nrf52/usbd.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Universal Serial Bus Device with EasyDMA (USBD)
use core::cell::Cell;
use cortexm4f::support::atomic;
use kernel::hil;
use kernel::hil::usb::TransferType;
use kernel::utilities::cells::{OptionalCell, VolatileCell};
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::registers::{
register_bitfields, register_structs, Field, InMemoryRegister, LocalRegisterCopy, ReadOnly,
ReadWrite, WriteOnly,
};
use kernel::utilities::StaticRef;
use crate::power;
// The following macros provide some diagnostics and panics(!)
// while this module is experimental and should eventually be removed or
// replaced with better error handling.
macro_rules! debug_events {
[ $( $arg:expr ),+ ] => {
{} // kernel::debug!($( $arg ),+)
};
}
macro_rules! debug_tasks {
[ $( $arg:expr ),+ ] => {
{} // kernel::debug!($( $arg ),+)
};
}
macro_rules! debug_packets {
[ $( $arg:expr ),+ ] => {
{} // kernel::debug!($( $arg ),+)
};
}
macro_rules! debug_info {
[ $( $arg:expr ),+ ] => {
{} // kernel::debug!($( $arg ),+)
};
}
macro_rules! internal_warn {
[ $( $arg:expr ),+ ] => {
{} // kernel::debug!($( $arg ),+)
};
}
macro_rules! internal_err {
[ $( $arg:expr ),+ ] => {
panic!($( $arg ),+)
};
}
const CHIPINFO_BASE: StaticRef<ChipInfoRegisters> =
unsafe { StaticRef::new(0x10000130 as *const ChipInfoRegisters) };
const USBD_BASE: StaticRef<UsbdRegisters<'static>> =
unsafe { StaticRef::new(0x40027000 as *const UsbdRegisters<'static>) };
const USBERRATA_BASE: StaticRef<UsbErrataRegisters> =
unsafe { StaticRef::new(0x4006E000 as *const UsbErrataRegisters) };
const NUM_ENDPOINTS: usize = 8;
register_structs! {
ChipInfoRegisters {
/// Undocumented register indicating the model of the chip
(0x000 => chip_model: ReadOnly<u32, ChipModel::Register>),
/// Undocumented register indicating the revision of the chip
/// - Address: 0x004 - 0x008
(0x004 => chip_revision: ReadOnly<u32, ChipRevision::Register>),
(0x008 => @END),
},
UsbErrataRegisters {
(0x000 => _reserved0),
/// Undocumented register - Errata 171
(0xC00 => reg_c00: ReadWrite<u32>),
(0xC04 => _reserved1),
/// Undocumented register - Errata 171
(0xC14 => reg_c14: WriteOnly<u32>),
(0xC18 => _reserved2),
/// Undocumented register - Errata 187
(0xD14 => reg_d14: WriteOnly<u32>),
(0xD18 => @END),
}
}
#[repr(C)]
struct UsbdRegisters<'a> {
_reserved1: [u32; 1],
/// Captures the EPIN\[n\].PTR, EPIN\[n\].MAXCNT and EPIN\[n\].CONFIG
/// registers values and enables endpoint IN not respond to traffic
/// from host
/// - Address: 0x004 - 0x024
task_startepin: [WriteOnly<u32, Task::Register>; NUM_ENDPOINTS],
/// Captures the ISOIN.PTR, ISOIN.MAXCNT and ISOIN.CONFIG registers values
/// and enables sending data on iso endpoint
/// - Address: 0x024 - 0x028
task_startisoin: WriteOnly<u32, Task::Register>,
/// Captures the EPOUT\[n\].PTR, EPOUT\[n\].MAXCNT and EPOUT\[n\].CONFIG
/// registers values and enables endpoint IN n ot respond to traffic
/// from host
/// - Address: 0x028 - 0x048
task_startepout: [WriteOnly<u32, Task::Register>; NUM_ENDPOINTS],
/// Captures the ISOOUT.PTR, ISOOUT.MAXCNT and ISOOUT.CONFIG registers
/// values and enables receiving data on iso endpoint
/// - Address: 0x048 - 0x04C
task_startisoout: WriteOnly<u32, Task::Register>,
/// Allows OUT data stage on control endpoint 0
/// - Address: 0x04C - 0x050
task_ep0rcvout: WriteOnly<u32, Task::Register>,
/// Allows status stage on control endpoint 0
/// - Address: 0x050 - 0x054
task_ep0status: WriteOnly<u32, Task::Register>,
/// STALLs data and status stage on control endpoint 0
/// - Address: 0x054 - 0x058
task_ep0stall: WriteOnly<u32, Task::Register>,
/// Forces D+ and D-lines to the state defined in the DPDMVALUE register
/// - Address: 0x058 - 0x05C
task_dpdmdrive: WriteOnly<u32, Task::Register>,
/// Stops forcing D+ and D- lines to any state (USB engine takes control)
/// - Address: 0x05C - 0x060
task_dpdmnodrive: WriteOnly<u32, Task::Register>,
_reserved2: [u32; 40],
/// Signals that a USB reset condition has been detected on the USB lines
/// - Address: 0x100 - 0x104
event_usbreset: ReadWrite<u32, Event::Register>,
/// Confirms that the EPIN\[n\].PTR, EPIN\[n\].MAXCNT, EPIN\[n\].CONFIG,
/// or EPOUT\[n\].PTR, EPOUT\[n\].MAXCNT and EPOUT\[n\].CONFIG
/// registers have been captured on all endpoints reported in
/// the EPSTATUS register
/// - Address: 0x104 - 0x108
event_started: ReadWrite<u32, Event::Register>,
/// The whole EPIN\[n\] buffer has been consumed.
/// The RAM buffer can be accessed safely by software.
/// - Address: 0x108 - 0x128
event_endepin: [ReadWrite<u32, Event::Register>; NUM_ENDPOINTS],
/// An acknowledged data transfer has taken place on the control endpoint
/// - Address: 0x128 - 0x12C
event_ep0datadone: ReadWrite<u32, Event::Register>,
/// The whole ISOIN buffer has been consumed.
/// The RAM buffer can be accessed safely by software.
/// - Address: 0x12C - 0x130
event_endisoin: ReadWrite<u32, Event::Register>,
/// The whole EPOUT\[n\] buffer has been consumed.
/// The RAM buffer can be accessed safely by software.
/// - Address: 0x130 - 0x150
event_endepout: [ReadWrite<u32, Event::Register>; NUM_ENDPOINTS],
/// The whole ISOOUT buffer has been consumed.
/// The RAM buffer can be accessed safely by software.
/// - Address: 0x150 - 0x154
event_endisoout: ReadWrite<u32, Event::Register>,
/// Signals that a SOF (start of frame) condition has been
/// detected on the USB lines
/// - Address: 0x154 - 0x158
event_sof: ReadWrite<u32, Event::Register>,
/// An event or an error not covered by specific events has occurred,
/// check EVENTCAUSE register to find the cause
/// - Address: 0x158 - 0x15C
event_usbevent: ReadWrite<u32, Event::Register>,
/// A valid SETUP token has been received (and acknowledged)
/// on the control endpoint
/// - Address: 0x15C - 0x160
event_ep0setup: ReadWrite<u32, Event::Register>,
/// A data transfer has occurred on a data endpoint,
/// indicated by the EPDATASTATUS register
/// - Address: 0x160 - 0x164
event_epdata: ReadWrite<u32, Event::Register>,
_reserved3: [u32; 39],
/// Shortcut register
/// - Address: 0x200 - 0x204
shorts: ReadWrite<u32, Shorts::Register>,
_reserved4: [u32; 63],
/// Enable or disable interrupt
/// - Address: 0x300 - 0x304
inten: ReadWrite<u32, Interrupt::Register>,
/// Enable interrupt
/// - Address: 0x304 - 0x308
intenset: ReadWrite<u32, Interrupt::Register>,
/// Disable interrupt
/// - Address: 0x308 - 0x30C
intenclr: ReadWrite<u32, Interrupt::Register>,
_reserved5: [u32; 61],
/// Details on event that caused the USBEVENT even
/// - Address: 0x400 - 0x404
eventcause: ReadWrite<u32, EventCause::Register>,
_reserved6: [u32; 7],
/// IN\[n\] endpoint halted status.
/// Can be used as is as response to a GetStatus() request to endpoint.
/// - Address: 0x420 - 0x440
halted_epin: [ReadOnly<u32, Halted::Register>; NUM_ENDPOINTS],
_reserved7: [u32; 1],
/// OUT\[n\] endpoint halted status.
/// Can be used as is as response to a GetStatus() request to endpoint.
/// - Address: 0x444 - 0x464
halted_epout: [ReadOnly<u32, Halted::Register>; NUM_ENDPOINTS],
_reserved8: [u32; 1],
/// Provides information on which endpoint's EasyDMA
/// registers have been captured
/// - Address: 0x468 - 0x46C
epstatus: ReadWrite<u32, EndpointStatus::Register>,
/// Provides information on which endpoint(s) an acknowledged data
/// transfer has occurred (EPDATA event)
/// - Address: 0x46C - 0x470
epdatastatus: ReadWrite<u32, EndpointStatus::Register>,
/// Device USB address
/// - Address: 0x470 - 0x474
usbaddr: ReadOnly<u32, UsbAddress::Register>,
_reserved9: [u32; 3],
/// SETUP data, byte 0, bmRequestType
/// - Address: 0x480 - 0x484
bmrequesttype: ReadOnly<u32, RequestType::Register>,
/// SETUP data, byte 1, bRequest
/// - Address: 0x484 - 0x488
brequest: ReadOnly<u32, Request::Register>,
/// SETUP data, byte 2, wValue LSB
/// - Address: 0x488 - 0x48C
wvaluel: ReadOnly<u32, Byte::Register>,
/// SETUP data, byte 3, wValue MSB
/// - Address: 0x48C - 0x490
wvalueh: ReadOnly<u32, Byte::Register>,
/// SETUP data, byte 4, wIndex LSB
/// - Address: 0x490 - 0x494
windexl: ReadOnly<u32, Byte::Register>,
/// SETUP data, byte 5, wIndex MSB
/// - Address: 0x494 - 0x498
windexh: ReadOnly<u32, Byte::Register>,
/// SETUP data, byte 6, wLength LSB
/// - Address: 0x498 - 0x49C
wlengthl: ReadOnly<u32, Byte::Register>,
/// SETUP data, byte 7, wLength MSB
/// - Address: 0x49C - 0x4A0
wlengthh: ReadOnly<u32, Byte::Register>,
/// Amount of bytes received last in the data stage of
/// this OUT\[n\] endpoint
/// - Address: 0x4A0 - 0x4C0
size_epout: [ReadWrite<u32, EndpointSize::Register>; NUM_ENDPOINTS],
/// Amount of bytes received last on this iso OUT data endpoint
/// - Address: 0x4C0 - 0x4C4
size_iosout: ReadOnly<u32, IsoEndpointSize::Register>,
_reserved10: [u32; 15],
/// Enable USB
/// - Address: 0x500 - 0x504
enable: ReadWrite<u32, Usb::Register>,
/// Control of the USB pull-up
/// - Address: 0x504 - 0x508
usbpullup: ReadWrite<u32, UsbPullup::Register>,
/// State at which the DPDMDRIVE task will force D+ and D-.
/// The DPDMNODRIVE task reverts the control of the lines
/// to MAC IP (no forcing).
/// - Address: 0x508 - 0x50C
dpdmvalue: ReadWrite<u32, DpDmValue::Register>,
/// Data toggle control and status
/// - Address: 0x50C - 0x510
dtoggle: ReadWrite<u32, Toggle::Register>,
/// Endpoint IN enable
/// - Address: 0x510 - 0x514
epinen: ReadWrite<u32, EndpointEnable::Register>,
/// Endpoint OUT enable
/// - Address: 0x514 - 0x518
epouten: ReadWrite<u32, EndpointEnable::Register>,
/// STALL endpoints
/// - Address: 0x518 - 0x51C
epstall: WriteOnly<u32, EndpointStall::Register>,
/// Controls the split of ISO buffers
/// - Address: 0x51C - 0x520
isosplit: ReadWrite<u32, IsoSplit::Register>,
/// Returns the current value of the start of frame counter
/// - Address: 0x520 - 0x524
framecntr: ReadOnly<u32, FrameCounter::Register>,
_reserved11: [u32; 2],
/// Controls USBD peripheral low power mode during USB suspend
/// - Address: 0x52C - 0x530
lowpower: ReadWrite<u32, LowPower::Register>,
/// Controls the response of the ISO IN endpoint to an IN token
/// when no data is ready to be sent
/// - Address: 0x530 - 0x534
isoinconfig: ReadWrite<u32, IsoInConfig::Register>,
_reserved12: [u32; 51],
/// - Address: 0x600 - 0x6A0
epin: [detail::EndpointRegisters<'a>; NUM_ENDPOINTS],
/// - Address: 0x6A0 - 0x6B4
isoin: detail::EndpointRegisters<'a>,
_reserved13: [u32; 19],
/// - Address: 0x700 - 0x7A0
epout: [detail::EndpointRegisters<'a>; NUM_ENDPOINTS],
/// - Address: 0x7A0 - 0x7B4
isoout: detail::EndpointRegisters<'a>,
_reserved14: [u32; 19],
/// Errata 166 related register (ISO double buffering not functional)
/// - Address: 0x800 - 0x804
errata166_1: WriteOnly<u32>,
/// Errata 166 related register (ISO double buffering not functional)
/// - Address: 0x804 - 0x808
errata166_2: WriteOnly<u32>,
_reserved15: [u32; 261],
/// Errata 199 related register (USBD cannot receive tasks during DMA)
/// - Address: 0xC1C - 0xC20
errata199: WriteOnly<u32>,
}
mod detail {
use super::{Amount, Count};
use core::marker::PhantomData;
use kernel::utilities::cells::VolatileCell;
use kernel::utilities::registers::interfaces::Writeable;
use kernel::utilities::registers::{ReadOnly, ReadWrite};
#[repr(C)]
pub struct EndpointRegisters<'a> {
ptr: VolatileCell<*const u8>,
maxcnt: ReadWrite<u32, Count::Register>,
amount: ReadOnly<u32, Amount::Register>,
// padding
_reserved: [u32; 2],
// Lifetime marker.
_phantom: PhantomData<&'a [u8]>,
}
impl<'a> EndpointRegisters<'a> {
pub fn set_buffer(&self, slice: &'a [VolatileCell<u8>]) {
self.ptr.set(slice.as_ptr().cast::<u8>());
self.maxcnt.write(Count::MAXCNT.val(slice.len() as u32));
}
}
}
register_bitfields! [u32,
/// Start task
Task [
ENABLE OFFSET(0) NUMBITS(1)
],
/// Read event
Event [
READY OFFSET(0) NUMBITS(1)
],
/// Shortcuts
Shorts [
// Shortcut between EP0DATADONE event and STARTEPIN[0] task
EP0DATADONE_STARTEPIN0 OFFSET(0) NUMBITS(1),
// Shortcut between EP0DATADONE event and STARTEPOUT[0] task
EP0DATADONE_STARTEPOUT0 OFFSET(1) NUMBITS(1),
// Shortcut between EP0DATADONE event and EP0STATUS task
EP0DATADONE_EP0STATUS OFFSET(2) NUMBITS(1),
// Shortcut between ENDEPOUT[0] event and EP0STATUS task
ENDEPOUT0_EP0STATUS OFFSET(3) NUMBITS(1),
// Shortcut between ENDEPOUT[0] event and EP0RCVOUT task
ENDEPOUT0_EP0RCVOUT OFFSET(4) NUMBITS(1)
],
/// USB Interrupts
Interrupt [
USBRESET OFFSET(0) NUMBITS(1),
STARTED OFFSET(1) NUMBITS(1),
ENDEPIN0 OFFSET(2) NUMBITS(1),
ENDEPIN1 OFFSET(3) NUMBITS(1),
ENDEPIN2 OFFSET(4) NUMBITS(1),
ENDEPIN3 OFFSET(5) NUMBITS(1),
ENDEPIN4 OFFSET(6) NUMBITS(1),
ENDEPIN5 OFFSET(7) NUMBITS(1),
ENDEPIN6 OFFSET(8) NUMBITS(1),
ENDEPIN7 OFFSET(9) NUMBITS(1),
EP0DATADONE OFFSET(10) NUMBITS(1),
ENDISOIN OFFSET(11) NUMBITS(1),
ENDEPOUT0 OFFSET(12) NUMBITS(1),
ENDEPOUT1 OFFSET(13) NUMBITS(1),
ENDEPOUT2 OFFSET(14) NUMBITS(1),
ENDEPOUT3 OFFSET(15) NUMBITS(1),
ENDEPOUT4 OFFSET(16) NUMBITS(1),
ENDEPOUT5 OFFSET(17) NUMBITS(1),
ENDEPOUT6 OFFSET(18) NUMBITS(1),
ENDEPOUT7 OFFSET(19) NUMBITS(1),
ENDISOOUT OFFSET(20) NUMBITS(1),
SOF OFFSET(21) NUMBITS(1),
USBEVENT OFFSET(22) NUMBITS(1),
EP0SETUP OFFSET(23) NUMBITS(1),
EPDATA OFFSET(24) NUMBITS(1)
],
/// Cause of a USBEVENT event
EventCause [
ISOOUTCRC OFFSET(0) NUMBITS(1),
SUSPEND OFFSET(8) NUMBITS(1),
RESUME OFFSET(9) NUMBITS(1),
USBWUALLOWED OFFSET(10) NUMBITS(1),
READY OFFSET(11) NUMBITS(1)
],
Halted [
GETSTATUS OFFSET(0) NUMBITS(16) [
NotHalted = 0,
Halted = 1
]
],
EndpointStatus [
EPIN0 OFFSET(0) NUMBITS(1),
EPIN1 OFFSET(1) NUMBITS(1),
EPIN2 OFFSET(2) NUMBITS(1),
EPIN3 OFFSET(3) NUMBITS(1),
EPIN4 OFFSET(4) NUMBITS(1),
EPIN5 OFFSET(5) NUMBITS(1),
EPIN6 OFFSET(6) NUMBITS(1),
EPIN7 OFFSET(7) NUMBITS(1),
EPIN8 OFFSET(8) NUMBITS(1),
EPOUT0 OFFSET(16) NUMBITS(1),
EPOUT1 OFFSET(17) NUMBITS(1),
EPOUT2 OFFSET(18) NUMBITS(1),
EPOUT3 OFFSET(19) NUMBITS(1),
EPOUT4 OFFSET(20) NUMBITS(1),
EPOUT5 OFFSET(21) NUMBITS(1),
EPOUT6 OFFSET(22) NUMBITS(1),
EPOUT7 OFFSET(23) NUMBITS(1),
EPOUT8 OFFSET(24) NUMBITS(1)
],
UsbAddress [
ADDR OFFSET(0) NUMBITS(7)
],
RequestType [
RECIPIENT OFFSET(0) NUMBITS(5) [
Device = 0,
Interface = 1,
Endpoint = 2,
Other = 3
],
TYPE OFFSET(5) NUMBITS(2) [
Standard = 0,
Class = 1,
Vendor = 2
],
DIRECTION OFFSET(7) NUMBITS(1) [
HostToDevice = 0,
DeviceToHost = 1
]
],
Request [
BREQUEST OFFSET(0) NUMBITS(8) [
STD_GET_STATUS = 0,
STD_CLEAR_FEATURE = 1,
STD_SET_FEATURE = 3,
STD_SET_ADDRESS = 5,
STD_GET_DESCRIPTOR = 6,
STD_SET_DESCRIPTOR = 7,
STD_GET_CONFIGURATION = 8,
STD_SET_CONFIGURATION = 9,
STD_GET_INTERFACE = 10,
STD_SET_INTERFACE = 11,
STD_SYNCH_FRAME = 12
]
],
Byte [
VALUE OFFSET(0) NUMBITS(8)
],
EndpointSize [
SIZE OFFSET(0) NUMBITS(7)
],
IsoEndpointSize [
SIZE OFFSET(0) NUMBITS(10),
ZERO OFFSET(16) NUMBITS(1)
],
/// Enable USB
Usb [
ENABLE OFFSET(0) NUMBITS(1) [
OFF = 0,
ON = 1
]
],
UsbPullup [
CONNECT OFFSET(0) NUMBITS(1) [
Disabled = 0,
Enabled = 1
]
],
DpDmValue [
STATE OFFSET(0) NUMBITS(5) [
Resume = 1,
J = 2,
K = 4
]
],
Toggle [
EP OFFSET(0) NUMBITS(3) [],
IO OFFSET(7) NUMBITS(1) [
Out = 0,
In = 1
],
VALUE OFFSET(8) NUMBITS(2) [
Nop = 0,
Data0 = 1,
Data1 = 2
]
],
EndpointEnable [
EP0 OFFSET(0) NUMBITS(1) [
Disable = 0,
Enable = 1
],
EP1 OFFSET(1) NUMBITS(1) [
Disable = 0,
Enable = 1
],
EP2 OFFSET(2) NUMBITS(1) [
Disable = 0,
Enable = 1
],
EP3 OFFSET(3) NUMBITS(1) [
Disable = 0,
Enable = 1
],
EP4 OFFSET(4) NUMBITS(1) [
Disable = 0,
Enable = 1
],
EP5 OFFSET(5) NUMBITS(1) [
Disable = 0,
Enable = 1
],
EP6 OFFSET(6) NUMBITS(1) [
Disable = 0,
Enable = 1
],
EP7 OFFSET(7) NUMBITS(1) [
Disable = 0,
Enable = 1
],
ISO OFFSET(8) NUMBITS(1) [
Disable = 0,
Enable = 1
]
],
EndpointStall [
EP OFFSET(0) NUMBITS(3) [],
IO OFFSET(7) NUMBITS(1) [
Out = 0,
In = 1
],
STALL OFFSET(8) NUMBITS(1) [
UnStall = 0,
Stall = 1
]
],
IsoSplit [
SPLIT OFFSET(0) NUMBITS(16) [
OneDir = 0x0000,
HalfIN = 0x0080
]
],
FrameCounter [
FRAMECNTR OFFSET(0) NUMBITS(11)
],
LowPower [
LOWPOWER OFFSET(0) NUMBITS(1) [
ForceNormal = 0,
LowPower = 1
]
],
IsoInConfig [
RESPONSE OFFSET(0) NUMBITS(1) [
NoResp = 0,
ZeroData = 1
]
],
Count [
// 7 bits for a bulk endpoint but 10 bits for ISO EP
MAXCNT OFFSET(0) NUMBITS(10)
],
Amount [
// 7 bits for a bulk endpoint but 10 bits for ISO EP
AMOUNT OFFSET(0) NUMBITS(10)
],
ChipModel [
MODEL OFFSET(0) NUMBITS(32) [
NRF52840 = 8
]
],
ChipRevision [
REV OFFSET(0) NUMBITS(32) [
REVA = 0,
REVB = 1,
REVC = 2,
REVD = 3,
REVE = 4,
REVF = 5,
]
]
];
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum UsbState {
Disabled,
Started,
Initialized,
PoweredOn,
Attached,
Configured,
}
#[derive(Copy, Clone, Debug)]
pub enum EndpointState {
Disabled,
Ctrl(CtrlState),
Bulk(TransferType, Option<BulkInState>, Option<BulkOutState>),
}
impl EndpointState {
fn ctrl_state(self) -> CtrlState {
match self {
EndpointState::Ctrl(state) => state,
_ => panic!("Expected EndpointState::Ctrl"),
}
}
fn bulk_state(self) -> (TransferType, Option<BulkInState>, Option<BulkOutState>) {
match self {
EndpointState::Bulk(transfer_type, in_state, out_state) => {
(transfer_type, in_state, out_state)
}
_ => panic!("Expected EndpointState::Bulk"),
}
}
}
/// State of the control endpoint (endpoint 0).
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum CtrlState {
/// Control endpoint is idle, and waiting for a command from the host.
Init,
/// Control endpoint has started an IN transfer.
ReadIn,
/// Control endpoint has moved to the status phase.
ReadStatus,
/// Control endpoint is handling a control write (OUT) transfer.
WriteOut,
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum BulkInState {
// The endpoint is ready to perform transactions.
Init,
// There is a pending DMA transfer on this IN endpoint.
InDma,
// There is a pending IN packet transfer on this endpoint.
InData,
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum BulkOutState {
// The endpoint is ready to perform transactions.
Init,
// There is a pending OUT packet in this endpoint's buffer, to be read by
// the client application.
OutDelay,
// There is a pending EPDATA to reply to. Store the size right after the
// EPDATA event.
OutData { size: u32 },
// There is a pending DMA transfer on this OUT endpoint. Still need to keep
// track of the size of the transfer.
OutDma { size: u32 },
}
pub struct Endpoint<'a> {
slice_in: OptionalCell<&'a [VolatileCell<u8>]>,
slice_out: OptionalCell<&'a [VolatileCell<u8>]>,
state: Cell<EndpointState>,
// The USB controller can only process one DMA transfer at a time (over all endpoints). The
// request_transmit_* bits allow to queue transfers until the DMA becomes available again.
// Whether a DMA transfer is requested on this IN endpoint.
request_transmit_in: Cell<bool>,
// Whether a DMA transfer is requested on this OUT endpoint.
request_transmit_out: Cell<bool>,
}
impl Endpoint<'_> {
const fn new() -> Self {
Endpoint {
slice_in: OptionalCell::empty(),
slice_out: OptionalCell::empty(),
state: Cell::new(EndpointState::Disabled),
request_transmit_in: Cell::new(false),
request_transmit_out: Cell::new(false),
}
}
}
pub struct Usbd<'a> {
registers: StaticRef<UsbdRegisters<'a>>,
state: OptionalCell<UsbState>,
dma_pending: Cell<bool>,
client: OptionalCell<&'a dyn hil::usb::Client<'a>>,
descriptors: [Endpoint<'a>; NUM_ENDPOINTS],
power: OptionalCell<&'a power::Power<'a>>,
}
impl<'a> Usbd<'a> {
pub const fn new() -> Self {
Usbd {
registers: USBD_BASE,
client: OptionalCell::empty(),
state: OptionalCell::new(UsbState::Disabled),
dma_pending: Cell::new(false),
descriptors: [
Endpoint::new(),
Endpoint::new(),
Endpoint::new(),
Endpoint::new(),
Endpoint::new(),
Endpoint::new(),
Endpoint::new(),
Endpoint::new(),
],
power: OptionalCell::empty(),
}
}
pub fn set_power_ref(&self, power: &'a power::Power<'a>) {
self.power.set(power);
}
// ERRATA
//
// There are known issues with nRF52840 USB hardware, and we check if
// specific errata apply given different versions of the chip.
//
// Reference
// https://github.com/NordicSemiconductor/nrfx/blob/master/mdk/nrf52_erratas.h
// for how the different errata apply.
fn has_errata_166(&self) -> bool {
true
}
fn has_errata_171(&self) -> bool {
true
}
fn has_errata_187(&self) -> bool {
CHIPINFO_BASE
.chip_model
.matches_all(ChipModel::MODEL::NRF52840)
&& match CHIPINFO_BASE.chip_revision.read_as_enum(ChipRevision::REV) {
Some(ChipRevision::REV::Value::REVB)
| Some(ChipRevision::REV::Value::REVC)
| Some(ChipRevision::REV::Value::REVD)
| Some(ChipRevision::REV::Value::REVE)
| Some(ChipRevision::REV::Value::REVF) => true,
Some(ChipRevision::REV::Value::REVA) | None => false,
}
}
fn has_errata_199(&self) -> bool {
true
}
/// ISO double buffering not functional
fn apply_errata_166(&self) {
if self.has_errata_166() {
self.registers.errata166_1.set(0x7e3);
self.registers.errata166_2.set(0x40);
}
}
/// USBD might not reach its active state.
fn apply_errata_171(&self, val: u32) {
if self.has_errata_171() {
unsafe {
atomic(|| {
if USBERRATA_BASE.reg_c00.get() == 0 {
USBERRATA_BASE.reg_c00.set(0x9375);
USBERRATA_BASE.reg_c14.set(val);
USBERRATA_BASE.reg_c00.set(0x9375);
} else {
USBERRATA_BASE.reg_c14.set(val);
}
});
}
}
}
/// USB cannot be enabled
fn apply_errata_187(&self, val: u32) {
if self.has_errata_187() {
unsafe {
atomic(|| {
if USBERRATA_BASE.reg_c00.get() == 0 {
USBERRATA_BASE.reg_c00.set(0x9375);
USBERRATA_BASE.reg_d14.set(val);
USBERRATA_BASE.reg_c00.set(0x9375);
} else {
USBERRATA_BASE.reg_d14.set(val);
}
});
}
}
}
fn apply_errata_199(&self, val: u32) {
if self.has_errata_199() {
self.registers.errata199.set(val);
}
}
pub fn get_state(&self) -> UsbState {
self.state.unwrap_or_panic() // Unwrap fail = get_state: state value is in use
}
// Powers the USB PHY on
fn enable(&self) {
if self.get_state() != UsbState::Disabled {
internal_warn!("USBC is already enabled");
return;
}
self.registers.eventcause.modify(EventCause::READY::CLEAR);
self.apply_errata_187(3);
self.apply_errata_171(0xc0);
self.registers.enable.write(Usb::ENABLE::ON);
while !self.registers.eventcause.is_set(EventCause::READY) {}
self.registers.eventcause.modify(EventCause::READY::CLEAR);
self.apply_errata_171(0);
self.apply_errata_166();
self.clear_pending_dma();
self.state.set(UsbState::Initialized);
self.apply_errata_187(0);
}
// TODO: unused function
fn _suspend(&self) {
debug_info!("usbc::suspend()");
self.ep_abort_all();
if self.registers.eventcause.is_set(EventCause::RESUME) {
return;
}
self.enable_lowpower();
if self.registers.eventcause.is_set(EventCause::RESUME) {
self.disable_lowpower();
} else {
self.apply_errata_171(0);
}
internal_warn!("suspend() not fully implemented");
}
fn disable_all_interrupts(&self) {
self.registers.intenclr.set(0xffffffff);
}
fn enable_interrupts(&self, inter: u32) {
self.registers.inten.set(inter);
}
fn power_ready(&self) {
match self.get_state() {
UsbState::Disabled => {
self.enable();
self.state.set(UsbState::PoweredOn);
}
UsbState::Initialized => self.state.set(UsbState::PoweredOn),
_ => (),
}
}
fn enable_pullup(&self) {
debug_info!("enable_pullup() - State={:?}", self.get_state());
if self.get_state() == UsbState::Started {
debug_info!("Enabling USB pullups");
self.registers.usbpullup.write(UsbPullup::CONNECT::Enabled);
}
self.state.set(UsbState::Attached);
debug_info!("New state is {:?}", self.get_state());
}
fn disable_pullup(&self) {
debug_info!("Disabling USB pullup - State={:?}", self.get_state());
self.registers.usbpullup.write(UsbPullup::CONNECT::Disabled);
self.state.set(UsbState::Started);
debug_info!("New state is {:?}", self.get_state());
}
// Allows the peripheral to be enumerated by the USB master
fn start(&self) {
debug_info!("usbc::start() - State={:?}", self.get_state());
// Depending on the chip model, there are more or less errata to add to the code. To
// simplify things, this implementation only includes errata relevant to nRF52840 chips
// revisions >= C.
//
// If your chip isn't one of these, you will be alerted by these panics. You can disable
// them but will likely need to add the relevant errata to this implementation (errata 104,
// 154, 200).
let chip_model = CHIPINFO_BASE.chip_model.get();
if chip_model != u32::from(ChipModel::MODEL::NRF52840) {
panic!(
"USB was only tested on NRF52840. Your chip model is {}.",
chip_model
);
}
let chip_revision = CHIPINFO_BASE.chip_revision.extract();
match chip_revision.read_as_enum(ChipRevision::REV) {
Some(ChipRevision::REV::Value::REVA) | Some(ChipRevision::REV::Value::REVB) => {
panic!(
"Errata for USB on NRF52840 chips revisions A and B are not implemented. Your chip revision is {}.",
chip_revision.get()
);
}
Some(ChipRevision::REV::Value::REVC)
| Some(ChipRevision::REV::Value::REVD)
| Some(ChipRevision::REV::Value::REVE)
| Some(ChipRevision::REV::Value::REVF) => {
debug_info!(
"Your chip is NRF52840 revision {}. The USB stack was tested on your chip :)",
chip_revision.get()
);
}
None => {
internal_warn!(
"Your chip is NRF52840 revision {} (unknown revision). Although this USB implementation should be compatible, your chip hasn't been tested.",
chip_revision.get()
);
}
}
let power = self.power.unwrap_or_panic(); // Unwrap fail = failed to initialize power reference for USB
if !power.is_vbus_present() {
debug_info!("[!] VBUS power is not detected.");
return;
}
if self.get_state() == UsbState::Disabled {
self.enable();
}
if self.get_state() != UsbState::PoweredOn {
debug_info!("Waiting for power regulators...");
while power.is_vbus_present() && power.is_usb_power_ready() {}
}
debug_info!("usbc::start() - subscribing to interrupts.");
self.registers.intenset.write(
Interrupt::USBRESET::SET
+ Interrupt::STARTED::SET
+ Interrupt::ENDEPIN0::SET
+ Interrupt::EP0DATADONE::SET
+ Interrupt::ENDEPOUT0::SET
+ Interrupt::USBEVENT::SET
+ Interrupt::EP0SETUP::SET
+ Interrupt::EPDATA::SET,
);
self.state.set(UsbState::Started);
}
fn stop(&self) {
debug_info!("usbc::stop() - State={:?}", self.get_state());
if self.get_state() != UsbState::Started {
return;
}
self.ep_abort_all();
self.disable_all_interrupts();
self.registers.usbpullup.write(UsbPullup::CONNECT::Disabled);
self.state.set(UsbState::PoweredOn);
}
fn disable(&self) {
debug_info!("usbc::disable() - State={:?}", self.get_state());
self.stop();
self.registers.enable.write(Usb::ENABLE::OFF);
self.state.set(UsbState::Initialized);
self.clear_pending_dma();
}
fn clear_pending_dma(&self) {
debug_packets!("clear_pending_dma()");
self.apply_errata_199(0);
self.dma_pending.set(false);
}
fn set_pending_dma(&self) {
debug_packets!("set_pending_dma()");
if self.dma_pending.get() {
internal_err!("Pending DMA already in flight");
}
self.apply_errata_199(0x82);
self.dma_pending.set(true);
}
fn enable_in_endpoint_(&self, transfer_type: TransferType, endpoint: usize) {
debug_info!(
"enable_in_endpoint_({}), State={:?}",
endpoint,
self.get_state()
);
self.registers.intenset.write(match endpoint {
0 => Interrupt::ENDEPIN0::SET,
1 => Interrupt::ENDEPIN1::SET,
2 => Interrupt::ENDEPIN2::SET,
3 => Interrupt::ENDEPIN3::SET,
4 => Interrupt::ENDEPIN4::SET,
5 => Interrupt::ENDEPIN5::SET,
6 => Interrupt::ENDEPIN6::SET,
7 => Interrupt::ENDEPIN7::SET,
8 => Interrupt::ENDISOIN::SET,
_ => unreachable!("unexisting endpoint"),
});
self.registers.epinen.modify(match endpoint {
0 => EndpointEnable::EP0::Enable,
1 => EndpointEnable::EP1::Enable,
2 => EndpointEnable::EP2::Enable,
3 => EndpointEnable::EP3::Enable,
4 => EndpointEnable::EP4::Enable,
5 => EndpointEnable::EP5::Enable,
6 => EndpointEnable::EP6::Enable,
7 => EndpointEnable::EP7::Enable,
8 => EndpointEnable::ISO::Enable,
_ => unreachable!("unexisting endpoint"),
});
self.descriptors[endpoint].state.set(match endpoint {
0 => EndpointState::Ctrl(CtrlState::Init),
1..=7 => EndpointState::Bulk(transfer_type, Some(BulkInState::Init), None),
8 => unimplemented!("isochronous endpoint"),
_ => unreachable!("unexisting endpoint"),
});
}
fn enable_out_endpoint_(&self, transfer_type: TransferType, endpoint: usize) {
debug_info!(
"enable_out_endpoint_({}) - State={:?}",
endpoint,
self.get_state()
);
self.registers.intenset.write(match endpoint {
0 => Interrupt::ENDEPOUT0::SET,
1 => Interrupt::ENDEPOUT1::SET,
2 => Interrupt::ENDEPOUT2::SET,
3 => Interrupt::ENDEPOUT3::SET,
4 => Interrupt::ENDEPOUT4::SET,
5 => Interrupt::ENDEPOUT5::SET,
6 => Interrupt::ENDEPOUT6::SET,
7 => Interrupt::ENDEPOUT7::SET,
8 => Interrupt::ENDISOOUT::SET,
_ => unreachable!("unexisting endpoint"),
});
self.registers.epouten.modify(match endpoint {
0 => EndpointEnable::EP0::Enable,
1 => EndpointEnable::EP1::Enable,
2 => EndpointEnable::EP2::Enable,
3 => EndpointEnable::EP3::Enable,
4 => EndpointEnable::EP4::Enable,
5 => EndpointEnable::EP5::Enable,
6 => EndpointEnable::EP6::Enable,
7 => EndpointEnable::EP7::Enable,
8 => EndpointEnable::ISO::Enable,
_ => unreachable!("unexisting endpoint"),
});
self.descriptors[endpoint].state.set(match endpoint {
0 => EndpointState::Ctrl(CtrlState::Init),
1..=7 => EndpointState::Bulk(transfer_type, None, Some(BulkOutState::Init)),
8 => unimplemented!("isochronous endpoint"),
_ => unreachable!("unexisting endpoint"),
});
}
fn enable_in_out_endpoint_(&self, transfer_type: TransferType, endpoint: usize) {
debug_info!(
"enable_in_out_endpoint_({}) - State={:?}",
endpoint,
self.get_state()
);
self.registers.intenset.write(match endpoint {
0 => Interrupt::ENDEPIN0::SET + Interrupt::ENDEPOUT0::SET,
1 => Interrupt::ENDEPIN1::SET + Interrupt::ENDEPOUT1::SET,
2 => Interrupt::ENDEPIN2::SET + Interrupt::ENDEPOUT2::SET,
3 => Interrupt::ENDEPIN3::SET + Interrupt::ENDEPOUT3::SET,
4 => Interrupt::ENDEPIN4::SET + Interrupt::ENDEPOUT4::SET,
5 => Interrupt::ENDEPIN5::SET + Interrupt::ENDEPOUT5::SET,
6 => Interrupt::ENDEPIN6::SET + Interrupt::ENDEPOUT6::SET,
7 => Interrupt::ENDEPIN7::SET + Interrupt::ENDEPOUT7::SET,
8 => Interrupt::ENDISOIN::SET + Interrupt::ENDISOOUT::SET,
_ => unreachable!("unexisting endpoint"),
});
self.registers.epinen.modify(match endpoint {
0 => EndpointEnable::EP0::Enable,
1 => EndpointEnable::EP1::Enable,
2 => EndpointEnable::EP2::Enable,
3 => EndpointEnable::EP3::Enable,
4 => EndpointEnable::EP4::Enable,
5 => EndpointEnable::EP5::Enable,
6 => EndpointEnable::EP6::Enable,
7 => EndpointEnable::EP7::Enable,
8 => EndpointEnable::ISO::Enable,
_ => unreachable!("unexisting endpoint"),
});
self.registers.epouten.modify(match endpoint {
0 => EndpointEnable::EP0::Enable,
1 => EndpointEnable::EP1::Enable,
2 => EndpointEnable::EP2::Enable,
3 => EndpointEnable::EP3::Enable,
4 => EndpointEnable::EP4::Enable,
5 => EndpointEnable::EP5::Enable,
6 => EndpointEnable::EP6::Enable,
7 => EndpointEnable::EP7::Enable,
8 => EndpointEnable::ISO::Enable,
_ => unreachable!("unexisting endpoint"),
});
self.descriptors[endpoint].state.set(match endpoint {
0 => EndpointState::Ctrl(CtrlState::Init),
1..=7 => EndpointState::Bulk(
transfer_type,
Some(BulkInState::Init),
Some(BulkOutState::Init),
),
8 => unimplemented!("isochronous endpoint"),
_ => unreachable!("unexisting endpoint"),
});
}
fn ep_abort_all(&self) {
internal_warn!("ep_abort_all() not implemented");
}
pub fn enable_lowpower(&self) {
internal_warn!("enable_lowpower() not implemented");
}
pub fn disable_lowpower(&self) {
internal_warn!("disable_lowpower() not implemented");
}
pub fn handle_interrupt(&self) {
// Save then disable all interrupts.
let saved_inter = self.registers.intenset.extract();
self.disable_all_interrupts();
let active_events = self.active_events(&saved_inter);
let events_to_process = saved_inter.bitand(active_events.get());
// The following order in which we test events is important.
// Interrupts should be processed from bit 0 to bit 31 but EP0SETUP must be last.
if events_to_process.is_set(Interrupt::USBRESET) {
self.handle_usbreset();
}
if events_to_process.is_set(Interrupt::STARTED) {
self.handle_started();
}
// Note: isochronous endpoint receives a dedicated ENDISOIN interrupt instead.
for ep in 0..NUM_ENDPOINTS {
if events_to_process.is_set(inter_endepin(ep)) {
self.handle_endepin(ep);
}
}
if events_to_process.is_set(Interrupt::EP0DATADONE) {
self.handle_ep0datadone();
}
if events_to_process.is_set(Interrupt::ENDISOIN) {
self.handle_endisoin();
}
// Note: isochronous endpoint receives a dedicated ENDISOOUT interrupt instead.
for ep in 0..NUM_ENDPOINTS {
if events_to_process.is_set(inter_endepout(ep)) {
self.handle_endepout(ep);
}
}
if events_to_process.is_set(Interrupt::ENDISOOUT) {
self.handle_endisoout();
}
if events_to_process.is_set(Interrupt::SOF) {
self.handle_sof();
}
if events_to_process.is_set(Interrupt::USBEVENT) {
self.handle_usbevent();
}
if events_to_process.is_set(Interrupt::EPDATA) {
self.handle_epdata();
}
self.process_dma_requests();
// Setup packet received.
// This event must be handled last, even though EPDATA is after.
if events_to_process.is_set(Interrupt::EP0SETUP) {
self.handle_ep0setup();
}
// Restore interrupts
self.enable_interrupts(saved_inter.get());
}
fn active_events(
&self,
_saved_inter: &LocalRegisterCopy<u32, Interrupt::Register>,
) -> InMemoryRegister<u32, Interrupt::Register> {
let result = InMemoryRegister::new(0);
if Usbd::take_event(&self.registers.event_usbreset) {
debug_events!(
"- event: usbreset{}",
ignored_str(_saved_inter, Interrupt::USBRESET)
);
result.modify(Interrupt::USBRESET::SET);
}
if Usbd::take_event(&self.registers.event_started) {
debug_events!(
"- event: started{}",
ignored_str(_saved_inter, Interrupt::STARTED)
);
result.modify(Interrupt::STARTED::SET);
}
for ep in 0..8 {
if Usbd::take_event(&self.registers.event_endepin[ep]) {
debug_events!(
"- event: endepin[{}]{}",
ep,
ignored_str(_saved_inter, inter_endepin(ep))
);
result.modify(inter_endepin(ep).val(1));
}
}
if Usbd::take_event(&self.registers.event_ep0datadone) {
debug_events!(
"- event: ep0datadone{}",
ignored_str(_saved_inter, Interrupt::EP0DATADONE)
);
result.modify(Interrupt::EP0DATADONE::SET);
}
if Usbd::take_event(&self.registers.event_endisoin) {
debug_events!(
"- event: endisoin{}",
ignored_str(_saved_inter, Interrupt::ENDISOIN)
);
result.modify(Interrupt::ENDISOIN::SET);
}
for ep in 0..8 {
if Usbd::take_event(&self.registers.event_endepout[ep]) {
debug_events!(
"- event: endepout[{}]{}",
ep,
ignored_str(_saved_inter, inter_endepout(ep))
);
result.modify(inter_endepout(ep).val(1));
}
}
if Usbd::take_event(&self.registers.event_endisoout) {
debug_events!(
"- event: endisoout{}",
ignored_str(_saved_inter, Interrupt::ENDISOOUT)
);
result.modify(Interrupt::ENDISOOUT::SET);
}
if Usbd::take_event(&self.registers.event_sof) {
debug_events!("- event: sof{}", ignored_str(_saved_inter, Interrupt::SOF));
result.modify(Interrupt::SOF::SET);
}
if Usbd::take_event(&self.registers.event_usbevent) {
debug_events!(
"- event: usbevent{}",
ignored_str(_saved_inter, Interrupt::USBEVENT)
);
result.modify(Interrupt::USBEVENT::SET);
}
if Usbd::take_event(&self.registers.event_ep0setup) {
debug_events!(
"- event: ep0setup{}",
ignored_str(_saved_inter, Interrupt::EP0SETUP)
);
result.modify(Interrupt::EP0SETUP::SET);
}
if Usbd::take_event(&self.registers.event_epdata) {
debug_events!(
"- event: epdata{}",
ignored_str(_saved_inter, Interrupt::EPDATA)
);
result.modify(Interrupt::EPDATA::SET);
}
result
}
// Reads the status of an Event register and clears the register.
// Returns the READY status.
fn take_event(event: &ReadWrite<u32, Event::Register>) -> bool {
let result = event.is_set(Event::READY);
if result {
event.write(Event::READY::CLEAR);
}
result
}
fn handle_usbreset(&self) {
for (ep, desc) in self.descriptors.iter().enumerate() {
match desc.state.get() {
EndpointState::Disabled => {}
EndpointState::Ctrl(_) => desc.state.set(EndpointState::Ctrl(CtrlState::Init)),
EndpointState::Bulk(transfer_type, in_state, out_state) => {
desc.state.set(EndpointState::Bulk(
transfer_type,
in_state.map(|_| BulkInState::Init),
out_state.map(|_| BulkOutState::Init),
));
if out_state.is_some() {
// Accept incoming OUT packets.
self.registers.size_epout[ep].set(0);
}
}
}
// Clear the DMA status.
desc.request_transmit_in.set(false);
desc.request_transmit_out.set(false);
}
self.dma_pending.set(false);
// Wait for at least T_RSTRCY for the hardware to be ready after the USB
// RESET (§6.35.6). I measured the loop using GPIO pins from `0..800000`
// as a 62.5 ms delay, and that was enough to allow the CDC layer to
// work. I tried shorter time than that (`0..700000`, measured at 54.7
// ms), but then the EPDATA event on the very first IN transfer
// immediately after the `client.bus_reset()` call below never occurs.
for _ in 0..800000 {
cortexm4f::support::nop();
}
// TODO: reset controller stack
self.client.map(|client| {
client.bus_reset();
});
}
fn handle_started(&self) {
let epstatus = self.registers.epstatus.extract();
// Acknowledge the status by writing ones to the acknowledged bits.
self.registers.epstatus.set(epstatus.get());
debug_events!("epstatus: {:08X}", epstatus.get());
// Nothing to do here, we just wait for the corresponding ENDEP* event.
}
fn handle_endepin(&self, endpoint: usize) {
// Make DMA available again for other endpoints.
self.clear_pending_dma();
match endpoint {
0 => {}
1..=7 => {
let (transfer_type, in_state, out_state) =
self.descriptors[endpoint].state.get().bulk_state();
assert_eq!(in_state, Some(BulkInState::InDma));
self.descriptors[endpoint].state.set(EndpointState::Bulk(
transfer_type,
Some(BulkInState::InData),
out_state,
));
}
8 => unimplemented!("isochronous endpoint"),
_ => unreachable!("unexisting endpoint"),
}
// Nothing else to do. Wait for the EPDATA event.
}
/// Data has been sent over the USB bus, and the hardware has ACKed it.
/// This is for the control endpoint only.
fn handle_ep0datadone(&self) {
let endpoint = 0;
let state = self.descriptors[endpoint].state.get().ctrl_state();
match state {
CtrlState::ReadIn => {
if self.dma_pending.get() {
self.descriptors[endpoint].request_transmit_in.set(true);
} else {
self.transmit_in_ep0();
}
}
CtrlState::ReadStatus => {
self.complete_ctrl_status();
}
CtrlState::WriteOut => {
// We just completed the Setup stage for a CTRL WRITE transfer,
// and now we need to enable DMA so the USBD peripheral can copy
// the received data. If the DMA is in use, queue our request.
if self.dma_pending.get() {
self.descriptors[endpoint].request_transmit_out.set(true);
} else {
self.transmit_out_ep0();
}
}
CtrlState::Init => {
// We shouldn't be there. Let's STALL the endpoint.
debug_tasks!("- task: ep0stall");
self.registers.task_ep0stall.write(Task::ENABLE::SET);
}
}
}
fn handle_endisoin(&self) {
unimplemented!("handle_endisoin");
}
fn handle_endepout(&self, endpoint: usize) {
// Make DMA available again for other endpoints.
self.clear_pending_dma();
match endpoint {
0 => {
// We got data on the control endpoint during a CTRL WRITE
// transfer. Let the client handle the data, and then finish up
// the control write by moving to the status stage.
// Now we can handle it and pass it to the client to see
// what the client returns.
self.client.map(|client| {
match client.ctrl_out(endpoint, self.registers.size_epout[endpoint].get()) {
hil::usb::CtrlOutResult::Ok => {
// We only handle the simple case where we have
// received all of the data we need to.
//
// TODO: Check if the CTRL WRITE is longer
// than the amount of data we have received,
// and receive more data before completing.
self.complete_ctrl_status();
}
hil::usb::CtrlOutResult::Delay => {}
_ => {
// Respond with STALL to any following transactions
// in this request
debug_tasks!("- task: ep0stall");
self.registers.task_ep0stall.write(Task::ENABLE::SET);
self.descriptors[endpoint]
.state
.set(EndpointState::Ctrl(CtrlState::Init));
}
};
});
}
1..=7 => {
// Notify the client about the new packet.
let (transfer_type, in_state, out_state) =
self.descriptors[endpoint].state.get().bulk_state();
assert!(matches!(out_state, Some(BulkOutState::OutDma { .. })));
let packet_bytes = if let Some(BulkOutState::OutDma { size }) = out_state {
size
} else {
0
};
self.debug_out_packet(packet_bytes as usize, endpoint);
self.client.map(|client| {
let result = client.packet_out(transfer_type, endpoint, packet_bytes);
debug_packets!("packet_out => {:?}", result);
let new_out_state = match result {
hil::usb::OutResult::Ok => {
// We do not need to do anything to tell the USB
// hardware this endpoint is ready to receive again.
// The DMA finishing is enough to signal the
// endpoint is ready.
BulkOutState::Init
}
hil::usb::OutResult::Delay => {
// We can't send the packet now. Wait for a resume_out call from the client.
BulkOutState::OutDelay
}
hil::usb::OutResult::Error => {
self.registers.epstall.write(
EndpointStall::EP.val(endpoint as u32)
+ EndpointStall::IO::Out
+ EndpointStall::STALL::Stall,
);
BulkOutState::Init
}
};
self.descriptors[endpoint].state.set(EndpointState::Bulk(
transfer_type,
in_state,
Some(new_out_state),
));
});
}
8 => unimplemented!("isochronous endpoint"),
_ => unreachable!("unexisting endpoint"),
}
}
fn handle_endisoout(&self) {
unimplemented!("handle_endisoout");
}
fn handle_sof(&self) {
unimplemented!("handle_sof");
}
fn handle_usbevent(&self) {
let eventcause = self.registers.eventcause.extract();
// Acknowledge the cause by writing ones to the acknowledged bits.
self.registers.eventcause.set(eventcause.get());
debug_events!("eventcause: {:08x}", eventcause.get());
if eventcause.is_set(EventCause::ISOOUTCRC) {
debug_events!("- usbevent: isooutcrc");
internal_warn!("usbc::isooutcrc not implemented");
}
if eventcause.is_set(EventCause::SUSPEND) {
debug_events!("- usbevent: suspend");
internal_warn!("usbc::suspend not implemented");
}
if eventcause.is_set(EventCause::RESUME) {
debug_events!("- usbevent: resume");
internal_warn!("usbc::resume not implemented");
}
if eventcause.is_set(EventCause::USBWUALLOWED) {
debug_events!("- usbevent: usbwuallowed");
internal_warn!("usbc::usbwuallowed not implemented");
}
if eventcause.is_set(EventCause::READY) {
debug_events!("- usbevent: ready");
internal_warn!("usbc::ready not implemented");
}
}
fn handle_epdata(&self) {
let epdatastatus = self.registers.epdatastatus.extract();
// Acknowledge the status by writing ones to the acknowledged bits.
self.registers.epdatastatus.set(epdatastatus.get());
debug_events!("epdatastatus: {:08X}", epdatastatus.get());
// Endpoint 0 (control) receives an EP0DATADONE event instead.
// Endpoint 8 (isochronous) doesn't receive any EPDATA event.
for endpoint in 1..NUM_ENDPOINTS {
if epdatastatus.is_set(status_epin(endpoint)) {
let (transfer_type, in_state, out_state) =
self.descriptors[endpoint].state.get().bulk_state();
assert!(in_state.is_some());
match in_state.unwrap() {
BulkInState::InData => {
// Totally expected state. Nothing to do.
}
BulkInState::Init => {
internal_warn!(
"Received a stale epdata IN in an unexpected state: {:?}",
in_state
);
}
BulkInState::InDma => {
internal_err!("Unexpected state: {:?}", in_state);
}
}
self.descriptors[endpoint].state.set(EndpointState::Bulk(
transfer_type,
Some(BulkInState::Init),
out_state,
));
self.client
.map(|client| client.packet_transmitted(endpoint));
}
}
// Endpoint 0 (control) receives an EP0DATADONE event instead.
// Endpoint 8 (isochronous) doesn't receive any EPDATA event.
for ep in 1..NUM_ENDPOINTS {
if epdatastatus.is_set(status_epout(ep)) {
let (transfer_type, in_state, out_state) =
self.descriptors[ep].state.get().bulk_state();
assert!(out_state.is_some());
// We need to read the size at this point in the process (i.e.
// immediately after getting the EPDATA event). At this point
// the USB hardware has received the data, but we need DMA to
// copy the data to memory. Later on the EPOUT.SIZE register can
// be overwritten, particularly if the host is sending OUT
// transactions quickly.
let ep_size = self.registers.size_epout[ep].get();
match out_state.unwrap() {
BulkOutState::Init => {
// The endpoint is ready to receive data. Request a transmit_out.
self.descriptors[ep].request_transmit_out.set(true);
}
BulkOutState::OutDelay => {
// The endpoint will be resumed later by the client application with transmit_out().
}
BulkOutState::OutData { size: _ } | BulkOutState::OutDma { size: _ } => {
internal_err!("Unexpected state: {:?}", out_state);
}
}
// Indicate that the endpoint now has data available.
self.descriptors[ep].state.set(EndpointState::Bulk(
transfer_type,
in_state,
Some(BulkOutState::OutData { size: ep_size }),
));
}
}
}
/// Handle the first event of a control transfer, the setup stage.
fn handle_ep0setup(&self) {
let endpoint = 0;
let state = self.descriptors[endpoint].state.get().ctrl_state();
match state {
CtrlState::Init => {
// We are idle, and ready for any control transfer.
let ep_buf = &self.descriptors[endpoint].slice_out;
let ep_buf = ep_buf.unwrap_or_panic(); // Unwrap fail = No OUT slice set for this descriptor
if ep_buf.len() < 8 {
panic!("EP0 DMA buffer length < 8");
}
// Re-construct the SETUP packet from various registers. The
// client's ctrl_setup() will parse it as a SetupData
// descriptor.
ep_buf[0].set((self.registers.bmrequesttype.get() & 0xff) as u8);
ep_buf[1].set((self.registers.brequest.get() & 0xff) as u8);
ep_buf[2].set(self.registers.wvaluel.read(Byte::VALUE) as u8);
ep_buf[3].set(self.registers.wvalueh.read(Byte::VALUE) as u8);
ep_buf[4].set(self.registers.windexl.read(Byte::VALUE) as u8);
ep_buf[5].set(self.registers.windexh.read(Byte::VALUE) as u8);
ep_buf[6].set(self.registers.wlengthl.read(Byte::VALUE) as u8);
ep_buf[7].set(self.registers.wlengthh.read(Byte::VALUE) as u8);
let size = self.registers.wlengthl.read(Byte::VALUE)
+ (self.registers.wlengthh.read(Byte::VALUE) << 8);
self.client.map(|client| {
// Notify the client that the ctrl setup event has occurred.
// Allow it to configure any data we need to send back.
match client.ctrl_setup(endpoint) {
hil::usb::CtrlSetupResult::OkSetAddress => {}
hil::usb::CtrlSetupResult::Ok => {
// Setup request is successful.
if size == 0 {
// Directly handle a 0 length setup request.
self.complete_ctrl_status();
} else {
match self
.registers
.bmrequesttype
.read_as_enum(RequestType::DIRECTION)
{
Some(RequestType::DIRECTION::Value::HostToDevice) => {
// CTRL WRITE transfer with data to
// receive.
self.descriptors[endpoint]
.state
.set(EndpointState::Ctrl(CtrlState::WriteOut));
// Signal the ep0rcvout task to signal
// instruct the hardware to ACK the
// incoming CTRL WRITE. Note, this
// doesn't match the datasheet where it
// says (§6.35.9.2):
//
// > The software has to prepare EasyDMA
// > by pointing to the buffer in Data
// > RAM that shall contain the incoming
// > data. If no other EasyDMA transfers
// > are on-going with USBD, the
// > software can then send the
// > EP0RCVOUT task.
//
// But, since we are not using the
// EP0DATADONE->STARTEPOUT[0] shortcut,
// and DMA only needs to be setup to
// copy the bytes from the USBD
// peripheral, we can wait until we get
// the EP0DATADONE event to enable DMA.
debug_tasks!("- task: ep0rcvout");
self.registers.task_ep0rcvout.write(Task::ENABLE::SET);
}
Some(RequestType::DIRECTION::Value::DeviceToHost) => {
self.descriptors[endpoint]
.state
.set(EndpointState::Ctrl(CtrlState::ReadIn));
// Transmit first packet if DMA is
// available.
if self.dma_pending.get() {
self.descriptors[endpoint]
.request_transmit_in
.set(true);
} else {
self.transmit_in_ep0();
}
}
None => unreachable!(),
}
}
}
_err => {
// An error occurred, we STALL
debug_tasks!("- task: ep0stall");
self.registers.task_ep0stall.write(Task::ENABLE::SET);
}
}
});
}
CtrlState::ReadIn | CtrlState::ReadStatus | CtrlState::WriteOut => {
// Unexpected state to receive a SETUP packet. Let's STALL the endpoint.
internal_warn!("handle_ep0setup - unexpected state = {:?}", state);
debug_tasks!("- task: ep0stall");
self.registers.task_ep0stall.write(Task::ENABLE::SET);
}
}
}
fn complete_ctrl_status(&self) {
let endpoint = 0;
self.client.map(|client| {
client.ctrl_status(endpoint);
debug_tasks!("- task: ep0status");
self.registers.task_ep0status.write(Task::ENABLE::SET);
client.ctrl_status_complete(endpoint);
self.descriptors[endpoint]
.state
.set(EndpointState::Ctrl(CtrlState::Init));
});
}
fn process_dma_requests(&self) {
if self.dma_pending.get() {
return;
}
for (endpoint, desc) in self.descriptors.iter().enumerate() {
if desc.request_transmit_in.take() {
if endpoint == 0 {
self.transmit_in_ep0();
} else {
self.transmit_in(endpoint);
}
if self.dma_pending.get() {
break;
}
}
if desc.request_transmit_out.take() {
if endpoint == 0 {
self.transmit_out_ep0();
} else {
self.transmit_out(endpoint);
}
if self.dma_pending.get() {
break;
}
}
}
}
fn transmit_in_ep0(&self) {
let endpoint = 0;
self.client.map(|client| {
match client.ctrl_in(endpoint) {
hil::usb::CtrlInResult::Packet(size, last) => {
if size == 0 {
internal_err!("Empty ctrl packet?");
}
self.start_dma_in(endpoint, size);
if last {
self.descriptors[endpoint]
.state
.set(EndpointState::Ctrl(CtrlState::ReadStatus));
}
}
hil::usb::CtrlInResult::Delay => {
internal_err!("Unexpected CtrlInResult::Delay");
// NAK is automatically sent by the modem.
}
hil::usb::CtrlInResult::Error => {
// An error occurred, we STALL
debug_tasks!("- task: ep0stall");
self.registers.task_ep0stall.write(Task::ENABLE::SET);
}
};
});
}
/// Setup a reception for a CTRL WRITE transaction.
///
/// We have received the EP0DATADONE event signaling that the host has sent
/// us data. We now need to configure DMA so that the peripheral can copy us
/// the data.
fn transmit_out_ep0(&self) {
let endpoint = 0;
self.start_dma_out(endpoint);
}
fn transmit_in(&self, endpoint: usize) {
debug_events!("transmit_in({})", endpoint);
self.client.map(|client| {
let (transfer_type, in_state, out_state) =
self.descriptors[endpoint].state.get().bulk_state();
assert_eq!(in_state, Some(BulkInState::Init));
let result = client.packet_in(transfer_type, endpoint);
debug_packets!("packet_in => {:?}", result);
let new_in_state = match result {
hil::usb::InResult::Packet(size) => {
self.start_dma_in(endpoint, size);
BulkInState::InDma
}
hil::usb::InResult::Delay => {
// No packet to send now. Wait for a resume call from the client.
BulkInState::Init
}
hil::usb::InResult::Error => {
self.registers.epstall.write(
EndpointStall::EP.val(endpoint as u32)
+ EndpointStall::IO::In
+ EndpointStall::STALL::Stall,
);
BulkInState::Init
}
};
self.descriptors[endpoint].state.set(EndpointState::Bulk(
transfer_type,
Some(new_in_state),
out_state,
));
});
}
fn transmit_out(&self, endpoint: usize) {
debug_events!("transmit_out({})", endpoint);
let (transfer_type, in_state, out_state) =
self.descriptors[endpoint].state.get().bulk_state();
// Starting the DMA can only happen in the OutData state, i.e. after an EPDATA event.
assert!(matches!(out_state, Some(BulkOutState::OutData { .. })));
self.start_dma_out(endpoint);
let size = if let Some(BulkOutState::OutData { size }) = out_state {
size
} else {
0
};
self.descriptors[endpoint].state.set(EndpointState::Bulk(
transfer_type,
in_state,
Some(BulkOutState::OutDma { size }),
));
}
fn start_dma_in(&self, endpoint: usize, size: usize) {
let slice = self.descriptors[endpoint].slice_in.unwrap_or_panic(); // Unwrap fail = No IN slice set for this descriptor
self.debug_in_packet(size, endpoint);
// Start DMA transfer
self.set_pending_dma();
self.registers.epin[endpoint].set_buffer(&slice[..size]);
debug_tasks!("- task: startepin[{}]", endpoint);
self.registers.task_startepin[endpoint].write(Task::ENABLE::SET);
}
fn start_dma_out(&self, endpoint: usize) {
let slice = self.descriptors[endpoint].slice_out.unwrap_or_panic(); // Unwrap fail = No OUT slice set for this descriptor
// Start DMA transfer
self.set_pending_dma();
self.registers.epout[endpoint].set_buffer(slice);
debug_tasks!("- task: startepout[{}]", endpoint);
self.registers.task_startepout[endpoint].write(Task::ENABLE::SET);
}
// Debug-only function
fn debug_in_packet(&self, size: usize, endpoint: usize) {
let slice = self.descriptors[endpoint].slice_in.unwrap_or_panic(); // Unwrap fail = No IN slice set for this descriptor
if size > slice.len() {
panic!("Packet is too large: {}", size);
}
let mut packet_hex = [0; 128];
packet_to_hex(slice, &mut packet_hex);
debug_packets!(
"in={}",
core::str::from_utf8(&packet_hex[..(2 * size)]).unwrap()
);
}
// Debug-only function
fn debug_out_packet(&self, size: usize, endpoint: usize) {
let slice = self.descriptors[endpoint].slice_out.unwrap_or_panic(); // Unwrap fail = No OUT slice set for this descriptor
if size > slice.len() {
panic!("Packet is too large: {}", size);
}
let mut packet_hex = [0; 128];
packet_to_hex(slice, &mut packet_hex);
debug_packets!(
"out={}",
core::str::from_utf8(&packet_hex[..(2 * size)]).unwrap()
);
}
}
impl power::PowerClient for Usbd<'_> {
fn handle_power_event(&self, event: power::PowerEvent) {
match event {
power::PowerEvent::UsbPluggedIn => self.enable(),
power::PowerEvent::UsbPluggedOut => self.disable(),
power::PowerEvent::UsbPowerReady => self.power_ready(),
_ => internal_warn!("usbc::handle_power_event: unknown power event"),
}
}
}
impl<'a> hil::usb::UsbController<'a> for Usbd<'a> {
fn set_client(&self, client: &'a dyn hil::usb::Client<'a>) {
self.client.set(client);
}
fn endpoint_set_ctrl_buffer(&self, buf: &'a [VolatileCell<u8>]) {
if buf.len() < 8 {
panic!("Endpoint buffer must be at least 8 bytes");
}
if !buf.len().is_power_of_two() {
panic!("Buffer size must be a power of 2");
}
self.descriptors[0].slice_in.set(buf);
self.descriptors[0].slice_out.set(buf);
}
fn endpoint_set_in_buffer(&self, endpoint: usize, buf: &'a [VolatileCell<u8>]) {
if buf.len() < 8 {
panic!("Endpoint buffer must be at least 8 bytes");
}
if !buf.len().is_power_of_two() {
panic!("Buffer size must be a power of 2");
}
if endpoint == 0 || endpoint >= NUM_ENDPOINTS {
panic!("Endpoint number is invalid");
}
self.descriptors[endpoint].slice_in.set(buf);
}
fn endpoint_set_out_buffer(&self, endpoint: usize, buf: &'a [VolatileCell<u8>]) {
if buf.len() < 8 {
panic!("Endpoint buffer must be at least 8 bytes");
}
if !buf.len().is_power_of_two() {
panic!("Buffer size must be a power of 2");
}
if endpoint == 0 || endpoint >= NUM_ENDPOINTS {
panic!("Endpoint number is invalid");
}
self.descriptors[endpoint].slice_out.set(buf);
}
fn enable_as_device(&self, speed: hil::usb::DeviceSpeed) {
match speed {
hil::usb::DeviceSpeed::Low => internal_err!("Low speed is not supported"),
hil::usb::DeviceSpeed::Full => {}
}
self.start();
}
fn attach(&self) {
debug_info!("attach() - State={:?}", self.get_state());
self.enable_pullup();
}
fn detach(&self) {
debug_info!("detach() - Disabling pull-ups");
self.disable_pullup();
}
fn set_address(&self, _addr: u16) {
// Nothing to do, it's handled by PHY of nrf52 chip.
debug_info!("Set Address = {}", _addr);
}
fn enable_address(&self) {
let _regs = &*self.registers;
debug_info!("Enable Address = {}", _regs.usbaddr.read(UsbAddress::ADDR));
// Nothing to do, it's handled by PHY of nrf52 chip.
}
fn endpoint_in_enable(&self, transfer_type: TransferType, endpoint: usize) {
match transfer_type {
TransferType::Control => {
panic!("There is no IN control endpoint");
}
TransferType::Bulk | TransferType::Interrupt => {
if endpoint == 0 || endpoint >= NUM_ENDPOINTS {
panic!("Bulk/Interrupt endpoints are endpoints 1 to 7");
}
self.enable_in_endpoint_(transfer_type, endpoint);
}
TransferType::Isochronous => unimplemented!("isochronous endpoint"),
}
}
fn endpoint_out_enable(&self, transfer_type: TransferType, endpoint: usize) {
match transfer_type {
TransferType::Control => {
if endpoint != 0 {
panic!("Only endpoint 0 can be a control endpoint");
}
self.enable_out_endpoint_(transfer_type, endpoint);
}
TransferType::Bulk | TransferType::Interrupt => {
if endpoint == 0 || endpoint >= NUM_ENDPOINTS {
panic!("Bulk/Interrupt endpoints are endpoints 1 to 7");
}
self.enable_out_endpoint_(transfer_type, endpoint);
}
TransferType::Isochronous => unimplemented!("isochronous endpoint"),
}
}
fn endpoint_in_out_enable(&self, transfer_type: TransferType, endpoint: usize) {
match transfer_type {
TransferType::Control => {
panic!("There is no IN control endpoint");
}
TransferType::Bulk | TransferType::Interrupt => {
if endpoint == 0 || endpoint >= NUM_ENDPOINTS {
panic!("Bulk/Interrupt endpoints are endpoints 1 to 7");
}
self.enable_in_out_endpoint_(transfer_type, endpoint);
}
TransferType::Isochronous => unimplemented!("isochronous endpoint"),
}
}
fn endpoint_resume_in(&self, endpoint: usize) {
debug_events!("endpoint_resume_in({})", endpoint);
// Get the state of the endpoint that the upper layer requested to start
// an IN transfer with for our state machine.
let (_, in_state, _) = self.descriptors[endpoint].state.get().bulk_state();
// If the state is `None`, this endpoint is not configured and should
// not have been used to call `endpoint_resume_in()`.
assert!(in_state.is_some());
// If there is an active DMA request, or we are waiting on finishing up
// a previous IN transfer, we queue this request and it will be serviced
// after those complete.
if self.dma_pending.get() || in_state != Some(BulkInState::Init) {
debug_events!("requesting resume_in[{}]", endpoint);
// A DMA is already pending. Schedule the resume for later.
self.descriptors[endpoint].request_transmit_in.set(true);
} else {
// If we aren't waiting on anything, trigger the transaction now.
//
// NOTE! TODO! We can't actually do this. This leads to an upcall
// (`client.packet_in()`) happening as a direct result of a downcall
// (this `endpoint_resume_in()` call). Unfortunately, the nRF52
// doesn't give us a great interrupt to use to check the
// `request_transmit_in` flag if we were to queue unconditionally in
// `endpoint_resume_in()`.
self.transmit_in(endpoint);
}
}
fn endpoint_resume_out(&self, endpoint: usize) {
debug_events!("endpoint_resume_out({})", endpoint);
let (transfer_type, in_state, out_state) =
self.descriptors[endpoint].state.get().bulk_state();
assert!(out_state.is_some());
match out_state.unwrap() {
BulkOutState::OutDelay => {
// The endpoint has now finished processing the last ENDEPOUT. No EPDATA event
// happened in the meantime, so the state is now back to Init.
self.descriptors[endpoint].state.set(EndpointState::Bulk(
transfer_type,
in_state,
Some(BulkOutState::Init),
));
}
BulkOutState::OutData { size: _ } => {
// Although the client reported a delay before, an EPDATA event has
// happened in the meantime. This pending transaction will now
// continue in transmit_out().
if self.dma_pending.get() {
debug_events!("requesting resume_out[{}]", endpoint);
// A DMA is already pending. Schedule the resume for later.
self.descriptors[endpoint].request_transmit_out.set(true);
} else {
// Trigger the transaction now.
self.transmit_out(endpoint);
}
}
BulkOutState::Init | BulkOutState::OutDma { size: _ } => {
internal_err!("Unexpected state: {:?}", out_state);
}
}
}
}
fn status_epin(ep: usize) -> Field<u32, EndpointStatus::Register> {
match ep {
0 => EndpointStatus::EPIN0,
1 => EndpointStatus::EPIN1,
2 => EndpointStatus::EPIN2,
3 => EndpointStatus::EPIN3,
4 => EndpointStatus::EPIN4,
5 => EndpointStatus::EPIN5,
6 => EndpointStatus::EPIN6,
7 => EndpointStatus::EPIN7,
8 => EndpointStatus::EPIN8,
_ => unreachable!(),
}
}
fn status_epout(ep: usize) -> Field<u32, EndpointStatus::Register> {
match ep {
0 => EndpointStatus::EPOUT0,
1 => EndpointStatus::EPOUT1,
2 => EndpointStatus::EPOUT2,
3 => EndpointStatus::EPOUT3,
4 => EndpointStatus::EPOUT4,
5 => EndpointStatus::EPOUT5,
6 => EndpointStatus::EPOUT6,
7 => EndpointStatus::EPOUT7,
8 => EndpointStatus::EPOUT8,
_ => unreachable!(),
}
}
fn inter_endepin(ep: usize) -> Field<u32, Interrupt::Register> {
match ep {
0 => Interrupt::ENDEPIN0,
1 => Interrupt::ENDEPIN1,
2 => Interrupt::ENDEPIN2,
3 => Interrupt::ENDEPIN3,
4 => Interrupt::ENDEPIN4,
5 => Interrupt::ENDEPIN5,
6 => Interrupt::ENDEPIN6,
7 => Interrupt::ENDEPIN7,
_ => unreachable!(),
}
}
fn inter_endepout(ep: usize) -> Field<u32, Interrupt::Register> {
match ep {
0 => Interrupt::ENDEPOUT0,
1 => Interrupt::ENDEPOUT1,
2 => Interrupt::ENDEPOUT2,
3 => Interrupt::ENDEPOUT3,
4 => Interrupt::ENDEPOUT4,
5 => Interrupt::ENDEPOUT5,
6 => Interrupt::ENDEPOUT6,
7 => Interrupt::ENDEPOUT7,
_ => unreachable!(),
}
}
// Debugging functions.
fn packet_to_hex(packet: &[VolatileCell<u8>], packet_hex: &mut [u8]) {
let hex_char = |x: u8| {
if x < 10 {
b'0' + x
} else {
b'a' + x - 10
}
};
for (i, x) in packet.iter().enumerate() {
let x = x.get();
packet_hex[2 * i] = hex_char(x >> 4);
packet_hex[2 * i + 1] = hex_char(x & 0x0f);
}
}
#[allow(dead_code)]
fn ignored_str(
saved_inter: &LocalRegisterCopy<u32, Interrupt::Register>,
field: Field<u32, Interrupt::Register>,
) -> &'static str {
if saved_inter.is_set(field) {
""
} else {
" (ignored)"
}
}