nrf5x/
rtc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! RTC driver, nRF5X-family

use core::cell::Cell;
use kernel::hil::time::{self, Alarm, Ticks, Time};
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::registers::interfaces::{Readable, Writeable};
use kernel::utilities::registers::{register_bitfields, ReadOnly, ReadWrite, WriteOnly};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;

const RTC1_BASE: StaticRef<RtcRegisters> =
    unsafe { StaticRef::new(0x40011000 as *const RtcRegisters) };

#[repr(C)]
struct RtcRegisters {
    /// Start RTC Counter.
    tasks_start: WriteOnly<u32, Task::Register>,
    /// Stop RTC Counter.
    tasks_stop: WriteOnly<u32, Task::Register>,
    /// Clear RTC Counter.
    tasks_clear: WriteOnly<u32, Task::Register>,
    /// Set COUNTER to 0xFFFFFFF0.
    tasks_trigovrflw: WriteOnly<u32, Task::Register>,
    _reserved0: [u8; 240],
    /// Event on COUNTER increment.
    events_tick: ReadWrite<u32, Event::Register>,
    /// Event on COUNTER overflow.
    events_ovrflw: ReadWrite<u32, Event::Register>,
    _reserved1: [u8; 56],
    /// Compare event on CC\[n\] match.
    events_compare: [ReadWrite<u32, Event::Register>; 4],
    _reserved2: [u8; 436],
    /// Interrupt enable set register.
    intenset: ReadWrite<u32, Inte::Register>,
    /// Interrupt enable clear register.
    intenclr: ReadWrite<u32, Inte::Register>,
    _reserved3: [u8; 52],
    /// Configures event enable routing to PPI for each RTC event.
    evten: ReadWrite<u32, Inte::Register>,
    /// Enable events routing to PPI.
    evtenset: ReadWrite<u32, Inte::Register>,
    /// Disable events routing to PPI.
    evtenclr: ReadWrite<u32, Inte::Register>,
    _reserved4: [u8; 440],
    /// Current COUNTER value.
    counter: ReadOnly<u32, Counter::Register>,
    /// 12-bit prescaler for COUNTER frequency (32768/(PRESCALER+1)).
    /// Must be written when RTC is stopped.
    prescaler: ReadWrite<u32, Prescaler::Register>,
    _reserved5: [u8; 52],
    /// Capture/compare registers.
    cc: [ReadWrite<u32, Counter::Register>; 4],
    _reserved6: [u8; 2732],
    /// Peripheral power control.
    power: ReadWrite<u32>,
}

register_bitfields![u32,
    Inte [
        /// Enable interrupt on TICK event.
        TICK 0,
        /// Enable interrupt on OVRFLW event.
        OVRFLW 1,
        /// Enable interrupt on COMPARE\[0\] event.
        COMPARE0 16,
        /// Enable interrupt on COMPARE\[1\] event.
        COMPARE1 17,
        /// Enable interrupt on COMPARE\[2\] event.
        COMPARE2 18,
        /// Enable interrupt on COMPARE\[3\] event.
        COMPARE3 19
    ],
    Prescaler [
        PRESCALER OFFSET(0) NUMBITS(12)
    ],
    Task [
        ENABLE 0
    ],
    Event [
        READY 0
    ],
    Counter [
        VALUE OFFSET(0) NUMBITS(24)
    ]
];

pub struct Rtc<'a> {
    registers: StaticRef<RtcRegisters>,
    overflow_client: OptionalCell<&'a dyn time::OverflowClient>,
    alarm_client: OptionalCell<&'a dyn time::AlarmClient>,
    enabled: Cell<bool>,
}

impl Rtc<'_> {
    pub const fn new() -> Self {
        Self {
            registers: RTC1_BASE,
            overflow_client: OptionalCell::empty(),
            alarm_client: OptionalCell::empty(),
            enabled: Cell::new(false),
        }
    }

    pub fn handle_interrupt(&self) {
        if self.registers.events_ovrflw.is_set(Event::READY) {
            self.registers.events_ovrflw.write(Event::READY::CLEAR);
            self.overflow_client.map(|client| client.overflow());
        }
        if self.registers.events_compare[0].is_set(Event::READY) {
            self.registers.intenclr.write(Inte::COMPARE0::SET);
            self.registers.events_compare[0].write(Event::READY::CLEAR);
            self.alarm_client.map(|client| {
                client.alarm();
            });
        }
    }
}

impl Time for Rtc<'_> {
    type Frequency = time::Freq32KHz;
    type Ticks = time::Ticks24;

    fn now(&self) -> Self::Ticks {
        Self::Ticks::from(self.registers.counter.read(Counter::VALUE))
    }
}

impl<'a> time::Counter<'a> for Rtc<'a> {
    fn set_overflow_client(&self, client: &'a dyn time::OverflowClient) {
        self.overflow_client.set(client);
        self.registers.intenset.write(Inte::OVRFLW::SET);
    }

    fn start(&self) -> Result<(), ErrorCode> {
        self.registers.prescaler.write(Prescaler::PRESCALER.val(0));
        self.registers.tasks_start.write(Task::ENABLE::SET);
        self.enabled.set(true);
        Ok(())
    }

    fn stop(&self) -> Result<(), ErrorCode> {
        //self.registers.cc[0].write(Counter::VALUE.val(0));
        self.registers.tasks_stop.write(Task::ENABLE::SET);
        self.enabled.set(false);
        Ok(())
    }

    fn reset(&self) -> Result<(), ErrorCode> {
        self.registers.tasks_clear.write(Task::ENABLE::SET);
        Ok(())
    }

    fn is_running(&self) -> bool {
        self.enabled.get()
    }
}

impl<'a> Alarm<'a> for Rtc<'a> {
    fn set_alarm_client(&self, client: &'a dyn time::AlarmClient) {
        self.alarm_client.set(client);
    }

    fn set_alarm(&self, reference: Self::Ticks, dt: Self::Ticks) {
        const SYNC_TICS: u32 = 2;
        let regs = &*self.registers;

        let mut expire = reference.wrapping_add(dt);

        let now = self.now();
        let earliest_possible = now.wrapping_add(Self::Ticks::from(SYNC_TICS));

        if !now.within_range(reference, expire) || expire.wrapping_sub(now).into_u32() <= SYNC_TICS
        {
            expire = earliest_possible;
        }

        regs.cc[0].write(Counter::VALUE.val(expire.into_u32()));
        regs.events_compare[0].write(Event::READY::CLEAR);
        regs.intenset.write(Inte::COMPARE0::SET);
    }

    fn get_alarm(&self) -> Self::Ticks {
        Self::Ticks::from(self.registers.cc[0].read(Counter::VALUE))
    }

    fn disarm(&self) -> Result<(), ErrorCode> {
        let regs = &*self.registers;
        regs.intenclr.write(Inte::COMPARE0::SET);
        regs.events_compare[0].write(Event::READY::CLEAR);
        Ok(())
    }

    fn is_armed(&self) -> bool {
        self.registers.evten.is_set(Inte::COMPARE0)
    }

    fn minimum_dt(&self) -> Self::Ticks {
        // TODO: not tested, arbitrary value
        Self::Ticks::from(10)
    }
}