capsules_core/virtualizers/
virtual_aes_ccm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Implements and virtualizes AES-CCM* encryption/decryption/authentication using an underlying
//! AES-CBC and AES-CTR implementation.
//!
//! IEEE 802.15.4-2015: Appendix B.4.1, CCM* transformations. CCM* is
//! defined so that both encryption and decryption can be done by preparing two
//! fields: the AuthData and either the PlaintextData or the CiphertextData.
//! Then, two passes of AES are performed with one block of overlap.
//!
//! ```text
//! crypt_buf: [ -------- AuthData -------- | -------- PData/CData -------- ]
//! aes_cbc:    \__________________________/
//! aes_ctr:                        \ 1 blk | _____________________________/
//! ```
//!
//! The overlapping block is then the encrypted authentication tag U. For
//! encryption, we append U to the data as a message integrity code (MIC).
//! For decryption, we compare U with the provided MIC.
//
//! This is true only if data confidentiality is not needed. If it is, then
//! the AuthData includes the PlaintextData. At encryption, we perform CBC over
//! both fields, then copy the last block to just before the PData. Then,
//! CTR mode is performed over the same overlapping region, forming the encrypted
//! authentication tag U.
//!
//! ```text
//! crypt_buf: [ -------- AuthData -------- | -------- PData/CData -------- ]
//! aes_cbc:    \__________________________________________________________/
//! aes_ctr:                        \ 1 blk | _____________________________/
//! ```
//!
//! At decryption, there is no choice but the reverse the order of operations.
//! First, we zero out the overlapping block and perform ctr over it and the
//! PlaintextData. This produces Enc(Key, A_i), which we save in saved_tag.
//! Then, we restore the previous value of the last block of AuthData and re-pad
//! PlaintextData before running CBC over both fields. The last step is to
//! combine saved_tag and the unencrypted tag to form the encrypted tag and
//! verify its correctness.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use capsules_core::test::aes_ccm::Test;
//! # use capsules_core::virtual_aes_ccm;
//! # use kernel::common::deferred_call::DeferredCallClient;
//! # use kernel::hil::symmetric_encryption::{AES128, AES128CCM, AES128_BLOCK_SIZE};
//! # use kernel::static_init;
//! # use sam4l::aes::{Aes, AES};
//! type AESCCMMUX = virtual_aes_ccm::MuxAES128CCM<'static, Aes<'static>>;
//! type AESCCMCLIENT = virtual_aes_ccm::VirtualAES128CCM<'static, AESCCMMUX>;
//! // mux
//! let ccm_mux = static_init!(AESCCMMUX, virtual_aes_ccm::MuxAES128CCM::new(&AES));
//! ccm_mux.register();
//! AES.set_client(ccm_mux);
//! const CRYPT_SIZE: usize = 7 * AES128_BLOCK_SIZE;
//! let crypt_buf1 = static_init!([u8; CRYPT_SIZE], [0x00; CRYPT_SIZE]);
//! let ccm_client1 = static_init!(
//!     AESCCMCLIENT,
//!     virtual_aes_ccm::VirtualAES128CCM::new(ccm_mux, crypt_buf1)
//! );
//! ccm_client1.setup();
//! let data1 = static_init!([u8; 4 * AES128_BLOCK_SIZE], [0x00; 4 * AES128_BLOCK_SIZE]);
//! let t1 = static_init!(Test<'static, AESCCMCLIENT>, Test::new(ccm_client1, data1));
//! ccm_client1.set_client(t1);
//! let crypt_buf2 = static_init!([u8; CRYPT_SIZE], [0x00; CRYPT_SIZE]);
//! let ccm_client2 = static_init!(
//!     AESCCMCLIENT,
//!     virtual_aes_ccm::VirtualAES128CCM::new(ccm_mux, crypt_buf2)
//! );
//! ccm_client2.setup();
//! let data2 = static_init!([u8; 4 * AES128_BLOCK_SIZE], [0x00; 4 * AES128_BLOCK_SIZE]);
//! let t2 = static_init!(Test<'static, AESCCMCLIENT>, Test::new(ccm_client2, data2));
//! ccm_client2.set_client(t2);
//! t1.run();
//! t2.run();
//!
//! ```

use core::cell::Cell;

use kernel::collections::list::{List, ListLink, ListNode};
use kernel::debug;
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil::symmetric_encryption;
use kernel::hil::symmetric_encryption::{
    AES128Ctr, AES128, AES128CBC, AES128ECB, AES128_BLOCK_SIZE, AES128_KEY_SIZE, CCM_NONCE_LENGTH,
};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;

use crate::stream::SResult;
use crate::stream::{encode_bytes, encode_u16};

#[derive(Copy, Clone, Eq, PartialEq, Debug)]
enum CCMState {
    Idle,
    Auth,
    Encrypt,
}

// to cache up the function parameters of the crypt() function
struct CryptFunctionParameters {
    buf: &'static mut [u8],
    a_off: usize,
    m_off: usize,
    m_len: usize,
    mic_len: usize,
    confidential: bool,
    encrypting: bool,
}

impl CryptFunctionParameters {
    pub fn new(
        buf: &'static mut [u8],
        a_off: usize,
        m_off: usize,
        m_len: usize,
        mic_len: usize,
        confidential: bool,
        encrypting: bool,
    ) -> CryptFunctionParameters {
        CryptFunctionParameters {
            buf,
            a_off,
            m_off,
            m_len,
            mic_len,
            confidential,
            encrypting,
        }
    }
}

pub struct MuxAES128CCM<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> {
    aes: &'a A,
    client: OptionalCell<&'a dyn symmetric_encryption::Client<'a>>,
    ccm_clients: List<'a, VirtualAES128CCM<'a, A>>,
    inflight: OptionalCell<&'a VirtualAES128CCM<'a, A>>,
    deferred_call: DeferredCall,
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> MuxAES128CCM<'a, A> {
    pub fn new(aes: &'a A) -> Self {
        aes.enable(); // enable the hardware, in case it's forgotten elsewhere
        Self {
            aes,
            client: OptionalCell::empty(),
            ccm_clients: List::new(),
            inflight: OptionalCell::empty(),
            deferred_call: DeferredCall::new(),
        }
    }

    /// Asynchronously executes the next operation, if any. Used by calls
    /// to trigger do_next_op such that it will execute after the call
    /// returns.
    /// See virtual_uart::MuxUart<'a>::do_next_op_async
    fn do_next_op_async(&self) {
        self.deferred_call.set();
    }

    fn do_next_op(&self) {
        if self.inflight.is_none() {
            let mnode = self
                .ccm_clients
                .iter()
                .find(|node| node.queued_up.is_some());
            mnode.map(|node| {
                self.inflight.set(node);
                let parameters: CryptFunctionParameters = node.queued_up.take().unwrap();
                // now, eat the parameters
                let _ = node.crypt_r(parameters).map_err(|(ecode, _)| {
                    // notice that we didn't put the parameters back...
                    // because it's already eaten
                    if node.ccm_client.is_none() {
                        debug!("virtual_aes_ccm: no ccm_client is registered in VirtualAES128CCM");
                    }
                    if node.buf.is_none() {
                        debug!("virtual_aes_ccm: no buffer is binded with VirtualAES128CCM");
                    }
                    // notify the client that there's a failure
                    node.buf.take().map(|buf| {
                        node.ccm_client.map(move |client| {
                            client.crypt_done(buf, Err(ecode), false);
                        });
                    });
                    // if it fails to trigger encryption, remove it and perform the next
                    node.remove_from_queue();
                    self.do_next_op();
                });
                // otherwise, wait for crypt_done
            });
        }
    }
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> DeferredCallClient
    for MuxAES128CCM<'a, A>
{
    fn handle_deferred_call(&self) {
        self.do_next_op();
    }

    fn register(&'static self) {
        self.deferred_call.register(self);
    }
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> symmetric_encryption::Client<'a>
    for MuxAES128CCM<'a, A>
{
    fn crypt_done(&'a self, source: Option<&'static mut [u8]>, dest: &'static mut [u8]) {
        if self.inflight.is_none() {
            self.client.map(move |client| {
                client.crypt_done(source, dest);
            });
            return;
        }
        self.inflight.map(move |vaes_ccm| {
            // vaes_ccm.crypt_done might call additional start_ccm_crypt / start_ccm_auth
            // when the encryption is *really* done, inflight will be cleared by remove_from_queue
            // and it will call do_next_op to perform the next operation
            // self.do_next_op() will be called when the encryption is failed or is really done
            // search for self.ccm_client
            vaes_ccm.crypt_done(source, dest);
        });
    }
}

pub struct VirtualAES128CCM<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> {
    mux: &'a MuxAES128CCM<'a, A>,
    aes: &'a A,
    next: ListLink<'a, VirtualAES128CCM<'a, A>>,

    crypt_buf: TakeCell<'static, [u8]>,
    crypt_auth_len: Cell<usize>,
    crypt_enc_len: Cell<usize>,
    ccm_client: OptionalCell<&'a dyn symmetric_encryption::CCMClient>,

    state: Cell<CCMState>,
    confidential: Cell<bool>,
    encrypting: Cell<bool>,

    buf: TakeCell<'static, [u8]>,
    pos: Cell<(usize, usize, usize, usize)>,
    key: Cell<[u8; AES128_KEY_SIZE]>,
    nonce: Cell<[u8; CCM_NONCE_LENGTH]>,
    saved_tag: Cell<[u8; AES128_BLOCK_SIZE]>,
    queued_up: OptionalCell<CryptFunctionParameters>,
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> VirtualAES128CCM<'a, A> {
    pub fn new(
        mux: &'a MuxAES128CCM<'a, A>,
        crypt_buf: &'static mut [u8],
    ) -> VirtualAES128CCM<'a, A> {
        VirtualAES128CCM {
            mux,
            aes: mux.aes,
            next: ListLink::empty(),
            crypt_buf: TakeCell::new(crypt_buf),
            crypt_auth_len: Cell::new(0),
            crypt_enc_len: Cell::new(0),
            ccm_client: OptionalCell::empty(),
            state: Cell::new(CCMState::Idle),
            confidential: Cell::new(false),
            encrypting: Cell::new(false),
            buf: TakeCell::empty(),
            pos: Cell::new((0, 0, 0, 0)),
            key: Cell::new(Default::default()),
            nonce: Cell::new(Default::default()),
            saved_tag: Cell::new(Default::default()),
            queued_up: OptionalCell::empty(),
        }
    }

    /// bind itself to self.mux, should be called after static_init!
    pub fn setup(&'a self) {
        self.mux.ccm_clients.push_head(self);
    }

    /// Prepares crypt_buf with the input for the CCM* authentication and
    /// encryption/decryption transformations. Returns NOMEM if crypt_buf is
    /// not present or if it is not long enough.
    fn prepare_ccm_buffer(
        &self,
        nonce: &[u8; CCM_NONCE_LENGTH],
        mic_len: usize,
        a_data: &[u8],
        m_data: &[u8],
    ) -> Result<(), ErrorCode> {
        self.crypt_buf.map_or(Err(ErrorCode::NOMEM), |cbuf| {
            let (auth_len, enc_len) =
                match Self::encode_ccm_buffer(cbuf, nonce, mic_len, a_data, m_data) {
                    SResult::Done(_, out) => out,
                    SResult::Needed(_) => {
                        return Err(ErrorCode::NOMEM);
                    }
                    SResult::Error(()) => {
                        return Err(ErrorCode::FAIL);
                    }
                };
            // debug!("auth: ({})", auth_len);
            // for i in 0..auth_len {
            //     debug!("{:02x}", cbuf[i]);
            // }
            // debug!("enc: ({})", enc_len);
            // for i in auth_len..enc_len {
            //     debug!("{:02x}", cbuf[i]);
            // }

            self.crypt_auth_len.set(auth_len);
            self.crypt_enc_len.set(enc_len);
            Ok(())
        })
    }

    /// This function encodes AuthData (a_data) and PData/CData (m_data) into a
    /// buffer, along with the prerequisite metadata/padding bytes. On success,
    /// `auth_len` (the length of the AuthData field) and `enc_len` (the
    /// combined length of AuthData and PData/CData) are returned. `auth_len` is
    /// guaranteed to be >= AES128_BLOCK_SIZE
    fn encode_ccm_buffer(
        buf: &mut [u8],
        nonce: &[u8; CCM_NONCE_LENGTH],
        mic_len: usize,
        a_data: &[u8],
        m_data: &[u8],
    ) -> SResult<(usize, usize)> {
        // IEEE 802.15.4-2015: Appendix B.4.1.2, CCM* authentication
        // The authentication tag T is computed with AES128-CBC-MAC on
        // B_0 | AuthData, where
        //   B_0 = Flags (1 byte) | nonce (13 bytes) | m length (2 bytes)
        //   Flags = 0 | A data present? (1 bit) | M (3 bits) | L (3 bits)
        //   AuthData = AddAuthData | PlaintextData
        //   AddAuthData = L(a) (encoding of a_data.len()) | a_data
        //   PlaintextData = m_data
        //   Both AddAuthData and PlaintextData are 0-padded to 16-byte blocks.
        // The following code places B_0 | AuthData into crypt_buf.

        // flags = reserved | Adata | (M - 2) / 2 | (L - 1)
        let mut flags: u8 = 0;
        if a_data.len() != 0 {
            flags |= 1 << 6;
        }
        if mic_len != 0 {
            flags |= (((mic_len - 2) / 2) as u8) << 3;
        }
        flags |= 1;

        stream_len_cond!(buf, AES128_BLOCK_SIZE);
        // The first block is flags | nonce | m length
        buf[0] = flags;
        buf[1..14].copy_from_slice(nonce.as_ref());
        let mut off = enc_consume!(buf, 14; encode_u16,
                                            (m_data.len() as u16).to_le());

        // After that comes L(a) | a, where L(a) is the following
        // encoding of a_len:
        if a_data.len() == 0 {
            // L(a) is empty, and the Adata flag is zero
        } else if a_data.len() < 0xff00_usize {
            // L(a) is l(a) in 2 bytes of little-endian
            off = enc_consume!(buf, off; encode_u16,
                                         (a_data.len() as u16).to_le());
        } else {
            // These length encoding branches are defined in the specification
            // but should never be reached because our MTU is 127.
            stream_err!(());
        }

        // Append the auth data and 0-pad to a multiple of 16 bytes
        off = enc_consume!(buf, off; encode_bytes, a_data);
        let auth_len = off.div_ceil(AES128_BLOCK_SIZE) * AES128_BLOCK_SIZE;
        stream_len_cond!(buf, auth_len);
        buf[off..auth_len].iter_mut().for_each(|b| *b = 0);
        off = auth_len;

        // Append plaintext data and 0-pad to a multiple of 16 bytes
        off = enc_consume!(buf, off; encode_bytes, m_data);
        let enc_len = off.div_ceil(AES128_BLOCK_SIZE) * AES128_BLOCK_SIZE;
        stream_len_cond!(buf, enc_len);
        buf[off..enc_len].iter_mut().for_each(|b| *b = 0);
        off = enc_len;

        stream_done!(off, (auth_len, enc_len));
    }

    fn reversed(&self) -> bool {
        self.confidential.get() && !self.encrypting.get()
    }

    // Assumes that the state is Idle, which means that crypt_buf must be
    // present. Panics if this is not the case.
    fn start_ccm_auth(&self) -> Result<(), ErrorCode> {
        if !(self.state.get() == CCMState::Idle)
            && !(self.state.get() == CCMState::Encrypt && self.reversed())
        {
            panic!("Called start_ccm_auth when not idle");
        }

        // We are performing CBC-MAC, so always encrypting.
        self.aes.set_mode_aes128cbc(true)?;

        let iv = [0u8; AES128_BLOCK_SIZE];
        let res = self.aes.set_iv(&iv);
        if res != Ok(()) {
            return res;
        }
        let res = self.aes.set_key(&self.key.get());
        if res != Ok(()) {
            return res;
        }

        let crypt_buf = match self.crypt_buf.take() {
            None => panic!("Cannot perform CCM* auth because crypt_buf is not present."),
            Some(buf) => buf,
        };

        // If confidentiality is needed, authenticate over message data.
        let auth_end = if self.confidential.get() {
            self.crypt_enc_len.get()
        } else {
            self.crypt_auth_len.get()
        };

        self.aes.start_message();
        match self.aes.crypt(None, crypt_buf, 0, auth_end) {
            None => {
                self.state.set(CCMState::Auth);
                Ok(())
            }
            Some((res, _, crypt_buf)) => {
                // Request failed
                self.crypt_buf.replace(crypt_buf);
                res
            }
        }
    }

    fn start_ccm_encrypt(&self) -> Result<(), ErrorCode> {
        if !(self.state.get() == CCMState::Auth)
            && !(self.state.get() == CCMState::Idle && self.reversed())
        {
            return Err(ErrorCode::FAIL);
        }
        self.state.set(CCMState::Idle); // default to fail

        // debug!("after auth:");
        // self.crypt_buf.map(|buf| {
        //     for i in 0..self.crypt_auth_len.get() {
        //         debug!("{:02x}", buf[i]);
        //     }
        // });

        self.aes.set_mode_aes128ctr(self.encrypting.get())?;

        let res = self.aes.set_key(&self.key.get());
        if res != Ok(()) {
            return res;
        }

        let mut iv = [0u8; AES128_BLOCK_SIZE];
        // flags = reserved | reserved | 0 | (L - 1)
        // Since L = 2, flags = 1.
        iv[0] = 1;
        iv[1..1 + CCM_NONCE_LENGTH].copy_from_slice(&self.nonce.get());
        let res = self.aes.set_iv(&iv);
        if res != Ok(()) {
            return res;
        }

        self.aes.start_message();
        let crypt_buf = match self.crypt_buf.take() {
            None => panic!("Cannot perform CCM* encrypt because crypt_buf is not present."),
            Some(buf) => buf,
        };

        match self.aes.crypt(
            None,
            crypt_buf,
            self.crypt_auth_len.get() - AES128_BLOCK_SIZE,
            self.crypt_enc_len.get(),
        ) {
            None => {
                self.state.set(CCMState::Encrypt);
                Ok(())
            }
            Some((res, _, crypt_buf)) => {
                self.crypt_buf.replace(crypt_buf);
                res
            }
        }
    }

    fn end_ccm(&self) {
        let tag_valid = self.buf.map_or(false, |buf| {
            self.crypt_buf.map_or_else(
                || {
                    panic!("We lost track of crypt_buf!");
                },
                |cbuf| {
                    // Copy the encrypted/decrypted message data
                    let (_, m_off, m_len, mic_len) = self.pos.get();
                    let auth_len = self.crypt_auth_len.get();
                    buf[m_off..m_off + m_len].copy_from_slice(&cbuf[auth_len..auth_len + m_len]);

                    let m_end = m_off + m_len;
                    let tag_off = auth_len - AES128_BLOCK_SIZE;
                    if self.encrypting.get() {
                        // Copy the encrypted tag to the end of the message
                        buf[m_end..m_end + mic_len]
                            .copy_from_slice(&cbuf[tag_off..tag_off + mic_len]);
                        true
                    } else {
                        // Compare the computed encrypted tag to the received
                        // encrypted tag
                        buf[m_end..m_end + mic_len]
                            .iter()
                            .zip(cbuf[tag_off..tag_off + mic_len].iter())
                            .all(|(a, b)| *a == *b)
                    }
                },
            )
        });
        // encryption is successful
        self.state.set(CCMState::Idle);
        self.remove_from_queue();
        self.mux.do_next_op();
        self.ccm_client.map(|client| {
            self.buf.take().map(|buf| {
                client.crypt_done(buf, Ok(()), tag_valid);
            });
        });
    }

    fn reverse_end_ccm(&self) {
        // Finalize CCM process only in the case where we did CTR before CBC
        let tag_valid = self.buf.map_or(false, |buf| {
            self.crypt_buf.map_or_else(
                || {
                    panic!("We lost track of crypt_buf!");
                },
                |cbuf| {
                    let (_, m_off, m_len, mic_len) = self.pos.get();

                    // Combine unencrypted tag at end of crypt_buf with saved
                    // CTR-encrypted block to obtain encrypted tag
                    let tag_off = self.crypt_enc_len.get() - AES128_BLOCK_SIZE;
                    self.saved_tag.get()[..mic_len]
                        .iter()
                        .zip(cbuf[tag_off..tag_off + mic_len].iter_mut())
                        .for_each(|(a, b)| *b ^= *a);

                    // Compare the computed encrypted tag to the received
                    // encrypted tag
                    buf[m_off + m_len..m_off + m_len + mic_len]
                        .iter()
                        .zip(cbuf[tag_off..tag_off + mic_len].iter())
                        .all(|(a, b)| *a == *b)
                },
            )
        });
        // encryption is successful
        self.state.set(CCMState::Idle);
        self.remove_from_queue();
        self.mux.do_next_op();
        self.ccm_client.map(|client| {
            self.buf.take().map(|buf| {
                client.crypt_done(buf, Ok(()), tag_valid);
            });
        });
    }

    fn save_tag_block(&self) {
        // Copies [auth_len - AES128_BLOCK_SIZE..auth_len] to saved_tag
        // and zeroes it out
        let auth_len = self.crypt_auth_len.get();
        self.crypt_buf.map(|cbuf| {
            let mut cbuf_block = [0u8; AES128_BLOCK_SIZE];
            cbuf_block.copy_from_slice(&cbuf[auth_len - AES128_BLOCK_SIZE..auth_len]);
            self.saved_tag.set(cbuf_block);
            cbuf[auth_len - AES128_BLOCK_SIZE..auth_len]
                .iter_mut()
                .for_each(|b| *b = 0);
        });
    }

    fn swap_tag_block(&self) {
        // Swaps [auth_len - AES128_BLOCK_SIZE..auth_len] with
        // the value in saved_tag
        let auth_len = self.crypt_auth_len.get();
        self.crypt_buf.map(|cbuf| {
            let mut cbuf_block = [0u8; AES128_BLOCK_SIZE];
            cbuf_block.copy_from_slice(&cbuf[auth_len - AES128_BLOCK_SIZE..auth_len]);
            cbuf[auth_len - AES128_BLOCK_SIZE..auth_len].copy_from_slice(&self.saved_tag.get());
            self.saved_tag.set(cbuf_block);
        });
    }

    fn crypt_r(
        &self,
        parameter: CryptFunctionParameters,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        // just expanding the parameters......
        let buf: &'static mut [u8] = parameter.buf;
        let a_off: usize = parameter.a_off;
        let m_off: usize = parameter.m_off;
        let m_len: usize = parameter.m_len;
        let mic_len: usize = parameter.mic_len;
        let confidential: bool = parameter.confidential;
        let encrypting: bool = parameter.encrypting;
        //
        if self.state.get() != CCMState::Idle {
            return Err((ErrorCode::BUSY, buf));
        }
        if !(a_off <= m_off && m_off + m_len + mic_len <= buf.len()) {
            return Err((ErrorCode::INVAL, buf));
        }

        self.confidential.set(confidential);
        self.encrypting.set(encrypting);

        let res = self.prepare_ccm_buffer(
            &self.nonce.get(),
            mic_len,
            &buf[a_off..m_off],
            &buf[m_off..m_off + m_len],
        );
        if res != Ok(()) {
            return Err((res.unwrap_err(), buf));
        }

        let res = if !confidential || encrypting {
            // Perform CBC before CTR
            self.start_ccm_auth()
        } else {
            // Perform CTR before CBC
            self.save_tag_block();
            self.start_ccm_encrypt()
        };

        if res != Ok(()) {
            Err((res.unwrap_err(), buf))
        } else {
            self.buf.replace(buf);
            self.pos.set((a_off, m_off, m_len, mic_len));
            Ok(())
        }
    }

    fn remove_from_queue(&self) {
        self.queued_up.clear();
        self.mux.inflight.clear();
    }
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> symmetric_encryption::AES128CCM<'a>
    for VirtualAES128CCM<'a, A>
{
    fn set_client(&self, client: &'a dyn symmetric_encryption::CCMClient) {
        self.ccm_client.set(client);
    }

    fn set_key(&self, key: &[u8]) -> Result<(), ErrorCode> {
        if key.len() < AES128_KEY_SIZE {
            Err(ErrorCode::INVAL)
        } else {
            let mut new_key = [0u8; AES128_KEY_SIZE];
            new_key.copy_from_slice(key);
            self.key.set(new_key);
            Ok(())
        }
    }

    fn set_nonce(&self, nonce: &[u8]) -> Result<(), ErrorCode> {
        if nonce.len() < CCM_NONCE_LENGTH {
            Err(ErrorCode::INVAL)
        } else {
            let mut new_nonce = [0u8; CCM_NONCE_LENGTH];
            new_nonce.copy_from_slice(nonce);
            self.nonce.set(new_nonce);
            Ok(())
        }
    }
    /// Try to begin the encryption/decryption process
    fn crypt(
        &self,
        buf: &'static mut [u8],
        a_off: usize,
        m_off: usize,
        m_len: usize,
        mic_len: usize,
        confidential: bool,
        encrypting: bool,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        if self.queued_up.is_some() {
            return Err((ErrorCode::BUSY, buf));
        }
        if self.state.get() != CCMState::Idle {
            return Err((ErrorCode::BUSY, buf));
        }
        if !(a_off <= m_off && m_off + m_len + mic_len <= buf.len()) {
            return Err((ErrorCode::INVAL, buf));
        }

        self.queued_up.set(CryptFunctionParameters::new(
            buf,
            a_off,
            m_off,
            m_len,
            mic_len,
            confidential,
            encrypting,
        ));
        self.mux.do_next_op_async();
        Ok(())
    }
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> symmetric_encryption::AES128<'a>
    for VirtualAES128CCM<'a, A>
{
    fn enable(&self) {
        self.aes.enable();
    }

    fn disable(&self) {
        self.aes.disable();
    }

    fn set_client(&'a self, client: &'a dyn symmetric_encryption::Client<'a>) {
        self.mux.client.set(client);
    }

    fn set_key(&self, key: &[u8]) -> Result<(), ErrorCode> {
        if self.mux.inflight.is_none() {
            self.mux.aes.set_key(key)
        } else {
            Err(ErrorCode::BUSY)
        }
    }

    fn set_iv(&self, iv: &[u8]) -> Result<(), ErrorCode> {
        if self.mux.inflight.is_none() {
            self.mux.aes.set_iv(iv)
        } else {
            Err(ErrorCode::BUSY)
        }
    }

    fn start_message(&self) {
        if self.mux.inflight.is_none() {
            self.mux.aes.start_message()
        }
    }

    fn crypt(
        &self,
        source: Option<&'static mut [u8]>,
        dest: &'static mut [u8],
        start_index: usize,
        stop_index: usize,
    ) -> Option<(
        Result<(), ErrorCode>,
        Option<&'static mut [u8]>,
        &'static mut [u8],
    )> {
        if self.mux.inflight.is_none() {
            self.mux.aes.crypt(source, dest, start_index, stop_index)
        } else {
            Some((Err(ErrorCode::BUSY), source, dest))
        }
    }
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> AES128Ctr for VirtualAES128CCM<'a, A> {
    fn set_mode_aes128ctr(&self, encrypting: bool) -> Result<(), ErrorCode> {
        if self.mux.inflight.is_none() {
            self.mux.aes.set_mode_aes128ctr(encrypting)
        } else {
            Err(ErrorCode::BUSY)
        }
    }
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> AES128ECB for VirtualAES128CCM<'a, A> {
    fn set_mode_aes128ecb(&self, encrypting: bool) -> Result<(), ErrorCode> {
        if self.mux.inflight.is_none() {
            self.mux.aes.set_mode_aes128ecb(encrypting)
        } else {
            Err(ErrorCode::BUSY)
        }
    }
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> AES128CBC for VirtualAES128CCM<'a, A> {
    fn set_mode_aes128cbc(&self, encrypting: bool) -> Result<(), ErrorCode> {
        if self.mux.inflight.is_none() {
            self.mux.aes.set_mode_aes128cbc(encrypting)
        } else {
            Err(ErrorCode::BUSY)
        }
    }
}

impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> symmetric_encryption::Client<'a>
    for VirtualAES128CCM<'a, A>
{
    fn crypt_done(&self, _: Option<&'static mut [u8]>, crypt_buf: &'static mut [u8]) {
        self.crypt_buf.replace(crypt_buf);
        match self.state.get() {
            CCMState::Idle => {}
            CCMState::Auth => {
                if !self.reversed() {
                    if self.confidential.get() {
                        let (_, m_off, m_len, _) = self.pos.get();
                        let auth_len = self.crypt_auth_len.get();
                        let enc_len = self.crypt_enc_len.get();
                        self.crypt_buf.map(|cbuf| {
                            // If we authenticated over the plaintext, copy the last
                            // block over to the beginning again so that it becomes
                            // the encrypted tag after ctr mode
                            let auth_last = auth_len - AES128_BLOCK_SIZE;
                            let enc_last = enc_len - AES128_BLOCK_SIZE;
                            for i in 0..AES128_BLOCK_SIZE {
                                cbuf[auth_last + i] = cbuf[enc_last + i];
                            }

                            // Then repopulate the plaintext data field
                            self.buf.map(|buf| {
                                cbuf[auth_len..auth_len + m_len]
                                    .copy_from_slice(&buf[m_off..m_off + m_len]);
                            });
                            cbuf[auth_len + m_len..enc_len]
                                .iter_mut()
                                .for_each(|b| *b = 0);
                        });
                    }

                    let res = self.start_ccm_encrypt();
                    if res != Ok(()) {
                        // The operation fails, immediately remove the request and perform the next operation
                        self.state.set(CCMState::Idle);
                        self.remove_from_queue();
                        self.mux.do_next_op();

                        // Return client buffer to client
                        self.buf.take().map(|buf| {
                            self.ccm_client.map(move |client| {
                                client.crypt_done(buf, res, false);
                            });
                        });
                    }
                } else {
                    self.reverse_end_ccm();
                }
            }
            CCMState::Encrypt => {
                if !self.reversed() {
                    self.end_ccm();
                } else {
                    self.swap_tag_block();
                    self.crypt_buf.map(|cbuf| {
                        // Copy the encrypted/decrypted message data
                        let (_, m_off, m_len, _) = self.pos.get();
                        let auth_len = self.crypt_auth_len.get();
                        self.buf.map(|buf| {
                            buf[m_off..m_off + m_len]
                                .copy_from_slice(&cbuf[auth_len..auth_len + m_len]);
                        });

                        // Reset the rest of the padding
                        cbuf[self.crypt_auth_len.get() + m_len..self.crypt_enc_len.get()]
                            .iter_mut()
                            .for_each(|b| *b = 0);
                    });
                    let res = self.start_ccm_auth();
                    if res != Ok(()) {
                        // Return client buffer to ccm_clients
                        self.buf.take().map(|buf| {
                            self.ccm_client.map(move |client| {
                                client.crypt_done(buf, res, false);
                            });
                        });
                        // The operation fails, immediately remove the request and perform the next operation
                        self.state.set(CCMState::Idle);
                        self.remove_from_queue();
                        self.mux.do_next_op();
                    }
                }
            }
        }
    }
}

// Fit in the linked list
impl<'a, A: AES128<'a> + AES128Ctr + AES128CBC + AES128ECB> ListNode<'a, VirtualAES128CCM<'a, A>>
    for VirtualAES128CCM<'a, A>
{
    fn next(&'a self) -> &'a ListLink<'a, VirtualAES128CCM<'a, A>> {
        &self.next
    }
}