(|b| *b = 0);
off = auth_len;
// Append plaintext data and 0-pad to a multiple of 16 bytes
off = enc_consume!(buf, off; encode_bytes, m_data);
let enc_len = off.div_ceil(AES128_BLOCK_SIZE) * AES128_BLOCK_SIZE;
stream_len_cond!(buf, enc_len);
buf[off..enc_len].iter_mut().for_each(|b| *b = 0);
off = enc_len;
stream_done!(off, (auth_len, enc_len));
}
fn reversed(&self) -> bool {
self.confidential.get() && !self.encrypting.get()
}
// Assumes that the state is Idle, which means that crypt_buf must be
// present. Panics if this is not the case.
fn start_ccm_auth(&self) -> Result<(), ErrorCode> {
if !(self.state.get() == CCMState::Idle)
&& !(self.state.get() == CCMState::Encrypt && self.reversed())
{
panic!("Called start_ccm_auth when not idle");
}
// We are performing CBC-MAC, so always encrypting.
self.aes.set_mode_aes128cbc(true)?;
let iv = [0u8; AES128_BLOCK_SIZE];
let res = self.aes.set_iv(&iv);
if res != Ok(()) {
return res;
}
let res = self.aes.set_key(&self.key.get());
if res != Ok(()) {
return res;
}
let crypt_buf = match self.crypt_buf.take() {
None => panic!("Cannot perform CCM* auth because crypt_buf is not present."),
Some(buf) => buf,
};
// If confidentiality is needed, authenticate over message data.
let auth_end = if self.confidential.get() {
self.crypt_enc_len.get()
} else {
self.crypt_auth_len.get()
};
self.aes.start_message();
match self.aes.crypt(None, crypt_buf, 0, auth_end) {
None => {
self.state.set(CCMState::Auth);
Ok(())
}
Some((res, _, crypt_buf)) => {
// Request failed
self.crypt_buf.replace(crypt_buf);
res
}
}
}
fn start_ccm_encrypt(&self) -> Result<(), ErrorCode> {
if !(self.state.get() == CCMState::Auth)
&& !(self.state.get() == CCMState::Idle && self.reversed())
{
return Err(ErrorCode::FAIL);
}
self.state.set(CCMState::Idle); // default to fail
// debug!("after auth:");
// self.crypt_buf.map(|buf| {
// for i in 0..self.crypt_auth_len.get() {
// debug!("{:02x}", buf[i]);
// }
// });
self.aes.set_mode_aes128ctr(self.encrypting.get())?;
let res = self.aes.set_key(&self.key.get());
if res != Ok(()) {
return res;
}
let mut iv = [0u8; AES128_BLOCK_SIZE];
// flags = reserved | reserved | 0 | (L - 1)
// Since L = 2, flags = 1.
iv[0] = 1;
iv[1..1 + CCM_NONCE_LENGTH].copy_from_slice(&self.nonce.get());
let res = self.aes.set_iv(&iv);
if res != Ok(()) {
return res;
}
self.aes.start_message();
let crypt_buf = match self.crypt_buf.take() {
None => panic!("Cannot perform CCM* encrypt because crypt_buf is not present."),
Some(buf) => buf,
};
match self.aes.crypt(
None,
crypt_buf,
self.crypt_auth_len.get() - AES128_BLOCK_SIZE,
self.crypt_enc_len.get(),
) {
None => {
self.state.set(CCMState::Encrypt);
Ok(())
}
Some((res, _, crypt_buf)) => {
self.crypt_buf.replace(crypt_buf);
res
}
}
}
fn end_ccm(&self) {
let tag_valid = self.buf.map_or(false, |buf| {
self.crypt_buf.map_or_else(
|| {
panic!("We lost track of crypt_buf!");
},
|cbuf| {
// Copy the encrypted/decrypted message data
let (_, m_off, m_len, mic_len) = self.pos.get();
let auth_len = self.crypt_auth_len.get();
buf[m_off..m_off + m_len].copy_from_slice(&cbuf[auth_len..auth_len + m_len]);
let m_end = m_off + m_len;
let tag_off = auth_len - AES128_BLOCK_SIZE;
if self.encrypting.get() {
// Copy the encrypted tag to the end of the message
buf[m_end..m_end + mic_len]
.copy_from_slice(&cbuf[tag_off..tag_off + mic_len]);
true
} else {
// Compare the computed encrypted tag to the received
// encrypted tag
buf[m_end..m_end + mic_len]
.iter()
.zip(cbuf[tag_off..tag_off + mic_len].iter())
.all(|(a, b)| *a == *b)
}
},
)
});
// encryption is successful
self.state.set(CCMState::Idle);
self.remove_from_queue();
self.mux.do_next_op();
self.ccm_client.map(|client| {
self.buf.take().map(|buf| {
client.crypt_done(buf, Ok(()), tag_valid);
});
});
}
fn reverse_end_ccm(&self) {
// Finalize CCM process only in the case where we did CTR before CBC
let tag_valid = self.buf.map_or(false, |buf| {
self.crypt_buf.map_or_else(
|| {
panic!("We lost track of crypt_buf!");
},
|cbuf| {
let (_, m_off, m_len, mic_len) = self.pos.get();
// Combine unencrypted tag at end of crypt_buf with saved
// CTR-encrypted block to obtain encrypted tag
let tag_off = self.crypt_enc_len.get() - AES128_BLOCK_SIZE;
self.saved_tag.get()[..mic_len]
.iter()
.zip(cbuf[tag_off..tag_off + mic_len].iter_mut())
.for_each(|(a, b)| *b ^= *a);
// Compare the computed encrypted tag to the received
// encrypted tag
buf[m_off + m_len..m_off + m_len + mic_len]
.iter()
.zip(cbuf[tag_off..tag_off + mic_len].iter())
.all(|(a, b)| *a == *b)
},
)
});
// encryption is successful
self.state.set(CCMState::Idle);
self.remove_from_queue();
self.mux.do_next_op();
self.ccm_client.map(|client| {
self.buf.take().map(|buf| {
client.crypt_done(buf, Ok(()), tag_valid);
});
});
}
fn save_tag_block(&self) {
// Copies [auth_len - AES128_BLOCK_SIZE..auth_len] to saved_tag
// and zeroes it out
let auth_len = self.crypt_auth_len.get();
self.crypt_buf.map(|cbuf| {
let mut cbuf_block = [0u8; AES128_BLOCK_SIZE];
cbuf_block.copy_from_slice(&cbuf[auth_len - AES128_BLOCK_SIZE..auth_len]);
self.saved_tag.set(cbuf_block);
cbuf[auth_len - AES128_BLOCK_SIZE..auth_len]
.iter_mut()
.for_each(|b| *b = 0);
});
}
fn swap_tag_block(&self) {
// Swaps [auth_len - AES128_BLOCK_SIZE..auth_len] with
// the value in saved_tag
let auth_len = self.crypt_auth_len.get();
self.crypt_buf.map(|cbuf| {
let mut cbuf_block = [0u8; AES128_BLOCK_SIZE];
cbuf_block.copy_from_slice(&cbuf[auth_len - AES128_BLOCK_SIZE..auth_len]);
cbuf[auth_len - AES128_BLOCK_SIZE..auth_len].copy_from_slice(&self.saved_tag.get());
self.saved_tag.set(cbuf_block);
});
}
fn crypt_r(
&self,
parameter: CryptFunctionParameters,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
// just expanding the parameters......
let buf: &'static mut [u8] = parameter.buf;
let a_off: usize = parameter.a_off;
let m_off: usize = parameter.m_off;
let m_len: usize = parameter.m_len;
let mic_len: usize = parameter.mic_len;
let confidential: bool = parameter.confidential;
let encrypting: bool = parameter.encrypting;
//
if self.state.get() != CCMState::Idle {
return Err((ErrorCode::BUSY, buf));
}
if !(a_off <= m_off && m_off + m_len + mic_len <= buf.len()) {
return Err((ErrorCode::INVAL, buf));
}
self.confidential.set(confidential);
self.encrypting.set(encrypting);
let res = self.prepare_ccm_buffer(
&self.nonce.get(),
mic_len,
&buf[a_off..m_off],
&buf[m_off..m_off + m_len],
);
if res != Ok(()) {
return Err((res.unwrap_err(), buf));
}
let res = if !confidential || encrypting {
// Perform CBC before CTR
self.start_ccm_auth()
} else {
// Perform CTR before CBC
self.save_tag_block();
self.start_ccm_encrypt()
};
if res != Ok(()) {
Err((res.unwrap_err(), buf))
} else {
self.buf.replace(buf);
self.pos.set((a_off, m_off, m_len, mic_len));
Ok(())
}
}
fn remove_from_queue(&self) {
self.queued_up.clear();
self.mux.inflight.clear();
}
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> symmetric_encryption::AES128CCM<'a>
for VirtualAES128CCM<'a, A>
{
fn set_client(&self, client: &'a dyn symmetric_encryption::CCMClient) {
self.ccm_client.set(client);
}
fn set_key(&self, key: &[u8]) -> Result<(), ErrorCode> {
if key.len() < AES128_KEY_SIZE {
Err(ErrorCode::INVAL)
} else {
let mut new_key = [0u8; AES128_KEY_SIZE];
new_key.copy_from_slice(key);
self.key.set(new_key);
Ok(())
}
}
fn set_nonce(&self, nonce: &[u8]) -> Result<(), ErrorCode> {
if nonce.len() < CCM_NONCE_LENGTH {
Err(ErrorCode::INVAL)
} else {
let mut new_nonce = [0u8; CCM_NONCE_LENGTH];
new_nonce.copy_from_slice(nonce);
self.nonce.set(new_nonce);
Ok(())
}
}
/// Try to begin the encryption/decryption process
fn crypt(
&self,
buf: &'static mut [u8],
a_off: usize,
m_off: usize,
m_len: usize,
mic_len: usize,
confidential: bool,
encrypting: bool,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
if self.queued_up.is_some() {
return Err((ErrorCode::BUSY, buf));
}
if self.state.get() != CCMState::Idle {
return Err((ErrorCode::BUSY, buf));
}
if !(a_off <= m_off && m_off + m_len + mic_len <= buf.len()) {
return Err((ErrorCode::INVAL, buf));
}
self.queued_up.set(CryptFunctionParameters::new(
buf,
a_off,
m_off,
m_len,
mic_len,
confidential,
encrypting,
));
self.mux.do_next_op_async();
Ok(())
}
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> symmetric_encryption::AES128<'a>
for VirtualAES128CCM<'a, A>
{
fn enable(&self) {
self.aes.enable();
}
fn disable(&self) {
self.aes.disable();
}
fn set_client(&'a self, client: &'a dyn symmetric_encryption::Client<'a>) {
self.mux.client.set(client);
}
fn set_key(&self, key: &[u8]) -> Result<(), ErrorCode> {
if self.mux.inflight.is_none() {
self.mux.aes.set_key(key)
} else {
Err(ErrorCode::BUSY)
}
}
fn set_iv(&self, iv: &[u8]) -> Result<(), ErrorCode> {
if self.mux.inflight.is_none() {
self.mux.aes.set_iv(iv)
} else {
Err(ErrorCode::BUSY)
}
}
fn start_message(&self) {
if self.mux.inflight.is_none() {
self.mux.aes.start_message()
}
}
fn crypt(
&self,
source: Option<&'static mut [u8]>,
dest: &'static mut [u8],
start_index: usize,
stop_index: usize,
) -> Option<(
Result<(), ErrorCode>,
Option<&'static mut [u8]>,
&'static mut [u8],
)> {
if self.mux.inflight.is_none() {
self.mux.aes.crypt(source, dest, start_index, stop_index)
} else {
Some((Err(ErrorCode::BUSY), source, dest))
}
}
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> AES128Ctr for VirtualAES128CCM<'a, A> {
fn set_mode_aes128ctr(&self, encrypting: bool) -> Result<(), ErrorCode> {
if self.mux.inflight.is_none() {
self.mux.aes.set_mode_aes128ctr(encrypting)
} else {
Err(ErrorCode::BUSY)
}
}
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> AES128ECB for VirtualAES128CCM<'a, A> {
fn set_mode_aes128ecb(&self, encrypting: bool) -> Result<(), ErrorCode> {
if self.mux.inflight.is_none() {
self.mux.aes.set_mode_aes128ecb(encrypting)
} else {
Err(ErrorCode::BUSY)
}
}
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> AES128CBC for VirtualAES128CCM<'a, A> {
fn set_mode_aes128cbc(&self, encrypting: bool) -> Result<(), ErrorCode> {
if self.mux.inflight.is_none() {
self.mux.aes.set_mode_aes128cbc(encrypting)
} else {
Err(ErrorCode::BUSY)
}
}
}
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> symmetric_encryption::Client<'a>
for VirtualAES128CCM<'a, A>
{
fn crypt_done(&self, _: Option<&'static mut [u8]>, crypt_buf: &'static mut [u8]) {
self.crypt_buf.replace(crypt_buf);
match self.state.get() {
CCMState::Idle => {}
CCMState::Auth => {
if !self.reversed() {
if self.confidential.get() {
let (_, m_off, m_len, _) = self.pos.get();
let auth_len = self.crypt_auth_len.get();
let enc_len = self.crypt_enc_len.get();
self.crypt_buf.map(|cbuf| {
// If we authenticated over the plaintext, copy the last
// block over to the beginning again so that it becomes
// the encrypted tag after ctr mode
let auth_last = auth_len - AES128_BLOCK_SIZE;
let enc_last = enc_len - AES128_BLOCK_SIZE;
for i in 0..AES128_BLOCK_SIZE {
cbuf[auth_last + i] = cbuf[enc_last + i];
}
// Then repopulate the plaintext data field
self.buf.map(|buf| {
cbuf[auth_len..auth_len + m_len]
.copy_from_slice(&buf[m_off..m_off + m_len]);
});
cbuf[auth_len + m_len..enc_len]
.iter_mut()
.for_each(|b| *b = 0);
});
}
let res = self.start_ccm_encrypt();
if res != Ok(()) {
// The operation fails, immediately remove the request and perform the next operation
self.state.set(CCMState::Idle);
self.remove_from_queue();
self.mux.do_next_op();
// Return client buffer to client
self.buf.take().map(|buf| {
self.ccm_client.map(move |client| {
client.crypt_done(buf, res, false);
});
});
}
} else {
self.reverse_end_ccm();
}
}
CCMState::Encrypt => {
if !self.reversed() {
self.end_ccm();
} else {
self.swap_tag_block();
self.crypt_buf.map(|cbuf| {
// Copy the encrypted/decrypted message data
let (_, m_off, m_len, _) = self.pos.get();
let auth_len = self.crypt_auth_len.get();
self.buf.map(|buf| {
buf[m_off..m_off + m_len]
.copy_from_slice(&cbuf[auth_len..auth_len + m_len]);
});
// Reset the rest of the padding
cbuf[self.crypt_auth_len.get() + m_len..self.crypt_enc_len.get()]
.iter_mut()
.for_each(|b| *b = 0);
});
let res = self.start_ccm_auth();
if res != Ok(()) {
// Return client buffer to ccm_clients
self.buf.take().map(|buf| {
self.ccm_client.map(move |client| {
client.crypt_done(buf, res, false);
});
});
// The operation fails, immediately remove the request and perform the next operation
self.state.set(CCMState::Idle);
self.remove_from_queue();
self.mux.do_next_op();
}
}
}
}
}
}
// Fit in the linked list
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> ListNode<'a, VirtualAES128CCM<'a, A>>
for VirtualAES128CCM<'a, A>
{
fn next(&'a self) -> &'a ListLink<'a, VirtualAES128CCM<'a, A>> {
&self.next
}
}