capsules_extra/net/udp/driver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! UDP userspace interface for transmit and receive.
//!
//! Implements a userspace interface for sending and receiving UDP messages.
//! Processes use this driver to send UDP packets from a common interface
//! and bind to UDP ports for receiving packets.
//! Also exposes a list of interface addresses to the application (currently
//! hard-coded).
use crate::net::ipv6::ip_utils::IPAddr;
use crate::net::network_capabilities::NetworkCapability;
use crate::net::stream::encode_u16;
use crate::net::stream::encode_u8;
use crate::net::stream::SResult;
use crate::net::udp::udp_port_table::{PortQuery, UdpPortManager};
use crate::net::udp::udp_recv::UDPRecvClient;
use crate::net::udp::udp_send::{UDPSendClient, UDPSender};
use crate::net::util::host_slice_to_u16;
use core::cell::Cell;
use core::mem::size_of;
use core::{cmp, mem};
use kernel::capabilities::UdpDriverCapability;
use kernel::debug;
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::MapCell;
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::{ErrorCode, ProcessId};
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::Udp as usize;
/// IDs for subscribed upcalls.
mod upcall {
/// Callback for when packet is received. If no port has been bound, return
/// `RESERVE` to indicate that port binding is is a prerequisite to
/// reception.
pub const PACKET_RECEIVED: usize = 0;
/// Callback for when packet is transmitted. Notably, this callback receives
/// the result of the send_done callback from udp_send.rs, which does not
/// currently pass information regarding whether packets were acked at the
/// link layer.
pub const PACKET_TRANSMITTED: usize = 1;
/// Number of upcalls.
pub const COUNT: u8 = 2;
}
/// Ids for read-only allow buffers
mod ro_allow {
/// Write buffer. Contains the UDP payload to be transmitted. Returns SIZE
/// if the passed buffer is too long, and NOSUPPORT if an invalid
/// `allow_num` is passed.
pub const WRITE: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Ids for read-write allow buffers
mod rw_allow {
/// Read buffer. Will contain the received payload.
pub const READ: usize = 0;
/// Config buffer. Used to contain miscellaneous data associated with some
/// commands, namely source/destination addresses and ports.
pub const CFG: usize = 1;
/// Rx config buffer. Used to contain source/destination addresses and ports
/// for receives (separate from `2` because receives may be waiting for an
/// incoming packet asynchronously).
pub const RX_CFG: usize = 2;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 3;
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct UDPEndpoint {
addr: IPAddr,
port: u16,
}
impl UDPEndpoint {
/// This function serializes the `UDPEndpoint` into the provided buffer.
///
/// # Arguments
///
/// `buf` - A mutable buffer to serialize the `UDPEndpoint` into
/// `offset` - The current offset into the provided buffer
///
/// # Return Value
///
/// This function returns the new offset into the buffer wrapped in an
/// SResult.
pub fn encode(&self, buf: &mut [u8], offset: usize) -> SResult<usize> {
stream_len_cond!(buf, size_of::<UDPEndpoint>() + offset);
let mut off = offset;
for i in 0..16 {
off = enc_consume!(buf, off; encode_u8, self.addr.0[i]);
}
off = enc_consume!(buf, off; encode_u16, self.port);
stream_done!(off, off);
}
/// This function checks if the UDPEndpoint specified is the 0 address + 0 port.
pub fn is_zero(&self) -> bool {
self.addr.is_unspecified() && self.port == 0
}
}
#[derive(Default)]
pub struct App {
pending_tx: Option<[UDPEndpoint; 2]>,
bound_port: Option<UDPEndpoint>,
}
#[allow(dead_code)]
pub struct UDPDriver<'a> {
/// UDP sender
sender: &'a dyn UDPSender<'a>,
/// Grant of apps that use this radio driver.
apps: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
/// ID of app whose transmission request is being processed.
current_app: Cell<Option<ProcessId>>,
/// List of IP Addresses of the interfaces on the device
interface_list: &'static [IPAddr],
/// Maximum length payload that an app can transmit via this driver
max_tx_pyld_len: usize,
/// UDP bound port table (manages kernel bindings)
port_table: &'static UdpPortManager,
kernel_buffer: MapCell<SubSliceMut<'static, u8>>,
driver_send_cap: &'static dyn UdpDriverCapability,
net_cap: &'static NetworkCapability,
}
impl<'a> UDPDriver<'a> {
pub fn new(
sender: &'a dyn UDPSender<'a>,
grant: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
interface_list: &'static [IPAddr],
max_tx_pyld_len: usize,
port_table: &'static UdpPortManager,
kernel_buffer: SubSliceMut<'static, u8>,
driver_send_cap: &'static dyn UdpDriverCapability,
net_cap: &'static NetworkCapability,
) -> UDPDriver<'a> {
UDPDriver {
sender,
apps: grant,
current_app: Cell::new(None),
interface_list,
max_tx_pyld_len,
port_table,
kernel_buffer: MapCell::new(kernel_buffer),
driver_send_cap,
net_cap,
}
}
/// If the driver is currently idle and there are pending transmissions,
/// pick an app with a pending transmission and return its `ProcessId`.
fn get_next_tx_if_idle(&self) -> Option<ProcessId> {
if self.current_app.get().is_some() {
// Tx already in progress
return None;
}
let mut pending_app = None;
for app in self.apps.iter() {
let processid = app.processid();
app.enter(|app, _| {
if app.pending_tx.is_some() {
pending_app = Some(processid);
}
});
if pending_app.is_some() {
break;
}
}
pending_app
}
/// Performs `processid`'s pending transmission asynchronously. If the
/// transmission is not successful, the error is returned to the app via its
/// `tx_callback`. Assumes that the driver is currently idle and the app has
/// a pending transmission.
#[inline]
fn perform_tx_async(&self, processid: ProcessId) {
let result = self.perform_tx_sync(processid);
if result != Ok(()) {
let _ = self.apps.enter(processid, |_app, upcalls| {
upcalls
.schedule_upcall(
upcall::PACKET_TRANSMITTED,
(kernel::errorcode::into_statuscode(result), 0, 0),
)
.ok();
});
}
}
/// Performs `processid`'s pending transmission synchronously. The result is
/// returned immediately to the app. Assumes that the driver is currently
/// idle and the app has a pending transmission.
#[inline]
fn perform_tx_sync(&self, processid: ProcessId) -> Result<(), ErrorCode> {
self.apps.enter(processid, |app, kernel_data| {
let addr_ports = match app.pending_tx.take() {
Some(pending_tx) => pending_tx,
None => {
return Ok(());
}
};
let dst_addr = addr_ports[1].addr;
let dst_port = addr_ports[1].port;
let src_port = addr_ports[0].port;
// Send UDP payload. Copy payload into packet buffer held by this driver, then queue
// it on the udp_mux.
let result = kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.and_then(|write| {
write.enter(|payload| {
self.kernel_buffer.take().map_or(
Err(ErrorCode::NOMEM),
|mut kernel_buffer| {
if payload.len() > kernel_buffer.len() {
self.kernel_buffer.replace(kernel_buffer);
return Err(ErrorCode::SIZE);
}
payload.copy_to_slice(&mut kernel_buffer[0..payload.len()]);
kernel_buffer.slice(0..payload.len());
match self.sender.driver_send_to(
dst_addr,
dst_port,
src_port,
kernel_buffer,
self.driver_send_cap,
self.net_cap,
) {
Ok(()) => Ok(()),
Err(mut buf) => {
buf.reset();
self.kernel_buffer.replace(buf);
Err(ErrorCode::FAIL)
}
}
},
)
})
})
.unwrap_or(Err(ErrorCode::NOMEM));
if result == Ok(()) {
self.current_app.set(Some(processid));
}
result
})?
}
/// Schedule the next transmission if there is one pending. Performs the
/// transmission eventually, returning any errors via asynchronous callbacks.
#[inline]
#[allow(dead_code)]
fn do_next_tx_queued(&self) {
self.get_next_tx_if_idle()
.map(|processid| self.perform_tx_async(processid));
}
/// Schedule the next transmission if there is one pending. If the next
/// transmission happens to be the one that was just queued, then the
/// transmission is immediate. Hence, errors must be returned immediately.
/// On the other hand, if it is some other app, then return any errors via
/// callbacks.
#[inline]
fn do_next_tx_immediate(&self, new_processid: ProcessId) -> Result<u32, ErrorCode> {
self.get_next_tx_if_idle().map_or(Ok(0), |processid| {
if processid == new_processid {
let sync_result = self.perform_tx_sync(processid);
if sync_result == Ok(()) {
Ok(1) //Indicates packet passed to radio
} else {
Err(ErrorCode::try_from(sync_result).unwrap())
}
} else {
self.perform_tx_async(processid);
Ok(0) //indicates async transmission
}
})
}
#[inline]
fn parse_ip_port_pair(&self, buf: &[u8]) -> Option<UDPEndpoint> {
if buf.len() != size_of::<UDPEndpoint>() {
debug!(
"[parse] len is {:?}, not {:?} as expected",
buf.len(),
size_of::<UDPEndpoint>()
);
None
} else {
let (a, p) = buf.split_at(size_of::<IPAddr>());
let mut addr = IPAddr::new();
addr.0.copy_from_slice(a);
let pair = UDPEndpoint {
addr,
port: host_slice_to_u16(p),
};
Some(pair)
}
}
}
impl SyscallDriver for UDPDriver<'_> {
/// UDP control
///
/// ### `command_num`
///
/// - `0`: Driver existence check.
/// - `1`: Get the interface list
/// app_cfg (out): 16 * `n` bytes: the list of interface IPv6 addresses, length
/// limited by `app_cfg` length.
/// Returns INVAL if the cfg buffer is the wrong size, or not available.
/// - `2`: Transmit payload.
/// Returns BUSY is this process already has a pending tx.
/// Returns INVAL if no valid buffer has been loaded into the write buffer,
/// or if the config buffer is the wrong length, or if the destination and source
/// port/address pairs cannot be parsed.
/// Otherwise, returns the result of do_next_tx_immediate(). Notably, a successful
/// transmit can produce two different success values. If success is returned,
/// this simply means that the packet was queued. In this case, the app still
/// still needs to wait for a callback to check if any errors occurred before
/// the packet was passed to the radio. However, if Success_U32
/// is returned with value 1, this means the the packet was successfully passed
/// the radio without any errors, which tells the userland application that it does
/// not need to wait for a callback to check if any errors occurred while the packet
/// was being passed down to the radio. Any successful return value indicates that
/// the app should wait for a send_done() callback before attempting to queue another
/// packet.
/// Currently, only will transmit if the app has bound to the port passed in the tx_cfg
/// buf as the source address. If no port is bound, returns RESERVE, if it tries to
/// send on a port other than the port which is bound, returns INVALID.
/// Notably, the currently transmit implementation allows for starvation - an
/// an app with a lower app id can send constantly and starve an app with a
/// later ID.
/// - `3`: Bind to the address in rx_cfg. Returns Ok(()) if that addr/port combo is free,
/// returns INVAL if the address requested is not a local interface, or if the port
/// requested is 0. Returns BUSY if that port is already bound to by another app.
/// This command should be called after allow() is called on the rx_cfg buffer, and
/// before subscribe() is used to set up the recv callback. Additionally, apps can only
/// send on ports after they have bound to said port. If this command is called
/// and the address in rx_cfg is 0::0 : 0, this command will reset the option
/// containing the bound port to None. Notably,
/// the current implementation of this only allows for each app to bind to a single
/// port at a time, as such an implementation conserves memory (and is similar
/// to the approach applied by TinyOS and Riot).
/// /// - `4`: Returns the maximum payload that can be transmitted by apps using this driver.
/// This represents the size of the payload buffer in the kernel. Apps can use this
/// syscall to ensure they do not attempt to send too-large messages.
fn command(
&self,
command_num: usize,
arg1: usize,
_: usize,
processid: ProcessId,
) -> CommandReturn {
match command_num {
0 => CommandReturn::success(),
// Writes the requested number of network interface addresses
// `arg1`: number of interfaces requested that will fit into the buffer
1 => {
self.apps
.enter(processid, |_, kernel_data| {
kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.mut_enter(|cfg| {
if cfg.len() != arg1 * size_of::<IPAddr>() {
return CommandReturn::failure(ErrorCode::INVAL);
}
let n_ifaces_to_copy =
cmp::min(arg1, self.interface_list.len());
let iface_size = size_of::<IPAddr>();
for i in 0..n_ifaces_to_copy {
cfg[i * iface_size..(i + 1) * iface_size]
.copy_from_slice(&self.interface_list[i].0);
}
// Returns total number of interfaces
CommandReturn::success_u32(self.interface_list.len() as u32)
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::INVAL))
})
.unwrap_or_else(|err| CommandReturn::failure(err.into()))
}
// Transmits UDP packet stored in tx_buf
2 => {
let res = self
.apps
.enter(processid, |app, kernel_data| {
if app.pending_tx.is_some() {
// Cannot support more than one pending tx per process.
return Err(ErrorCode::BUSY);
}
if app.bound_port.is_none() {
// Currently, apps need to bind to a port before they can send from said port
return Err(ErrorCode::RESERVE);
}
let next_tx = kernel_data
.get_readwrite_processbuffer(rw_allow::CFG)
.and_then(|cfg| {
cfg.enter(|cfg| {
if cfg.len() != 2 * size_of::<UDPEndpoint>() {
return None;
}
let mut tmp_cfg_buffer: [u8; size_of::<UDPEndpoint>() * 2] =
[0; size_of::<UDPEndpoint>() * 2];
cfg.copy_to_slice(&mut tmp_cfg_buffer);
if let (Some(dst), Some(src)) = (
self.parse_ip_port_pair(
&tmp_cfg_buffer[size_of::<UDPEndpoint>()..],
),
self.parse_ip_port_pair(
&tmp_cfg_buffer[..size_of::<UDPEndpoint>()],
),
) {
if Some(src) == app.bound_port {
Some([src, dst])
} else {
None
}
} else {
None
}
})
})
.unwrap_or(None);
if next_tx.is_none() {
return Err(ErrorCode::INVAL);
}
app.pending_tx = next_tx;
Ok(())
})
.unwrap_or_else(|err| Err(err.into()));
match res {
Ok(()) => self.do_next_tx_immediate(processid).map_or_else(
|err| CommandReturn::failure(err),
|v| CommandReturn::success_u32(v),
),
Err(e) => CommandReturn::failure(e),
}
}
3 => {
let err = self
.apps
.enter(processid, |app, kernel_data| {
// Move UDPEndpoint into udp.rs?
let requested_addr_opt = kernel_data
.get_readwrite_processbuffer(rw_allow::RX_CFG)
.and_then(|rx_cfg| {
rx_cfg.enter(|cfg| {
if cfg.len() != 2 * mem::size_of::<UDPEndpoint>() {
None
} else {
let mut tmp_endpoint: [u8; mem::size_of::<UDPEndpoint>()] =
[0; mem::size_of::<UDPEndpoint>()];
cfg[mem::size_of::<UDPEndpoint>()..]
.copy_to_slice(&mut tmp_endpoint);
self.parse_ip_port_pair(&tmp_endpoint)
}
})
})
.unwrap_or(None);
requested_addr_opt.map_or(Err(Err(ErrorCode::INVAL)), |requested_addr| {
// If zero address, close any already bound socket
if requested_addr.is_zero() {
app.bound_port = None;
return Ok(None);
}
// Check that requested addr is a local interface
let mut requested_is_local = false;
for i in 0..self.interface_list.len() {
if requested_addr.addr == self.interface_list[i] {
requested_is_local = true;
}
}
if !requested_is_local {
return Err(Err(ErrorCode::INVAL));
}
Ok(Some(requested_addr))
})
})
.unwrap_or_else(|err| Err(err.into()));
match err {
Ok(requested_addr_opt) => {
requested_addr_opt.map_or(CommandReturn::success(), |requested_addr| {
// Check bound ports in the kernel.
match self.port_table.is_bound(requested_addr.port) {
Ok(bound) => {
if bound {
CommandReturn::failure(ErrorCode::BUSY)
} else {
self.apps
.enter(processid, |app, _| {
// The requested addr is free and valid
app.bound_port = Some(requested_addr);
CommandReturn::success()
})
.unwrap_or_else(|err| {
CommandReturn::failure(err.into())
})
}
}
Err(()) => CommandReturn::failure(ErrorCode::FAIL), //error in port table
}
})
}
Err(retcode) => CommandReturn::failure(retcode.try_into().unwrap()),
}
}
4 => CommandReturn::success_u32(self.max_tx_pyld_len as u32),
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.apps.enter(processid, |_, _| {})
}
}
impl UDPSendClient for UDPDriver<'_> {
fn send_done(&self, result: Result<(), ErrorCode>, mut dgram: SubSliceMut<'static, u8>) {
// Replace the returned kernel buffer. Now we can send the next msg.
dgram.reset();
self.kernel_buffer.replace(dgram);
self.current_app.get().map(|processid| {
let _ = self.apps.enter(processid, |_app, upcalls| {
upcalls
.schedule_upcall(
upcall::PACKET_TRANSMITTED,
(kernel::errorcode::into_statuscode(result), 0, 0),
)
.ok();
});
});
self.current_app.set(None);
self.do_next_tx_queued();
}
}
impl UDPRecvClient for UDPDriver<'_> {
fn receive(
&self,
src_addr: IPAddr,
dst_addr: IPAddr,
src_port: u16,
dst_port: u16,
payload: &[u8],
) {
self.apps.each(|_, app, kernel_data| {
if app.bound_port.is_some() {
let mut for_me = false;
app.bound_port.as_ref().map(|requested_addr| {
if requested_addr.addr == dst_addr && requested_addr.port == dst_port {
for_me = true;
}
});
if for_me {
let len = payload.len();
let res = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.and_then(|read| {
read.mut_enter(|rbuf| {
if rbuf.len() >= len {
rbuf[..len].copy_from_slice(&payload[..len]);
Ok(())
} else {
Err(ErrorCode::SIZE) //packet does not fit
}
})
})
.unwrap_or(Ok(()));
if res.is_ok() {
// Write address of sender into rx_cfg so it can be read by client
let sender_addr = UDPEndpoint {
addr: src_addr,
port: src_port,
};
kernel_data
.schedule_upcall(upcall::PACKET_RECEIVED, (len, 0, 0))
.ok();
const CFG_LEN: usize = 2 * size_of::<UDPEndpoint>();
let _ = kernel_data
.get_readwrite_processbuffer(rw_allow::RX_CFG)
.and_then(|rx_cfg| {
rx_cfg.mut_enter(|cfg| {
if cfg.len() != CFG_LEN {
return Err(ErrorCode::INVAL);
}
let mut tmp_cfg_buffer: [u8; CFG_LEN] = [0; CFG_LEN];
sender_addr.encode(&mut tmp_cfg_buffer, 0);
cfg.copy_from_slice(&tmp_cfg_buffer);
Ok(())
})
})
.unwrap_or(Err(ErrorCode::INVAL));
}
}
}
});
}
}
impl PortQuery for UDPDriver<'_> {
// Returns true if |port| is bound (on any iface), false otherwise.
fn is_bound(&self, port: u16) -> bool {
let mut port_bound = false;
for app in self.apps.iter() {
app.enter(|other_app, _| {
if other_app.bound_port.is_some() {
let other_addr_opt = other_app.bound_port;
let other_addr = other_addr_opt.unwrap(); // Unwrap fail = Missing other_addr
if other_addr.port == port {
port_bound = true;
}
}
});
}
port_bound
}
}