litex/liteeth.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! LiteX LiteEth peripheral
//!
//! The hardware source and any documentation can be found in the
//! [LiteEth Git
//! repository](https://github.com/enjoy-digital/liteeth).
use crate::event_manager::LiteXEventManager;
use crate::litex_registers::{LiteXSoCRegisterConfiguration, Read, Write};
use core::cell::Cell;
use core::slice;
use kernel::debug;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
// Both events have the same index since they are located on different
// event manager instances
const LITEETH_TX_EVENT: usize = 0;
const LITEETH_RX_EVENT: usize = 0;
type LiteEthRXEV<'a, R> = LiteXEventManager<
'a,
u8,
<R as LiteXSoCRegisterConfiguration>::ReadOnly8,
<R as LiteXSoCRegisterConfiguration>::ReadWrite8,
<R as LiteXSoCRegisterConfiguration>::ReadWrite8,
>;
type LiteEthTXEV<'a, R> = LiteEthRXEV<'a, R>;
#[repr(C)]
pub struct LiteEthMacRegisters<R: LiteXSoCRegisterConfiguration> {
/// ETHMAC_SRAM_WRITER_SLOT
rx_slot: R::ReadOnly8,
/// ETHMAC_SRAM_WRITER_LENGTH
rx_length: R::ReadOnly32,
/// ETHMAC_SRAM_WRITER_ERRORS
rx_errors: R::ReadOnly32,
/// ETHMAC_SRAM_WRITER_EV
rx_ev_status: R::ReadOnly8,
rx_ev_pending: R::ReadWrite8,
rx_ev_enable: R::ReadWrite8,
/// ETHMAC_SRAM_READER_START
tx_start: R::ReadWrite8,
tx_ready: R::ReadOnly8,
tx_level: R::ReadOnly8,
tx_slot: R::ReadWrite8,
/// ETHMAC_SRAM_READER_LENGTH
tx_length: R::ReadWrite16,
/// ETHMAC_SRAM_READER_EV
tx_ev_status: R::ReadOnly8,
tx_ev_pending: R::ReadWrite8,
tx_ev_enable: R::ReadWrite8,
/// ETHMAC_PREAMBLE_CRC
preamble_crc: R::ReadWrite8,
/// ETHMAC_PREAMBLE_ERRORS
preamble_errors: R::ReadOnly8,
/// ETHMAC_CRC_ERRORS
crc_errors: R::ReadOnly32,
}
impl<R: LiteXSoCRegisterConfiguration> LiteEthMacRegisters<R> {
fn rx_ev(&self) -> LiteEthRXEV<'_, R> {
LiteEthRXEV::<R>::new(&self.rx_ev_status, &self.rx_ev_pending, &self.rx_ev_enable)
}
fn tx_ev(&self) -> LiteEthTXEV<'_, R> {
LiteEthTXEV::<R>::new(&self.tx_ev_status, &self.tx_ev_pending, &self.tx_ev_enable)
}
}
pub trait LiteEthClient {
fn tx_done(&self, rc: Result<(), ErrorCode>, packet_buffer: &'static mut [u8]);
fn rx_packet(&self, packet: &'static mut [u8], len: usize);
}
pub struct LiteEth<'a, R: LiteXSoCRegisterConfiguration> {
mac_regs: StaticRef<LiteEthMacRegisters<R>>,
mac_memory_base: usize,
mac_memory_len: usize,
slot_size: usize,
rx_slots: usize,
tx_slots: usize,
client: OptionalCell<&'a dyn LiteEthClient>,
tx_packet: TakeCell<'static, [u8]>,
rx_buffer: TakeCell<'static, [u8]>,
initialized: Cell<bool>,
}
impl<'a, R: LiteXSoCRegisterConfiguration> LiteEth<'a, R> {
pub unsafe fn new(
mac_regs: StaticRef<LiteEthMacRegisters<R>>,
mac_memory_base: usize,
mac_memory_len: usize,
slot_size: usize,
rx_slots: usize,
tx_slots: usize,
rx_buffer: &'static mut [u8],
) -> LiteEth<'a, R> {
LiteEth {
mac_regs,
mac_memory_base,
mac_memory_len,
slot_size,
rx_slots,
tx_slots,
client: OptionalCell::empty(),
tx_packet: TakeCell::empty(),
rx_buffer: TakeCell::new(rx_buffer),
initialized: Cell::new(false),
}
}
pub fn set_client(&self, client: &'a dyn LiteEthClient) {
self.client.set(client);
}
pub fn initialize(&self) {
// Sanity check the memory parameters
//
// Technically the constructor is unsafe as it will (over the
// lifetime of this struct) "cast" the raw mac_memory pointer
// (and slot offsets) into pointers and access them
// directly. However checking it at runtime once seems like a
// good idea.
assert!(
(self.rx_slots + self.tx_slots) * self.slot_size <= self.mac_memory_len,
"LiteEth: slots would exceed assigned MAC memory area"
);
assert!(self.rx_slots > 0, "LiteEth: no RX slot");
assert!(self.tx_slots > 0, "LiteEth: no TX slot");
// Clear any pending EV events
self.mac_regs.rx_ev().clear_event(LITEETH_RX_EVENT);
self.mac_regs.tx_ev().clear_event(LITEETH_TX_EVENT);
// Disable TX events (only enabled when a packet is sent)
self.mac_regs.tx_ev().disable_event(LITEETH_TX_EVENT);
// Enable RX events
self.mac_regs.rx_ev().enable_event(LITEETH_RX_EVENT);
self.initialized.set(true);
}
unsafe fn get_slot_buffer(&self, tx: bool, slot_id: usize) -> Option<&mut [u8]> {
if (tx && slot_id > self.tx_slots) || (!tx && slot_id > self.rx_slots) {
return None;
}
let slots_offset = if tx {
self.mac_memory_base + self.slot_size * self.rx_slots
} else {
self.mac_memory_base
};
let slot_addr = slots_offset + slot_id * self.slot_size;
Some(slice::from_raw_parts_mut(
slot_addr as *mut u8,
self.slot_size,
))
}
pub fn return_rx_buffer(&self, rx_buffer: &'static mut [u8]) {
// Assert that we won't overwrite a buffer
assert!(
self.rx_buffer.is_none(),
"LiteEth: return RX buffer while one is registered"
);
// Put the buffer back
self.rx_buffer.replace(rx_buffer);
// In case we received a packet RX interrupt but couldn't
// handle it due to the missing buffer, reenable RX interrupts
self.mac_regs.rx_ev().enable_event(LITEETH_RX_EVENT);
}
fn rx_interrupt(&self) {
// Check whether we have a buffer to read the packet into. If
// not, we must disable, but not clear the event and enable it
// again as soon as we get the buffer back from the client
if self.rx_buffer.is_none() {
self.mac_regs.rx_ev().disable_event(LITEETH_RX_EVENT);
} else {
// Get the buffer first to be able to check the length
let rx_buffer = self.rx_buffer.take().unwrap();
// Get the frame length. If it exceeds the length of the
// rx_buffer, discard the packet, put the buffer back
let pkt_len = self.mac_regs.rx_length.get() as usize;
if pkt_len > rx_buffer.len() {
debug!("LiteEth: discarding ethernet packet with len {}", pkt_len);
// Acknowledge the interrupt so that the HW may use the slot again
self.mac_regs.rx_ev().clear_event(LITEETH_RX_EVENT);
// Replace the buffer
self.rx_buffer.replace(rx_buffer);
} else {
// Obtain the packet slot id
let slot_id: usize = self.mac_regs.rx_slot.get().into();
// Get the slot buffer reference
let slot = unsafe {
self.get_slot_buffer(false, slot_id).unwrap() // Unwrap fail = LiteEth: invalid RX slot id
};
// Copy the packet into the buffer
rx_buffer[..pkt_len].copy_from_slice(&slot[..pkt_len]);
// Since all data is copied, acknowledge the interrupt
// so that the slot is ready for use again
self.mac_regs.rx_ev().clear_event(LITEETH_RX_EVENT);
self.client
.map(move |client| client.rx_packet(rx_buffer, pkt_len));
}
}
}
/// Transmit an ethernet packet over the interface
///
/// For now this will only use a single slot on the interface and
/// is therefore blocking. A client must wait until a callback to
/// `tx_done` prior to sending a new packet.
pub fn transmit(
&self,
packet: &'static mut [u8],
len: usize,
) -> Result<(), (Result<(), ErrorCode>, &'static mut [u8])> {
if packet.len() < len || len > u16::MAX as usize {
return Err((Err(ErrorCode::INVAL), packet));
}
if self.tx_packet.is_some() {
return Err((Err(ErrorCode::BUSY), packet));
}
let slot = unsafe { self.get_slot_buffer(true, 0) }.unwrap(); // Unwrap fail = LiteEth: no TX slot
if slot.len() < len {
return Err((Err(ErrorCode::SIZE), packet));
}
// Copy the packet into the slot HW buffer
slot[..len].copy_from_slice(&packet[..len]);
// Put the currently transmitting packet into the designated
// TakeCell
self.tx_packet.replace(packet);
// Set the slot and packet length
self.mac_regs.tx_slot.set(0);
self.mac_regs.tx_length.set(len as u16);
// Wait for the device to be ready to transmit
while self.mac_regs.tx_ready.get() == 0 {}
// Enable TX interrupts
self.mac_regs.tx_ev().enable_event(LITEETH_TX_EVENT);
// Start the transmission
self.mac_regs.tx_start.set(1);
Ok(())
}
fn tx_interrupt(&self) {
// Deassert the interrupt, but can be left enabled
self.mac_regs.tx_ev().clear_event(LITEETH_TX_EVENT);
if self.tx_packet.is_none() {
debug!("LiteEth: tx interrupt called without tx_packet set");
}
// We use only one slot, so this event is unambiguous
let packet = self.tx_packet.take().unwrap(); // Unwrap fail = LiteEth: TakeCell empty in tx callback
self.client
.map(move |client| client.tx_done(Ok(()), packet));
}
pub fn service_interrupt(&self) {
// The interrupt could've been generated by both a packet
// being received or finished transmitting. Check and handle
// both cases
if self.mac_regs.rx_ev().event_asserted(LITEETH_RX_EVENT) {
self.rx_interrupt();
}
if self.mac_regs.tx_ev().event_asserted(LITEETH_TX_EVENT) {
self.tx_interrupt();
}
}
}