capsules_core/
adc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Syscall driver capsules for ADC sampling.
//!
//! This module has two ADC syscall driver capsule implementations.
//!
//! The first, called AdcDedicated, assumes that it has complete (dedicated)
//! control of the kernel ADC. This capsule provides userspace with
//! the ability to perform single, continuous, and high speed samples.
//! However, using this capsule means that no other
//! capsule or kernel service can use the ADC. It also allows only
//! a single process to use the ADC: other processes will receive
//! NOMEM errors.
//!
//! The second, called AdcVirtualized, sits top of an ADC virtualizer.
//! This capsule shares the ADC with the rest of the kernel through this
//! virtualizer, so allows other kernel services and capsules to use the
//! ADC. It also supports multiple processes requesting ADC samples
//! concurrently. However, it only supports processes requesting single
//! ADC samples: they cannot sample continuously or at high speed.
//!
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! let adc_channels = static_init!(
//!     [&'static sam4l::adc::AdcChannel; 6],
//!     [
//!         &sam4l::adc::CHANNEL_AD0, // A0
//!         &sam4l::adc::CHANNEL_AD1, // A1
//!         &sam4l::adc::CHANNEL_AD3, // A2
//!         &sam4l::adc::CHANNEL_AD4, // A3
//!         &sam4l::adc::CHANNEL_AD5, // A4
//!         &sam4l::adc::CHANNEL_AD6, // A5
//!     ]
//! );
//! let adc = static_init!(
//!     capsules_core::adc::AdcDedicated<'static, sam4l::adc::Adc>,
//!     capsules_core::adc::AdcDedicated::new(
//!         &mut sam4l::adc::ADC0,
//!         adc_channels,
//!         &mut capsules_core::adc::ADC_BUFFER1,
//!         &mut capsules_core::adc::ADC_BUFFER2,
//!         &mut capsules_core::adc::ADC_BUFFER3
//!     )
//! );
//! sam4l::adc::ADC0.set_client(adc);
//! ```

use core::cell::Cell;
use core::cmp;

use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil;
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::{ErrorCode, ProcessId};

/// Syscall driver number.
use crate::driver;
use crate::virtualizers::virtual_adc::Operation;
pub const DRIVER_NUM: usize = driver::NUM::Adc as usize;

/// Multiplexed ADC syscall driver, used by applications and capsules.
///
/// Virtualized, and can be use by multiple applications at the same time;
/// requests are queued. Does not support continuous or high-speed sampling.
pub struct AdcVirtualized<'a> {
    drivers: &'a [&'a dyn hil::adc::AdcChannel<'a>],
    apps: Grant<AppSys, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<0>>,
    current_process: OptionalCell<ProcessId>,
}

/// ADC syscall driver, used by applications to interact with ADC.
///
/// Not currently virtualized: does not share the ADC with other capsules
/// and only one application can use it at a time. Supports continuous and
/// high speed sampling.
pub struct AdcDedicated<'a, A: hil::adc::Adc<'a> + hil::adc::AdcHighSpeed<'a>> {
    // ADC driver
    adc: &'a A,
    channels: &'a [<A as hil::adc::Adc<'a>>::Channel],

    // ADC state
    active: Cell<bool>,
    mode: Cell<AdcMode>,

    // App state
    apps: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<2>>,
    processid: OptionalCell<ProcessId>,
    channel: Cell<usize>,

    // ADC buffers
    adc_buf1: TakeCell<'static, [u16]>,
    adc_buf2: TakeCell<'static, [u16]>,
    adc_buf3: TakeCell<'static, [u16]>,
}

/// ADC modes, used to track internal state and to signify to applications which
/// state a callback came from
#[derive(Copy, Clone, Debug, PartialEq)]
pub(crate) enum AdcMode {
    NoMode = -1,
    SingleSample = 0,
    ContinuousSample = 1,
    SingleBuffer = 2,
    ContinuousBuffer = 3,
}

// Datas passed by the application to us
pub struct AppSys {
    pending_command: bool,
    command: OptionalCell<Operation>,
    channel: usize,
}

/// Holds buffers that the application has passed us
pub struct App {
    app_buf_offset: Cell<usize>,
    samples_remaining: Cell<usize>,
    samples_outstanding: Cell<usize>,
    next_samples_outstanding: Cell<usize>,
    using_app_buf0: Cell<bool>,
}

impl Default for App {
    fn default() -> App {
        App {
            app_buf_offset: Cell::new(0),
            samples_remaining: Cell::new(0),
            samples_outstanding: Cell::new(0),
            next_samples_outstanding: Cell::new(0),
            using_app_buf0: Cell::new(true),
        }
    }
}

impl Default for AppSys {
    fn default() -> AppSys {
        AppSys {
            pending_command: false,
            command: OptionalCell::empty(),
            channel: 0,
        }
    }
}
/// Buffers to use for DMA transfers.
///
/// The size is chosen somewhat arbitrarily, but has been tested. At 175000 Hz,
/// buffers need to be swapped every 70 us and copied over before the next
/// swap. In testing, it seems to keep up fine.
pub const BUF_LEN: usize = 128;

impl<'a, A: hil::adc::Adc<'a> + hil::adc::AdcHighSpeed<'a>> AdcDedicated<'a, A> {
    /// Create a new `Adc` application interface.
    ///
    /// - `adc` - ADC driver to provide application access to
    /// - `channels` - list of ADC channels usable by applications
    /// - `adc_buf1` - buffer used to hold ADC samples
    /// - `adc_buf2` - second buffer used when continuously sampling ADC
    pub fn new(
        adc: &'a A,
        grant: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<2>>,
        channels: &'a [<A as hil::adc::Adc<'a>>::Channel],
        adc_buf1: &'static mut [u16; 128],
        adc_buf2: &'static mut [u16; 128],
        adc_buf3: &'static mut [u16; 128],
    ) -> AdcDedicated<'a, A> {
        AdcDedicated {
            // ADC driver
            adc,
            channels,

            // ADC state
            active: Cell::new(false),
            mode: Cell::new(AdcMode::NoMode),

            // App state
            apps: grant,
            processid: OptionalCell::empty(),
            channel: Cell::new(0),

            // ADC buffers
            adc_buf1: TakeCell::new(adc_buf1),
            adc_buf2: TakeCell::new(adc_buf2),
            adc_buf3: TakeCell::new(adc_buf3),
        }
    }

    /// Store a buffer we've regained ownership of and return a handle to it.
    /// The handle can have `map()` called on it in order to process the data in
    /// the buffer.
    ///
    /// - `buf` - buffer to be stored
    fn replace_buffer(&self, buf: &'static mut [u16]) -> &TakeCell<'static, [u16]> {
        // We play a little trick here where we always insert replaced buffers
        // in the last position but pull new buffers (in `take_and_map_buffer`)
        // from the beginning. We do this to get around Rust ownership rules
        // when handling errors. When we are doing continuous buffering, we need
        // to make sure that we re-gain ownership of the buffer passed back from
        // the ADC driver, AND we have to copy from that buffer the samples the
        // ADC driver took. To allow us to ensure we re-gain ownership, even if
        // an error occurs (like the app crashes), we unconditionally save
        // ownership of the returned buffer first (by calling this function).
        // However, we also pass zero or one buffers back to the ADC driver, and
        // we must ensure we do not pass the same buffer right back to the
        // driver before we have had a chance to save the samples.

        if self.adc_buf3.is_none() {
            self.adc_buf3.replace(buf);
        } else {
            let temp = self.adc_buf3.take();
            self.adc_buf3.replace(buf);

            // Find a place to insert the buffer we removed from the last slot.
            if self.adc_buf2.is_none() {
                temp.map(|likely_buffer| self.adc_buf2.replace(likely_buffer));
            } else {
                temp.map(|likely_buffer| self.adc_buf1.replace(likely_buffer));
            }
        }

        &self.adc_buf3
    }

    /// Find a buffer to give to the ADC to store samples in.
    ///
    /// - `closure` - function to run on the found buffer
    fn take_and_map_buffer<F: FnOnce(&'static mut [u16])>(&self, closure: F) {
        if self.adc_buf1.is_some() {
            self.adc_buf1.take().map(|val| {
                closure(val);
            });
        } else if self.adc_buf2.is_some() {
            self.adc_buf2.take().map(|val| {
                closure(val);
            });
        } else if self.adc_buf3.is_some() {
            self.adc_buf3.take().map(|val| {
                closure(val);
            });
        }
    }

    /// Collect a single analog sample on a channel.
    ///
    /// - `channel` - index into `channels` array, which channel to sample
    fn sample(&self, channel: usize) -> Result<(), ErrorCode> {
        // only one sample at a time
        if self.active.get() {
            return Err(ErrorCode::BUSY);
        }

        // convert channel index
        if channel >= self.channels.len() {
            return Err(ErrorCode::INVAL);
        }
        let chan = &self.channels[channel];

        // save state for callback
        self.active.set(true);
        self.mode.set(AdcMode::SingleSample);
        self.channel.set(channel);

        // start a single sample
        let res = self.adc.sample(chan);
        if res != Ok(()) {
            // failure, clear state
            self.active.set(false);
            self.mode.set(AdcMode::NoMode);

            return res;
        }

        Ok(())
    }

    /// Collect repeated single analog samples on a channel.
    ///
    /// - `channel` - index into `channels` array, which channel to sample
    /// - `frequency` - number of samples per second to collect
    fn sample_continuous(&self, channel: usize, frequency: u32) -> Result<(), ErrorCode> {
        // only one sample at a time
        if self.active.get() {
            return Err(ErrorCode::BUSY);
        }

        // convert channel index
        if channel >= self.channels.len() {
            return Err(ErrorCode::INVAL);
        }
        let chan = &self.channels[channel];

        // save state for callback
        self.active.set(true);
        self.mode.set(AdcMode::ContinuousSample);
        self.channel.set(channel);

        // start a single sample
        let res = self.adc.sample_continuous(chan, frequency);
        if res != Ok(()) {
            // failure, clear state
            self.active.set(false);
            self.mode.set(AdcMode::NoMode);

            return res;
        }

        Ok(())
    }

    /// Collect a buffer-full of analog samples.
    ///
    /// Samples are collected into the first app buffer provided. The number of
    /// samples collected is equal to the size of the buffer "allowed".
    ///
    /// - `channel` - index into `channels` array, which channel to sample
    /// - `frequency` - number of samples per second to collect
    fn sample_buffer(&self, channel: usize, frequency: u32) -> Result<(), ErrorCode> {
        // only one sample at a time
        if self.active.get() {
            return Err(ErrorCode::BUSY);
        }

        // convert channel index
        if channel >= self.channels.len() {
            return Err(ErrorCode::INVAL);
        }
        let chan = &self.channels[channel];

        // cannot sample a buffer without a buffer to sample into
        let mut app_buf_length = 0;
        let exists = self.processid.map_or(false, |id| {
            self.apps
                .enter(id, |_, kernel_data| {
                    app_buf_length = kernel_data
                        .get_readwrite_processbuffer(0)
                        .map(|b| b.len())
                        .unwrap_or(0);
                    app_buf_length > 0
                })
                .map_err(|err| {
                    if err == kernel::process::Error::NoSuchApp
                        || err == kernel::process::Error::InactiveApp
                    {
                        self.processid.clear();
                    }
                })
                .unwrap_or(false)
        });
        if !exists {
            return Err(ErrorCode::NOMEM);
        }

        // save state for callback
        self.active.set(true);
        self.mode.set(AdcMode::SingleBuffer);
        let ret = self.processid.map_or(Err(ErrorCode::NOMEM), |id| {
            self.apps
                .enter(id, |app, _| {
                    app.app_buf_offset.set(0);
                    self.channel.set(channel);
                    // start a continuous sample
                    let res = self.adc_buf1.take().map_or(Err(ErrorCode::BUSY), |buf1| {
                        self.adc_buf2
                            .take()
                            .map_or(Err(ErrorCode::BUSY), move |buf2| {
                                // determine request length
                                let request_len = app_buf_length / 2;
                                let len1;
                                let len2;
                                if request_len <= buf1.len() {
                                    len1 = app_buf_length / 2;
                                    len2 = 0;
                                } else if request_len <= (buf1.len() + buf2.len()) {
                                    len1 = buf1.len();
                                    len2 = request_len - buf1.len();
                                } else {
                                    len1 = buf1.len();
                                    len2 = buf2.len();
                                }

                                // begin sampling
                                app.using_app_buf0.set(true);
                                app.samples_remaining.set(request_len - len1 - len2);
                                app.samples_outstanding.set(len1 + len2);
                                self.adc
                                    .sample_highspeed(chan, frequency, buf1, len1, buf2, len2)
                                    .map_or_else(
                                        |(ecode, buf1, buf2)| {
                                            // store buffers again
                                            self.replace_buffer(buf1);
                                            self.replace_buffer(buf2);
                                            Err(ecode)
                                        },
                                        |()| Ok(()),
                                    )
                            })
                    });
                    res
                })
                .map_err(|err| {
                    if err == kernel::process::Error::NoSuchApp
                        || err == kernel::process::Error::InactiveApp
                    {
                        self.processid.clear();
                    }
                })
                .unwrap_or(Err(ErrorCode::NOMEM))
        });
        if ret != Ok(()) {
            // failure, clear state
            self.active.set(false);
            self.mode.set(AdcMode::NoMode);
            self.processid.map(|id| {
                self.apps
                    .enter(id, |app, _| {
                        app.samples_remaining.set(0);
                        app.samples_outstanding.set(0);
                    })
                    .map_err(|err| {
                        if err == kernel::process::Error::NoSuchApp
                            || err == kernel::process::Error::InactiveApp
                        {
                            self.processid.clear();
                        }
                    })
            });
        }
        ret
    }

    /// Collect analog samples continuously.
    ///
    /// Fills one "allowed" application buffer at a time and then swaps to
    /// filling the second buffer. Upcalls occur when the in use "allowed"
    /// buffer fills.
    ///
    /// - `channel` - index into `channels` array, which channel to sample
    /// - `frequency` - number of samples per second to collect
    fn sample_buffer_continuous(&self, channel: usize, frequency: u32) -> Result<(), ErrorCode> {
        // only one sample at a time
        if self.active.get() {
            return Err(ErrorCode::BUSY);
        }

        // convert channel index
        if channel >= self.channels.len() {
            return Err(ErrorCode::INVAL);
        }
        let chan = &self.channels[channel];

        // cannot continuously sample without two buffers
        let mut app_buf_length = 0;
        let mut next_app_buf_length = 0;
        let exists = self.processid.map_or(false, |id| {
            self.apps
                .enter(id, |_, kernel_data| {
                    app_buf_length = kernel_data
                        .get_readwrite_processbuffer(0)
                        .map(|b| b.len())
                        .unwrap_or(0);
                    next_app_buf_length = kernel_data
                        .get_readwrite_processbuffer(1)
                        .map(|b| b.len())
                        .unwrap_or(0);
                    app_buf_length > 0 && next_app_buf_length > 0
                })
                .map_err(|err| {
                    if err == kernel::process::Error::NoSuchApp
                        || err == kernel::process::Error::InactiveApp
                    {
                        self.processid.clear();
                    }
                })
                .unwrap_or(false)
        });
        if !exists {
            return Err(ErrorCode::NOMEM);
        }

        // save state for callback
        self.active.set(true);
        self.mode.set(AdcMode::ContinuousBuffer);

        let ret = self.processid.map_or(Err(ErrorCode::NOMEM), |id| {
            self.apps
                .enter(id, |app, _| {
                    app.app_buf_offset.set(0);
                    self.channel.set(channel);
                    // start a continuous sample
                    self.adc_buf1.take().map_or(Err(ErrorCode::BUSY), |buf1| {
                        self.adc_buf2
                            .take()
                            .map_or(Err(ErrorCode::BUSY), move |buf2| {
                                // determine request lengths
                                let samples_needed = app_buf_length / 2;
                                let next_samples_needed = next_app_buf_length / 2;

                                // determine request lengths
                                let len1;
                                let len2;
                                if samples_needed <= buf1.len() {
                                    // we can fit the entire app_buffer request in the first
                                    // buffer. The second buffer will be used for the next
                                    // app_buffer
                                    len1 = samples_needed;
                                    len2 = cmp::min(next_samples_needed, buf2.len());
                                    app.samples_remaining.set(0);
                                    app.samples_outstanding.set(len1);
                                } else if samples_needed <= (buf1.len() + buf2.len()) {
                                    // we can fit the entire app_buffer request between the two
                                    // buffers
                                    len1 = buf1.len();
                                    len2 = samples_needed - buf1.len();
                                    app.samples_remaining.set(0);
                                    app.samples_outstanding.set(len1 + len2);
                                } else {
                                    // the app_buffer is larger than both buffers, so just
                                    // request max lengths
                                    len1 = buf1.len();
                                    len2 = buf2.len();
                                    app.samples_remaining.set(samples_needed - len1 - len2);
                                    app.samples_outstanding.set(len1 + len2);
                                }

                                // begin sampling
                                app.using_app_buf0.set(true);
                                self.adc
                                    .sample_highspeed(chan, frequency, buf1, len1, buf2, len2)
                                    .map_or_else(
                                        |(ecode, buf1, buf2)| {
                                            // store buffers again
                                            self.replace_buffer(buf1);
                                            self.replace_buffer(buf2);
                                            Err(ecode)
                                        },
                                        |()| Ok(()),
                                    )
                            })
                    })
                })
                .map_err(|err| {
                    if err == kernel::process::Error::NoSuchApp
                        || err == kernel::process::Error::InactiveApp
                    {
                        self.processid.clear();
                    }
                })
                .unwrap_or(Err(ErrorCode::NOMEM))
        });
        if ret != Ok(()) {
            // failure, clear state
            self.active.set(false);
            self.mode.set(AdcMode::NoMode);
            self.processid.map(|id| {
                self.apps
                    .enter(id, |app, _| {
                        app.samples_remaining.set(0);
                        app.samples_outstanding.set(0);
                    })
                    .map_err(|err| {
                        if err == kernel::process::Error::NoSuchApp
                            || err == kernel::process::Error::InactiveApp
                        {
                            self.processid.clear();
                        }
                    })
            });
        }
        ret
    }

    /// Stops sampling the ADC.
    ///
    /// Any active operation by the ADC is canceled. No additional callbacks
    /// will occur. Also retrieves buffers from the ADC (if any).
    fn stop_sampling(&self) -> Result<(), ErrorCode> {
        if !self.active.get() || self.mode.get() == AdcMode::NoMode {
            // already inactive!
            return Ok(());
        }

        // clean up state
        self.processid.map_or(Err(ErrorCode::FAIL), |id| {
            self.apps
                .enter(id, |app, _| {
                    self.active.set(false);
                    self.mode.set(AdcMode::NoMode);
                    app.app_buf_offset.set(0);

                    // actually cancel the operation
                    let rc = self.adc.stop_sampling();
                    if rc != Ok(()) {
                        return rc;
                    }

                    // reclaim buffers
                    match self.adc.retrieve_buffers() {
                        Ok((buf1, buf2)) => {
                            buf1.map(|buf| {
                                self.replace_buffer(buf);
                            });
                            buf2.map(|buf| {
                                self.replace_buffer(buf);
                            });
                            Ok(())
                        }
                        Err(ecode) => Err(ecode),
                    }
                })
                .map_err(|err| {
                    if err == kernel::process::Error::NoSuchApp
                        || err == kernel::process::Error::InactiveApp
                    {
                        self.processid.clear();
                    }
                })
                .unwrap_or(Err(ErrorCode::FAIL))
        })
    }

    fn get_resolution_bits(&self) -> usize {
        self.adc.get_resolution_bits()
    }

    fn get_voltage_reference_mv(&self) -> Option<usize> {
        self.adc.get_voltage_reference_mv()
    }
}

/// Functions to create, initialize, and interact with the virtualized ADC
impl<'a> AdcVirtualized<'a> {
    /// Create a new `Adc` application interface.
    ///
    /// - `drivers` - Virtual ADC drivers to provide application access to
    pub fn new(
        drivers: &'a [&'a dyn hil::adc::AdcChannel<'a>],
        grant: Grant<AppSys, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<0>>,
    ) -> AdcVirtualized<'a> {
        AdcVirtualized {
            drivers,
            apps: grant,
            current_process: OptionalCell::empty(),
        }
    }

    /// Enqueue the command to be executed when the ADC is available.
    fn enqueue_command(
        &self,
        command: Operation,
        channel: usize,
        processid: ProcessId,
    ) -> Result<(), ErrorCode> {
        if channel < self.drivers.len() {
            if self.current_process.is_none() {
                self.current_process.set(processid);
                let r = self.call_driver(command, channel);
                if r != Ok(()) {
                    self.current_process.clear();
                }
                self.run_next_command();
                Ok(())
            } else {
                match self
                    .apps
                    .enter(processid, |app, _| {
                        if app.pending_command {
                            Err(ErrorCode::BUSY)
                        } else {
                            app.pending_command = true;
                            app.command.set(command);
                            app.channel = channel;
                            Ok(())
                        }
                    })
                    .map_err(ErrorCode::from)
                {
                    Err(e) => Err(e),
                    Ok(_) => Ok(()),
                }
            }
        } else {
            Err(ErrorCode::NODEVICE)
        }
    }

    /// Run next command in queue, when available
    fn run_next_command(&self) {
        let mut command = Operation::OneSample;
        let mut channel = 0;
        for app in self.apps.iter() {
            let processid = app.processid();
            let start_command = app.enter(|app, _| {
                if app.pending_command {
                    app.pending_command = false;
                    app.command.take().map(|c| {
                        command = c;
                    });
                    channel = app.channel;
                    self.current_process.set(processid);
                    true
                } else {
                    false
                }
            });
            if start_command {
                match self.call_driver(command, channel) {
                    Err(_) => {
                        self.current_process.clear();
                    }
                    Ok(()) => {
                        break;
                    }
                }
            }
        }
    }

    /// Request the sample from the specified channel
    fn call_driver(&self, command: Operation, channel: usize) -> Result<(), ErrorCode> {
        match command {
            Operation::OneSample => self.drivers[channel].sample(),
        }
    }
}

/// Callbacks from the ADC driver
impl<'a, A: hil::adc::Adc<'a> + hil::adc::AdcHighSpeed<'a>> hil::adc::Client
    for AdcDedicated<'a, A>
{
    /// Single sample operation complete.
    ///
    /// Collects the sample and provides a callback to the application.
    ///
    /// - `sample` - analog sample value
    fn sample_ready(&self, sample: u16) {
        let mut calledback = false;
        if self.active.get() && self.mode.get() == AdcMode::SingleSample {
            // single sample complete, clean up state
            self.active.set(false);
            self.mode.set(AdcMode::NoMode);

            // perform callback

            self.processid.map(|id| {
                self.apps
                    .enter(id, |_app, upcalls| {
                        calledback = true;
                        upcalls
                            .schedule_upcall(
                                0,
                                (
                                    AdcMode::SingleSample as usize,
                                    self.channel.get(),
                                    sample as usize,
                                ),
                            )
                            .ok();
                    })
                    .map_err(|err| {
                        if err == kernel::process::Error::NoSuchApp
                            || err == kernel::process::Error::InactiveApp
                        {
                            self.processid.clear();
                        }
                    })
            });
        } else if self.active.get() && self.mode.get() == AdcMode::ContinuousSample {
            // sample ready in continuous sampling operation, keep state

            // perform callback
            self.processid.map(|id| {
                self.apps
                    .enter(id, |_app, upcalls| {
                        calledback = true;
                        upcalls
                            .schedule_upcall(
                                0,
                                (
                                    AdcMode::ContinuousSample as usize,
                                    self.channel.get(),
                                    sample as usize,
                                ),
                            )
                            .ok();
                    })
                    .map_err(|err| {
                        if err == kernel::process::Error::NoSuchApp
                            || err == kernel::process::Error::InactiveApp
                        {
                            self.processid.clear();
                        }
                    })
            });
        }
        if !calledback {
            // operation probably canceled. Make sure state is consistent. No
            // callback
            self.active.set(false);
            self.mode.set(AdcMode::NoMode);

            // Also make sure that no more samples are taken if we were in
            // continuous mode.
            let _ = self.adc.stop_sampling();
        }
    }
}

/// Callbacks from the High Speed ADC driver
impl<'a, A: hil::adc::Adc<'a> + hil::adc::AdcHighSpeed<'a>> hil::adc::HighSpeedClient
    for AdcDedicated<'a, A>
{
    /// Internal buffer has filled from a buffered sampling operation.
    /// Copies data over to application buffer, determines if more data is
    /// needed, and performs a callback to the application if ready. If
    /// continuously sampling, also swaps application buffers and continues
    /// sampling when necessary. If only filling a single buffer, stops
    /// sampling operation when the application buffer is full.
    ///
    /// - `buf` - internal buffer filled with analog samples
    /// - `length` - number of valid samples in the buffer, guaranteed to be
    ///   less than or equal to buffer length
    fn samples_ready(&self, buf: &'static mut [u16], length: usize) {
        let mut unexpected_state = false;

        // Make sure in all cases we regain ownership of the buffer. However,
        // we also get a reference back to it so we can copy the sampled values
        // out and to an application.
        let buffer_with_samples = self.replace_buffer(buf);

        // do we expect a buffer?
        if self.active.get()
            && (self.mode.get() == AdcMode::SingleBuffer
                || self.mode.get() == AdcMode::ContinuousBuffer)
        {
            // we did expect a buffer. Determine the current application state
            self.processid.map(|id| {
                self.apps
                    .enter(id, |app, kernel_data| {
                        // Get both buffers, this shouldn't ever fail since the grant was created
                        // with enough space. The buffer still may be empty though
                        let app_buf0 = match kernel_data.get_readwrite_processbuffer(0) {
                            Ok(buf) => buf,
                            Err(_) => return,
                        };
                        let app_buf1 = match kernel_data.get_readwrite_processbuffer(1) {
                            Ok(buf) => buf,
                            Err(_) => return,
                        };
                        // determine which app buffer to copy data into and which is
                        // next up if we're in continuous mode
                        let use0 = app.using_app_buf0.get();
                        let next_app_buf;
                        let app_buf_ref;
                        if use0 {
                            app_buf_ref = &app_buf0;
                            next_app_buf = &app_buf1;
                        } else {
                            app_buf_ref = &app_buf1;
                            next_app_buf = &app_buf0;
                        }

                        // update count of outstanding sample requests
                        app.samples_outstanding
                            .set(app.samples_outstanding.get() - length);

                        // provide a new buffer and length request to the ADC if
                        // necessary. If we haven't received enough samples for the
                        // current app_buffer, we may need to place more requests. If we
                        // have received enough, but are in continuous mode, we should
                        // place a request for the next app_buffer. This is all
                        // unfortunately made more complicated by the fact that there is
                        // always one outstanding request to the ADC.
                        let perform_callback;
                        if app.samples_remaining.get() == 0 {
                            // we have already placed outstanding requests for all the
                            // samples needed to fill the current app_buffer

                            if app.samples_outstanding.get() == 0 {
                                // and the samples we just received are the last ones
                                // we need
                                perform_callback = true;

                                if self.mode.get() == AdcMode::ContinuousBuffer {
                                    // it's time to switch to the next app_buffer, but
                                    // there's already an outstanding request to the ADC
                                    // for the next app_buffer that was placed last
                                    // time, so we need to account for that
                                    let samples_needed =
                                        next_app_buf.enter(|buf| buf.len() / 2).unwrap_or(0);
                                    app.samples_remaining
                                        .set(samples_needed - app.next_samples_outstanding.get());
                                    app.samples_outstanding
                                        .set(app.next_samples_outstanding.get());
                                    app.using_app_buf0.set(!app.using_app_buf0.get());

                                    // we also need to place our next request, however
                                    // the outstanding request already placed for the
                                    // next app_buffer might have completed it! So we
                                    // have to account for that case
                                    if app.samples_remaining.get() == 0 {
                                        // oh boy. We actually need to place a request
                                        // for the next next app_buffer (which is
                                        // actually the current app_buf, but try not to
                                        // think about that...). In practice, this
                                        // should be a pretty uncommon case to hit, only
                                        // occurring if the length of the app buffers
                                        // are smaller than the length of the adc
                                        // buffers, which is unsustainable at high
                                        // sampling frequencies
                                        let next_next_app_buf = &app_buf_ref;

                                        // provide a new buffer. However, we cannot
                                        // currently update state since the next
                                        // app_buffer still has a request outstanding.
                                        // We'll just make a request and handle the
                                        // state updating on next callback
                                        self.take_and_map_buffer(|adc_buf| {
                                            let samples_needed = next_next_app_buf
                                                .enter(|buf| buf.len() / 2)
                                                .unwrap_or(0);
                                            let request_len =
                                                cmp::min(samples_needed, adc_buf.len());
                                            app.next_samples_outstanding.set(request_len);
                                            let _ = self
                                                .adc
                                                .provide_buffer(adc_buf, request_len)
                                                .map_err(|(_, buf)| {
                                                    self.replace_buffer(buf);
                                                });
                                        });
                                    } else {
                                        // okay, we still need more samples for the next
                                        // app_buffer

                                        // provide a new buffer and update state
                                        self.take_and_map_buffer(|adc_buf| {
                                            let request_len = cmp::min(
                                                app.samples_remaining.get(),
                                                adc_buf.len(),
                                            );
                                            app.samples_remaining
                                                .set(app.samples_remaining.get() - request_len);
                                            app.samples_outstanding
                                                .set(app.samples_outstanding.get() + request_len);
                                            let _ = self
                                                .adc
                                                .provide_buffer(adc_buf, request_len)
                                                .map_err(|(_, buf)| {
                                                    self.replace_buffer(buf);
                                                });
                                        });
                                    }
                                }
                            } else {
                                // but there are still outstanding samples for the
                                // current app_buffer (actually exactly one request, the
                                // one the ADC is currently acting on)
                                perform_callback = false;

                                if self.mode.get() == AdcMode::ContinuousBuffer {
                                    // we're in continuous mode, so we need to start the
                                    // first request for the next app_buffer

                                    // provide a new buffer. However, we cannot
                                    // currently update state since the current
                                    // app_buffer still has a request outstanding. We'll
                                    // just make a request and handle the state updating
                                    // on next callback
                                    self.take_and_map_buffer(|adc_buf| {
                                        let samples_needed =
                                            next_app_buf.enter(|buf| buf.len() / 2).unwrap_or(0);
                                        let request_len = cmp::min(samples_needed, adc_buf.len());
                                        app.next_samples_outstanding.set(request_len);
                                        let _ = self
                                            .adc
                                            .provide_buffer(adc_buf, request_len)
                                            .map_err(|(_, buf)| {
                                                self.replace_buffer(buf);
                                            });
                                    });
                                }
                            }
                        } else {
                            // we need to get more samples for the current app_buffer
                            perform_callback = false;

                            // provide a new buffer and update state
                            self.take_and_map_buffer(|adc_buf| {
                                let request_len =
                                    cmp::min(app.samples_remaining.get(), adc_buf.len());
                                app.samples_remaining
                                    .set(app.samples_remaining.get() - request_len);
                                app.samples_outstanding
                                    .set(app.samples_outstanding.get() + request_len);
                                let _ = self.adc.provide_buffer(adc_buf, request_len).map_err(
                                    |(_, buf)| {
                                        self.replace_buffer(buf);
                                    },
                                );
                            });
                        }

                        let skip_amt = app.app_buf_offset.get() / 2;

                        {
                            let app_buf = if use0 { &app_buf0 } else { &app_buf1 };

                            // next we should copy bytes to the app buffer
                            let _ = app_buf.mut_enter(|app_buf| {
                                // Copy bytes to app buffer by iterating over the
                                // data.
                                buffer_with_samples.map(|adc_buf| {
                                    // The `for` commands:
                                    //  * `chunks_mut`: get sets of two bytes from the app
                                    //                  buffer
                                    //  * `skip`: skips the already written bytes from the
                                    //            app buffer
                                    //  * `zip`: ties that iterator to an iterator on the
                                    //           adc buffer, limiting iteration length to
                                    //           the minimum of each of their lengths
                                    //  * `take`: limits us to the minimum of buffer lengths
                                    //            or sample length
                                    // We then split each sample into its two bytes and copy
                                    // them to the app buffer
                                    for (chunk, &sample) in app_buf
                                        .chunks(2)
                                        .skip(skip_amt)
                                        .zip(adc_buf.iter())
                                        .take(length)
                                    {
                                        let mut val = sample;
                                        for byte in chunk.iter() {
                                            byte.set((val & 0xFF) as u8);
                                            val >>= 8;
                                        }
                                    }
                                });
                            });
                        }
                        // update our byte offset based on how many samples we
                        // copied
                        app.app_buf_offset
                            .set(app.app_buf_offset.get() + length * 2);

                        // let in_use_buf;
                        let (buf_ptr, buf_len) = if use0 {
                            (app_buf0.ptr(), app_buf0.len())
                        } else {
                            (app_buf1.ptr(), app_buf1.len())
                        };
                        // if the app_buffer is filled, perform callback
                        if perform_callback {
                            // actually schedule the callback
                            let len_chan = ((buf_len / 2) << 8) | (self.channel.get() & 0xFF);
                            kernel_data
                                .schedule_upcall(
                                    0,
                                    (self.mode.get() as usize, len_chan, buf_ptr as usize),
                                )
                                .ok();

                            // if the mode is SingleBuffer, the operation is
                            // complete. Clean up state
                            if self.mode.get() == AdcMode::SingleBuffer {
                                self.active.set(false);
                                self.mode.set(AdcMode::NoMode);
                                app.app_buf_offset.set(0);

                                // need to actually stop sampling
                                let _ = self.adc.stop_sampling();

                                // reclaim buffers and store them
                                if let Ok((buf1, buf2)) = self.adc.retrieve_buffers() {
                                    buf1.map(|buf| {
                                        self.replace_buffer(buf);
                                    });
                                    buf2.map(|buf| {
                                        self.replace_buffer(buf);
                                    });
                                }
                            } else {
                                // if the mode is ContinuousBuffer, we've just
                                // switched app buffers. Reset our offset to zero
                                app.app_buf_offset.set(0);
                            }
                        }
                    })
                    .map_err(|err| {
                        if err == kernel::process::Error::NoSuchApp
                            || err == kernel::process::Error::InactiveApp
                        {
                            self.processid.clear();
                            unexpected_state = true;
                        }
                    })
            });
        } else {
            unexpected_state = true;
        }

        if unexpected_state {
            // Operation was likely canceled, or the app crashed. Make sure
            // state is consistent. No callback.
            self.active.set(false);
            self.mode.set(AdcMode::NoMode);
            self.processid.map(|id| {
                self.apps
                    .enter(id, |app, _| {
                        app.app_buf_offset.set(0);
                    })
                    .map_err(|err| {
                        if err == kernel::process::Error::NoSuchApp
                            || err == kernel::process::Error::InactiveApp
                        {
                            self.processid.clear();
                        }
                    })
            });

            // Make sure we do not take more samples since we know no app
            // is currently waiting on samples.
            let _ = self.adc.stop_sampling();

            // Also retrieve any buffers we passed to the underlying ADC driver.
            if let Ok((buf1, buf2)) = self.adc.retrieve_buffers() {
                buf1.map(|buf| {
                    self.replace_buffer(buf);
                });
                buf2.map(|buf| {
                    self.replace_buffer(buf);
                });
            }
        }
    }
}

/// Implementations of application syscalls
impl<'a, A: hil::adc::Adc<'a> + hil::adc::AdcHighSpeed<'a>> SyscallDriver for AdcDedicated<'a, A> {
    /// Method for the application to command or query this driver.
    ///
    /// - `command_num` - which command call this is
    /// - `data` - value sent by the application, varying uses
    /// - `_processid` - application identifier, unused
    fn command(
        &self,
        command_num: usize,
        channel: usize,
        frequency: usize,
        processid: ProcessId,
    ) -> CommandReturn {
        // Return true if this app already owns the ADC capsule, if no app owns
        // the ADC capsule, or if the app that is marked as owning the ADC
        // capsule no longer exists.
        let match_or_empty_or_nonexistant = self.processid.map_or(true, |owning_app| {
            // We have recorded that an app has ownership of the ADC.

            // If the ADC is still active, then we need to wait for the operation
            // to finish and the app, whether it exists or not (it may have crashed),
            // still owns this capsule. If the ADC is not active, then
            // we need to verify that that application still exists, and remove
            // it as owner if not.
            if self.active.get() {
                owning_app == processid
            } else {
                // Check the app still exists.
                //
                // If the `.enter()` succeeds, then the app is still valid, and
                // we can check if the owning app matches the one that called
                // the command. If the `.enter()` fails, then the owning app no
                // longer exists and we return `true` to signify the
                // "or_nonexistant" case.
                self.apps
                    .enter(owning_app, |_, _| owning_app == processid)
                    .unwrap_or(true)
            }
        });
        if match_or_empty_or_nonexistant {
            self.processid.set(processid);
        } else {
            return CommandReturn::failure(ErrorCode::NOMEM);
        }
        match command_num {
            // Driver existence check
            // TODO(Tock 3.0): TRD104 specifies that Command 0 should return Success, not SuccessU32,
            // but this driver is unchanged since it has been stabilized. It will be brought into
            // compliance as part of the next major release of Tock. See #3375.
            0 => CommandReturn::success_u32(self.channels.len() as u32),

            // Single sample on channel
            1 => match self.sample(channel) {
                Ok(()) => CommandReturn::success(),
                e => CommandReturn::failure(if let Ok(err) = ErrorCode::try_from(e) {
                    err
                } else {
                    panic!("ADC: invalid return code")
                }),
            },

            // Repeated single samples on a channel
            2 => match self.sample_continuous(channel, frequency as u32) {
                Ok(()) => CommandReturn::success(),
                e => CommandReturn::failure(if let Ok(err) = ErrorCode::try_from(e) {
                    err
                } else {
                    panic!("ADC: invalid return code")
                }),
            },

            // Multiple sample on a channel
            3 => match self.sample_buffer(channel, frequency as u32) {
                Ok(()) => CommandReturn::success(),
                e => CommandReturn::failure(if let Ok(err) = ErrorCode::try_from(e) {
                    err
                } else {
                    panic!("ADC: invalid return code")
                }),
            },

            // Continuous buffered sampling on a channel
            4 => match self.sample_buffer_continuous(channel, frequency as u32) {
                Ok(()) => CommandReturn::success(),
                e => CommandReturn::failure(if let Ok(err) = ErrorCode::try_from(e) {
                    err
                } else {
                    panic!("ADC: invalid return code")
                }),
            },

            // Stop sampling
            5 => match self.stop_sampling() {
                Ok(()) => CommandReturn::success(),
                e => CommandReturn::failure(if let Ok(err) = ErrorCode::try_from(e) {
                    err
                } else {
                    panic!("ADC: invalid return code")
                }),
            },

            // Get resolution bits
            101 => CommandReturn::success_u32(self.get_resolution_bits() as u32),
            // Get voltage reference mV
            102 => {
                if let Some(voltage) = self.get_voltage_reference_mv() {
                    CommandReturn::success_u32(voltage as u32)
                } else {
                    CommandReturn::failure(ErrorCode::NOSUPPORT)
                }
            }

            // default
            _ => CommandReturn::failure(ErrorCode::NOSUPPORT),
        }
    }

    fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
        self.apps.enter(processid, |_, _| {})
    }
}

/// Implementation of the syscalls for the virtualized ADC.
impl SyscallDriver for AdcVirtualized<'_> {
    /// Method for the application to command or query this driver.
    ///
    /// - `command_num` - which command call this is
    /// - `channel` - requested channel value
    /// - `_` - value sent by the application, unused
    /// - `processid` - application identifier
    fn command(
        &self,
        command_num: usize,
        channel: usize,
        _: usize,
        processid: ProcessId,
    ) -> CommandReturn {
        match command_num {
            // This driver exists and return the number of channels
            0 => CommandReturn::success_u32(self.drivers.len() as u32),

            // Single sample.
            1 => {
                let res = self.enqueue_command(Operation::OneSample, channel, processid);
                if res == Ok(()) {
                    CommandReturn::success()
                } else {
                    match ErrorCode::try_from(res) {
                        Ok(error) => CommandReturn::failure(error),
                        _ => panic!("ADC Syscall: invalid error from enqueue_command"),
                    }
                }
            }

            // Get resolution bits
            101 => {
                if channel < self.drivers.len() {
                    CommandReturn::success_u32(self.drivers[channel].get_resolution_bits() as u32)
                } else {
                    CommandReturn::failure(ErrorCode::NODEVICE)
                }
            }

            // Get voltage reference mV
            102 => {
                if channel < self.drivers.len() {
                    if let Some(voltage) = self.drivers[channel].get_voltage_reference_mv() {
                        CommandReturn::success_u32(voltage as u32)
                    } else {
                        CommandReturn::failure(ErrorCode::NOSUPPORT)
                    }
                } else {
                    CommandReturn::failure(ErrorCode::NODEVICE)
                }
            }

            _ => CommandReturn::failure(ErrorCode::NOSUPPORT),
        }
    }

    fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
        self.apps.enter(processid, |_, _| {})
    }
}

impl hil::adc::Client for AdcVirtualized<'_> {
    fn sample_ready(&self, sample: u16) {
        self.current_process.take().map(|processid| {
            let _ = self.apps.enter(processid, |app, upcalls| {
                app.pending_command = false;
                let channel = app.channel;
                upcalls
                    .schedule_upcall(
                        0,
                        (AdcMode::SingleSample as usize, channel, sample as usize),
                    )
                    .ok();
            });
        });
        self.run_next_command();
    }
}