sam4l/crccu.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Implementation of the SAM4L CRCCU.
//!
//! See datasheet section "41. Cyclic Redundancy Check Calculation Unit (CRCCU)".
//!
//! The SAM4L can compute CRCs using three different polynomials:
//!
//! * `0x04C11DB7` (as used in "CRC-32"; Atmel calls this "CCIT8023")
//! * `0x1EDC6F41` (as used in "CRC-32C"; Atmel calls this "CASTAGNOLI")
//! * `0x1021` (as used in "CRC-16-CCITT"; Atmel calls this "CCIT16")
//!
//! (The integers above give each polynomial from most-significant to least-significant
//! bit, except that the most significant bit is omitted because it is always 1.)
//!
//! In all cases, the unit consumes each input byte from LSB to MSB.
//!
//! Note that the chip's behavior differs from some "standard" CRC algorithms,
//! which may do some of these things:
//!
//! * Consume input from MSB to LSB (CRC-16-CCITT?)
//! * Bit-reverse and then bit-invert the output (CRC-32)
//!
//! # Notes
//!
//! This [calculator](http://www.zorc.breitbandkatze.de/crc.html) may be used to
//! generate CRC values. To match the output of the SAM4L, the parameters must
//! be set as follows:
//!
//! * Final XOR value: 0 (equivalent to no final XOR)
//! * reverse data bytes: yes
//! * reverse CRC result before Final XOR: no
//!
//! For one example, the SAM4L calculates 0x1541 for "ABCDEFG" when using
//! polynomial 0x1021.
// Infelicities:
//
// - As much as 512 bytes of RAM is wasted to allow runtime alignment of the
// CRCCU Descriptor. Reliable knowledge of kernel alignment might allow this
// to be done statically.
//
// - CRC performance would be improved by using transfer-widths larger than Byte,
// but it is not clear in what cases that is possible.
// TODO:
//
// - Chain computations to permit arbitrary-size computations, or at least
// publish the max buffer size the unit can handle.
//
// - Support continuous-mode CRC
use crate::pm::{disable_clock, enable_clock, Clock, HSBClock, PBBClock};
use core::cell::Cell;
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil::crc::{Client, Crc, CrcAlgorithm, CrcOutput};
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::utilities::registers::interfaces::{Readable, Writeable};
use kernel::utilities::registers::{
register_bitfields, FieldValue, InMemoryRegister, ReadOnly, ReadWrite, WriteOnly,
};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
// Base address of CRCCU registers. See "7.1 Product Mapping"
pub const BASE_ADDRESS: StaticRef<CrccuRegisters> =
unsafe { StaticRef::new(0x400A4000 as *const CrccuRegisters) };
#[repr(C)]
pub struct CrccuRegisters {
// From page 1005 of SAM4L manual
dscr: ReadWrite<u32, DescriptorBaseAddress::Register>,
_reserved0: u32,
dmaen: WriteOnly<u32, DmaEnable::Register>,
dmadis: WriteOnly<u32, DmaDisable::Register>,
dmasr: ReadOnly<u32, DmaStatus::Register>,
dmaier: WriteOnly<u32, DmaInterrupt::Register>,
dmaidr: WriteOnly<u32, DmaInterrupt::Register>,
dmaimr: ReadOnly<u32, DmaInterrupt::Register>,
dmaisr: ReadOnly<u32, DmaInterrupt::Register>,
_reserved1: [u32; 4],
cr: WriteOnly<u32, Control::Register>,
mr: ReadWrite<u32, Mode::Register>,
sr: ReadOnly<u32, Status::Register>,
ier: WriteOnly<u32, Interrupt::Register>,
idr: WriteOnly<u32, Interrupt::Register>,
imr: ReadOnly<u32, Interrupt::Register>,
isr: ReadOnly<u32, Interrupt::Register>,
}
register_bitfields![u32,
DescriptorBaseAddress [
/// Description Base Address
DSCR OFFSET(9) NUMBITS(23) []
],
DmaEnable [
/// DMA Enable
DMAEN 0
],
DmaDisable [
/// DMA Disable
DMADIS 0
],
DmaStatus [
/// DMA Channel Status
DMASR 0
],
DmaInterrupt [
/// DMA Interrupt
DMA 0
],
Control [
/// Reset CRC Computation
RESET 0
],
Mode [
/// Bandwidth Divider
DIVIDER OFFSET(4) NUMBITS(4) [],
/// Polynomial Type
PTYPE OFFSET(2) NUMBITS(2) [
Ccit8023 = 0,
Castagnoli = 1,
Ccit16 = 2
],
/// CRC Compare
COMPARE OFFSET(1) NUMBITS(1) [],
/// CRC Computation Enable
ENABLE OFFSET(0) NUMBITS(1) [
Enabled = 1,
Disabled = 0
]
],
Status [
/// Cyclic Redundancy Check Value
CRC OFFSET(0) NUMBITS(32)
],
Interrupt [
/// CRC Error Interrupt Status
ERR 0
]
];
#[repr(C)]
#[repr(align(512))]
struct Descriptor {
/// Transfer Address Register (RW): Address of memory block to compute
addr: InMemoryRegister<u32>,
/// Transfer Control Register (RW): IEN, TRWIDTH, BTSIZE
ctrl: InMemoryRegister<u32>,
_res: [u32; 2],
/// Transfer Reference Register (RW): Reference CRC (for compare mode)
crc: InMemoryRegister<u32>,
}
impl Descriptor {
pub fn new() -> Descriptor {
Descriptor {
addr: InMemoryRegister::new(0),
ctrl: InMemoryRegister::new(TCR::default().0),
_res: [0; 2],
crc: InMemoryRegister::new(0),
}
}
}
// Transfer Control Register (see Section 41.6.18)
#[derive(Copy, Clone)]
#[repr(C)]
struct TCR(u32);
impl TCR {
const fn new(enable_interrupt: bool, trwidth: TrWidth, btsize: u16) -> Self {
TCR((!enable_interrupt as u32) << 27 | (trwidth as u32) << 24 | (btsize as u32))
}
const fn default() -> Self {
Self::new(false, TrWidth::Byte, 0)
}
fn interrupt_enabled(self) -> bool {
(self.0 & (1 << 27)) == 0
}
#[allow(dead_code)]
fn get_btsize(self) -> u16 {
(self.0 & 0xffff) as u16
}
}
fn poly_for_alg(alg: CrcAlgorithm) -> FieldValue<u32, Mode::Register> {
match alg {
CrcAlgorithm::Crc32 => Mode::PTYPE::Ccit8023,
CrcAlgorithm::Crc32C => Mode::PTYPE::Castagnoli,
CrcAlgorithm::Crc16CCITT => Mode::PTYPE::Ccit16,
// CrcAlg::Sam4L32 => Mode::PTYPE::Ccit8023,
// CrcAlg::Sam4L32C => Mode::PTYPE::Castagnoli,
}
}
fn post_process(result: u32, alg: CrcAlgorithm) -> CrcOutput {
match alg {
CrcAlgorithm::Crc32 => CrcOutput::Crc32(reverse_and_invert(result)),
CrcAlgorithm::Crc32C => CrcOutput::Crc32C(reverse_and_invert(result)),
CrcAlgorithm::Crc16CCITT => CrcOutput::Crc16CCITT(result as u16),
// CrcAlg::Sam4L32 => result,
// CrcAlg::Sam4L32C => result,
}
}
fn reverse_and_invert(n: u32) -> u32 {
let mut out: u32 = 0;
// Bit-reverse
for j in 0..32 {
let i = 31 - j;
out |= ((n & (1 << i)) >> i) << j;
}
// Bit-invert
out ^ 0xffffffff
}
/// Transfer width for DMA
#[allow(dead_code)]
enum TrWidth {
Byte,
HalfWord,
Word,
}
#[derive(Copy, Clone, PartialEq)]
enum State {
Invalid,
Initialized,
Enabled,
}
/// State for managing the CRCCU
pub struct Crccu<'a> {
registers: StaticRef<CrccuRegisters>,
client: OptionalCell<&'a dyn Client>,
state: Cell<State>,
algorithm: OptionalCell<CrcAlgorithm>,
// This store the full leasable-buffer boundaries for
// reconstruction when a call to [`Crc::input`] finishes
current_full_buffer: Cell<(*mut u8, usize)>,
// Marker whether a "computation" (pending deferred call) is in
// progress
compute_requested: Cell<bool>,
// CRC DMA descriptor
//
// Must be aligned to a 512-byte boundary, which is guaranteed by
// the struct definition.
descriptor: Descriptor,
deferred_call: DeferredCall,
}
impl Crccu<'_> {
pub fn new(base_addr: StaticRef<CrccuRegisters>) -> Self {
Self {
registers: base_addr,
client: OptionalCell::empty(),
state: Cell::new(State::Invalid),
algorithm: OptionalCell::empty(),
current_full_buffer: Cell::new((core::ptr::null_mut::<u8>(), 0)),
compute_requested: Cell::new(false),
descriptor: Descriptor::new(),
deferred_call: DeferredCall::new(),
}
}
fn init(&self) {
if self.state.get() == State::Invalid {
self.descriptor.addr.set(0);
self.descriptor.ctrl.set(TCR::default().0);
self.descriptor.crc.set(0);
self.state.set(State::Initialized);
}
}
/// Enable the CRCCU's clocks and interrupt
fn enable(&self) {
if self.state.get() != State::Enabled {
// see "10.7.4 Clock Mask"
enable_clock(Clock::HSB(HSBClock::CRCCU));
enable_clock(Clock::PBB(PBBClock::CRCCU));
self.state.set(State::Enabled);
}
}
/// Disable the CRCCU's clocks and interrupt
fn disable(&self) {
if self.state.get() == State::Enabled {
disable_clock(Clock::PBB(PBBClock::CRCCU));
disable_clock(Clock::HSB(HSBClock::CRCCU));
self.state.set(State::Initialized);
}
}
/// Handle an interrupt from the CRCCU
pub fn handle_interrupt(&self) {
if self.registers.isr.is_set(Interrupt::ERR) {
// A CRC error has occurred
}
if self.registers.dmaisr.is_set(DmaInterrupt::DMA) {
// A DMA transfer has completed
if TCR(self.descriptor.ctrl.get()).interrupt_enabled() {
// We have the current temporary result ready, but
// wait for the client to finish the CRC computation
// by calling [`Crc::compute`]
// self.client.map(|client| {
// let result = post_process(self.registers.sr.read(Status::CRC), self.alg.get());
// client.receive_result(result);
// });
// Disable the unit
self.registers.mr.write(Mode::ENABLE::Disabled);
// Recover the window into the SubSliceMut
let window_addr = self.descriptor.addr.get();
let window_len = TCR(self.descriptor.ctrl.get()).get_btsize() as usize;
// Reset CTRL.IEN (for our own statekeeping)
self.descriptor.addr.set(0);
self.descriptor.ctrl.set(TCR::default().0);
self.descriptor.crc.set(0);
// Disable DMA interrupt
self.registers.dmaidr.write(DmaInterrupt::DMA::SET);
// Disable DMA channel
self.registers.dmadis.write(DmaDisable::DMADIS::SET);
// Reconstruct the leasable buffer from stored
// information and slice into the proper window
let (full_buffer_addr, full_buffer_len) = self.current_full_buffer.get();
let mut data = SubSliceMut::<'static, u8>::new(unsafe {
core::slice::from_raw_parts_mut(full_buffer_addr, full_buffer_len)
});
// Must be strictly positive or zero
let start_offset = (window_addr as usize) - (full_buffer_addr as usize);
data.slice(start_offset..(start_offset + window_len));
// Pass the properly sliced and reconstructed buffer
// back to the client
self.client.map(move |client| {
client.input_done(Ok(()), data);
});
}
}
}
}
impl DeferredCallClient for Crccu<'_> {
fn handle_deferred_call(&self) {
// A deferred call is currently only issued on a call to
// compute, in which case we need to provide the CRC to the
// client
let result = post_process(
self.registers.sr.read(Status::CRC),
self.algorithm.unwrap_or_panic(), // Unwrap fail = crccu deferred call: no algorithm
);
// Reset the internal CRC state such that the next call to
// input will start a new CRC
self.registers.cr.write(Control::RESET::SET);
self.descriptor.ctrl.set(TCR::default().0);
self.compute_requested.set(false);
self.client.map(|client| {
client.crc_done(Ok(result));
});
}
fn register(&'static self) {
self.deferred_call.register(self);
}
}
// Implement the generic CRC interface with the CRCCU
impl<'a> Crc<'a> for Crccu<'a> {
/// Set a client to receive results from the CRCCU
fn set_client(&self, client: &'a dyn Client) {
self.client.set(client);
}
fn algorithm_supported(&self, algorithm: CrcAlgorithm) -> bool {
// Deliberately has an exhaustive list here to avoid
// advertising support for added variants to CrcAlgorithm
match algorithm {
CrcAlgorithm::Crc32 => true,
CrcAlgorithm::Crc32C => true,
CrcAlgorithm::Crc16CCITT => true,
}
}
fn set_algorithm(&self, algorithm: CrcAlgorithm) -> Result<(), ErrorCode> {
// If there currently is a DMA operation in progress, refuse
// to set the algorithm.
if TCR(self.descriptor.ctrl.get()).interrupt_enabled() || self.compute_requested.get() {
// A computation is already in progress
return Err(ErrorCode::BUSY);
}
self.init();
// Clear the descriptor contents
self.descriptor.addr.set(0);
self.descriptor.ctrl.set(TCR::default().0);
self.descriptor.crc.set(0);
self.algorithm.set(algorithm);
// Reset intermediate CRC value
self.registers.cr.write(Control::RESET::SET);
Ok(())
}
fn input(
&self,
mut data: SubSliceMut<'static, u8>,
) -> Result<(), (ErrorCode, SubSliceMut<'static, u8>)> {
let algorithm = if let Some(algorithm) = self.algorithm.get() {
algorithm
} else {
return Err((ErrorCode::RESERVE, data));
};
if TCR(self.descriptor.ctrl.get()).interrupt_enabled() || self.compute_requested.get() {
// A computation is already in progress
return Err((ErrorCode::BUSY, data));
}
// Need to initialize after checking business, because init will
// clear out interrupt state.
self.init();
// Initialize the descriptor, since it is used to track business
let len = data.len() as u16;
let ctrl = TCR::new(true, TrWidth::Byte, len);
// Make sure we don't try to process more data than the CRC
// DMA operation supports.
if data.len() > u16::MAX as usize {
// Restore the full slice, calculate the current
// window's start offset.
let window_ptr = data.as_ptr();
data.reset();
let start_ptr = data.as_ptr();
// Must be strictly positive or zero
let start_offset = unsafe { window_ptr.offset_from(start_ptr) } as usize;
// Reslice the buffer such that it start at the same
// position as the old window, but fits the size
// constraints
data.slice(start_offset..=(start_offset + u16::MAX as usize));
}
self.enable();
// Enable DMA interrupt
self.registers.dmaier.write(DmaInterrupt::DMA::SET);
// Enable error interrupt
self.registers.ier.write(Interrupt::ERR::SET);
// Configure the data transfer descriptor
//
// The data length is guaranteed to be <= u16::MAX by the
// above SubSliceMut resizing mechanism
self.descriptor.addr.set(data.as_ptr() as u32);
self.descriptor.ctrl.set(ctrl.0);
self.descriptor.crc.set(0); // this is the CRC compare field, not used
// Prior to starting the DMA operation, drop the
// SubSlice slice. Otherwise we violate Rust's mutable
// aliasing rules.
let full_slice = data.take();
let full_slice_ptr_len = (full_slice.as_mut_ptr(), full_slice.len());
self.current_full_buffer.set(full_slice_ptr_len);
// Ensure the &'static mut slice reference goes out of scope
//
// We can't use mem::drop on a reference here, clippy will
// complain, even though it would be effective at making this
// 'static mut buffer inaccessible. For now, just make sure to
// not reference it below.
//
// TODO: this needs a proper type and is a broader issue. See
// tock/tock#2637 for more information.
//
// core::mem::drop(full_slice);
// Set the descriptor memory address accordingly
self.registers
.dscr
.set(core::ptr::addr_of!(self.descriptor) as u32);
// Configure the unit to compute a checksum
self.registers.mr.write(
Mode::DIVIDER.val(0)
+ poly_for_alg(algorithm)
+ Mode::COMPARE::CLEAR
+ Mode::ENABLE::Enabled,
);
// Enable DMA channel
self.registers.dmaen.write(DmaEnable::DMAEN::SET);
Ok(())
}
fn compute(&self) -> Result<(), ErrorCode> {
// In this hardware implementation, we compute the CRC in
// parallel to the DMA operations. Thus this can simply
// request the CR and reset the state in a deferred call.
if TCR(self.descriptor.ctrl.get()).interrupt_enabled() || self.compute_requested.get() {
// A computation is already in progress
return Err(ErrorCode::BUSY);
}
// Mark the device as busy
self.compute_requested.set(true);
// Request a deferred call such that we can provide the result
// back to the client
self.deferred_call.set();
Ok(())
}
fn disable(&self) {
Crccu::disable(self);
}
}