virtio/queues/split_queue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2023.
//! VirtIO Split Virtqueue implementation.
//!
//! This module contains an implementation of a Split Virtqueue, as defined in
//! 2.6 Split Virtqueues of the [Virtual I/O Device (VIRTIO) Specification,
//! Version
//! 1.1](https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html).
//! This implementation can be used in conjunction with the VirtIO transports
//! defined in [`transports`](`super::super::transports`) and
//! [`devices`](`super::super::devices`) to interact with VirtIO-compatible
//! devices.
use core::cell::Cell;
use core::cmp;
use core::marker::PhantomData;
use core::ptr::NonNull;
use core::slice;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::registers::{register_bitfields, InMemoryRegister};
use kernel::ErrorCode;
use super::super::queues::{Virtqueue, VirtqueueAddresses};
use super::super::transports::VirtIOTransport;
pub const DESCRIPTOR_ALIGNMENT: usize = 16;
pub const AVAILABLE_RING_ALIGNMENT: usize = 2;
pub const USED_RING_ALIGNMENT: usize = 4;
register_bitfields![u16,
DescriptorFlags [
Next OFFSET(0) NUMBITS(1) [],
WriteOnly OFFSET(1) NUMBITS(1) [],
Indirect OFFSET(2) NUMBITS(1) []
],
AvailableRingFlags [
NoInterrupt OFFSET(0) NUMBITS(1) []
],
UsedRingFlags [
NoNotify OFFSET(0) NUMBITS(1) []
],
];
// This is an unsafe workaround of an unsafe workaround.
//
// Unfortunately, the Rust core library defines defaults on arrays not in a
// generic way, but only for arrays up to 32 elements. Hence, for arrays using a
// const-generic argument for their length, `Default::<[$SOMETHING_NON_DEFAULT;
// CONST_GENERIC_USIZE]>::default()` does not work in Rust (as of
// 2022-11-26). Instead, we need to use this horrible and unsafe hack as
// documented here, which initializes an array of `MaybeUninit`s and transmutes:
// (https://doc.rust-lang.org/stable/std/mem/union.MaybeUninit.html#initializing-an-array-element-by-element)
//
// However, Rust is also unable to transmute from a `MaybeUninit<T>` to a
// generic `T`, even though the former is explicitly layout-compatible with the
// latter. Hence, we have to use another hack described in the following
// comment:
// https://github.com/rust-lang/rust/issues/62875#issuecomment-513834029
//
// This function encapsulates all of this unsafe code and should be safe to use
// until Rust adds support for constructing arrays over a const-generic length
// from the contained types' default values.
//
// In large parts, this function is a verbatim copy of Rust's example for
// element-wise array initialization using `MaybeUninit`:
// https://doc.rust-lang.org/stable/std/mem/union.MaybeUninit.html#initializing-an-array-element-by-element
fn init_constgeneric_default_array<const N: usize, T: Default>() -> [T; N] {
// Create an uninitialized array of `MaybeUninit`. The `assume_init` is safe
// because the type we are claiming to have initialized here is a bunch of
// `MaybeUninit`s, which do not require initialization.
let mut uninit_arr: [core::mem::MaybeUninit<T>; N] =
unsafe { core::mem::MaybeUninit::uninit().assume_init() };
// Dropping a `MaybeUninit` does nothing, so if there is a panic during this
// loop, we have a memory leak, but there is no memory safety issue.
for elem in &mut uninit_arr[..] {
elem.write(T::default());
}
// Everything is initialized. We'd like to transmute the `[MaybeUnit<T>; N]`
// array into a `[T; N]`, but transmuting `MaybeUninit<T>` to `T` (where T
// is generic) is not (yet) supported. Hence we need to take a pointer to
// this array, cast it to the correct type, read the pointer back and forget
// the original `[MaybeUnit<T>; N]` array, as described here:
// https://github.com/rust-lang/rust/issues/62875#issuecomment-513834029
let uninit_arr_ptr: *mut [core::mem::MaybeUninit<T>; N] = &mut uninit_arr as *mut _;
let transmuted: [T; N] = unsafe { core::ptr::read(uninit_arr_ptr.cast::<[T; N]>()) };
// With the original value forgotten and new value recreated from its
// pointer, return it:
transmuted
}
/// A single Virtqueue descriptor.
///
/// Implements the memory layout of a single Virtqueue descriptor of a
/// split-virtqueue, to be placed into the queue's descriptor table, as defined
/// in section 2.6.5 of the spec.
#[repr(C)]
pub struct VirtqueueDescriptor {
/// Guest physical address of the buffer to share
addr: InMemoryRegister<u64>,
/// Length of the shared buffer
len: InMemoryRegister<u32>,
/// Descriptor flags
flags: InMemoryRegister<u16, DescriptorFlags::Register>,
/// Pointer to the next entry in the descriptor queue (if two
/// buffers are chained)
next: InMemoryRegister<u16>,
}
impl Default for VirtqueueDescriptor {
fn default() -> VirtqueueDescriptor {
VirtqueueDescriptor {
addr: InMemoryRegister::new(0),
len: InMemoryRegister::new(0),
flags: InMemoryRegister::new(0),
next: InMemoryRegister::new(0),
}
}
}
/// The Virtqueue descriptor table.
///
/// This table is provided to the VirtIO device (host) as a means to communicate
/// information about shared buffers, maintained in the individual
/// [`VirtqueueDescriptor`] elements. Elements in this table are referenced by
/// the [`VirtqueueAvailableRing`] and [`VirtqueueUsedRing`] for exposing them
/// to the VirtIO device in order, and receiving exposed ("used") buffers back
/// from the device.
///
/// Multiple entries of the descriptor table can be chained in order to treat
/// disjoint regions of memory as a single buffer through the
/// `VirtqueueDescriptor::next` field, where the value of this field indexes
/// into this table.
#[repr(C, align(16))]
pub struct VirtqueueDescriptors<const MAX_QUEUE_SIZE: usize>([VirtqueueDescriptor; MAX_QUEUE_SIZE]);
impl<const MAX_QUEUE_SIZE: usize> Default for VirtqueueDescriptors<MAX_QUEUE_SIZE> {
fn default() -> Self {
VirtqueueDescriptors(init_constgeneric_default_array())
}
}
// This is required to be able to implement Default and hence to
// initialize an entire array of default values with size specified by
// a constant.
#[repr(transparent)]
pub struct VirtqueueAvailableElement(InMemoryRegister<u16>);
/// The Virtqueue available ring.
///
/// This struct is exposed to the VirtIO device as a means to share buffers
/// (pointed to by descriptors of the [`VirtqueueDescriptors`] descriptors
/// table) with the VirtIO device (host). It avoids the need for explicit
/// locking by using two distinct rings, each undirectionally exchanging
/// information about used buffers. When a new buffer is placed into the
/// available ring, the VirtIO driver (guest) must increment `idx` to the index
/// where it would place the next available descriptor pointer in the ring
/// field. After such an update, the queue must inform the device about this
/// change through a call to [`VirtIOTransport::queue_notify`]. Given that
/// volatile writes cannot be reordered with respect to each other, changes to
/// the available ring are guaranteed to be visible to the VirtIO device (host).
#[repr(C, align(2))]
pub struct VirtqueueAvailableRing<const MAX_QUEUE_SIZE: usize> {
/// Virtqueue available ring flags.
flags: InMemoryRegister<u16, AvailableRingFlags::Register>,
/// Incrementing index, pointing to where the driver would put the next
/// descriptor entry in the ring (modulo the queue size).
///
/// The driver must not decrement this field. There is no way to "unexpose"
/// buffers.
idx: InMemoryRegister<u16>,
/// Ring containing the shared buffers (indices into the
/// [`VirtqueueDescriptors`] descriptor table).
ring: [VirtqueueAvailableElement; MAX_QUEUE_SIZE],
/// "Used event" queue notification suppression mechanism.
///
/// This field is only honored by the VirtIO device if the EventIdx feature
/// was negotiated.
///
/// The driver can set this field to a target `idx` value of the
/// [`VirtqueueUsedRing`] to indicate to the device that notifications are
/// unnecessary until the device writes a buffer with the corresponding
/// index into the used ring.
used_event: InMemoryRegister<u16>,
}
impl Default for VirtqueueAvailableElement {
fn default() -> VirtqueueAvailableElement {
VirtqueueAvailableElement(InMemoryRegister::new(0))
}
}
impl<const MAX_QUEUE_SIZE: usize> Default for VirtqueueAvailableRing<MAX_QUEUE_SIZE> {
fn default() -> Self {
VirtqueueAvailableRing {
flags: InMemoryRegister::new(0),
idx: InMemoryRegister::new(0),
ring: init_constgeneric_default_array(),
used_event: InMemoryRegister::new(0),
}
}
}
/// The Virtqueue used ring.
///
/// This struct is exposed to the VirtIO device for the device to indicate which
/// shared buffers (through the [`VirtqueueAvailableRing`] have been processed.
/// It works similar to the available ring, but must never be written by the
/// VirtIO driver (guest) after it has been shared with the device, and as long
/// as the device is initialized.
#[repr(C, align(4))]
pub struct VirtqueueUsedRing<const MAX_QUEUE_SIZE: usize> {
/// Virtqueue used ring flags.
flags: InMemoryRegister<u16, UsedRingFlags::Register>,
/// Incrementing index, pointing to where the device would put the next
/// descriptor entry in the ring (modulo the queue size).
///
/// The device must not decrement this field. There is no way to "take back"
/// buffers.
idx: InMemoryRegister<u16>,
/// Ring containing the used buffers (indices into the
/// [`VirtqueueDescriptors`] descriptor table).
ring: [VirtqueueUsedElement; MAX_QUEUE_SIZE],
/// "Available event" queue notification suppression mechanism.
///
/// This field must only be honored by the VirtIO driver if the EventIdx
/// feature was negotiated.
///
/// The device can set this field to a target `idx` value of the
/// [`VirtqueueAvailableRing`] to indicate to the driver that notifications
/// are unnecessary until the driver writes a buffer with the corresponding
/// index into the available ring.
avail_event: InMemoryRegister<u16>,
}
impl<const MAX_QUEUE_SIZE: usize> Default for VirtqueueUsedRing<MAX_QUEUE_SIZE> {
fn default() -> Self {
VirtqueueUsedRing {
flags: InMemoryRegister::new(0),
idx: InMemoryRegister::new(0),
ring: init_constgeneric_default_array(),
avail_event: InMemoryRegister::new(0),
}
}
}
/// A single element of the [`VirtqueueUsedRing`].
#[repr(C)]
pub struct VirtqueueUsedElement {
/// Index into the [`VirtqueueDescriptors`] descriptor table indicating the
/// head element of the returned descriptor chain.
id: InMemoryRegister<u32>,
/// Total length of the descriptor chain which was used by the device.
///
/// Commonly this is used as a mechanism to communicate how much data the
/// device has written to a shared buffer.
len: InMemoryRegister<u32>,
}
impl Default for VirtqueueUsedElement {
fn default() -> VirtqueueUsedElement {
VirtqueueUsedElement {
id: InMemoryRegister::new(0),
len: InMemoryRegister::new(0),
}
}
}
/// A helper struct to manage the state of the Virtqueue available ring.
///
/// This struct reduces the complexity of the [`SplitVirtqueue`] implementation
/// by encapsulating operations which depend on and modify the state of the
/// driver-controlled available ring of the Virtqueue. It is essentially a
/// glorified ring-buffer state machine, following the semantics as defined by
/// VirtIO for the Virtqueue's available ring.
struct AvailableRingHelper {
max_elements: Cell<usize>,
start: Cell<u16>,
end: Cell<u16>,
empty: Cell<bool>,
}
impl AvailableRingHelper {
pub fn new(max_elements: usize) -> AvailableRingHelper {
AvailableRingHelper {
max_elements: Cell::new(max_elements),
start: Cell::new(0),
end: Cell::new(0),
empty: Cell::new(true),
}
}
fn ring_wrapping_add(&self, a: u16, b: u16) -> u16 {
if self.max_elements.get() - (a as usize) - 1 < (b as usize) {
b - (self.max_elements.get() - a as usize) as u16
} else {
a + b
}
}
/// Reset the state of the available ring.
///
/// This must be called before signaling to the device that the driver is
/// initialized. It takes the maximum queue elements as the `max_elements`
/// parameter, as negotiated with the device.
pub fn reset(&self, max_elements: usize) {
self.max_elements.set(max_elements);
self.start.set(0);
self.end.set(0);
self.empty.set(true);
}
/// Whether the available ring of the Virtqueue is empty.
pub fn is_empty(&self) -> bool {
self.empty.get()
}
/// Whether the available ring of the Virtqueue is full.
pub fn is_full(&self) -> bool {
!self.empty.get() && self.start.get() == self.end.get()
}
/// Try to insert an element into the Virtqueue available ring.
///
/// If there is space in the Virtqueue's available ring, this increments the
/// internal state and returns the index of the element to be
/// written. Otherwise, it returns `None`.
pub fn insert(&self) -> Option<u16> {
if !self.is_full() {
let pos = self.end.get();
self.end.set(self.ring_wrapping_add(pos, 1));
self.empty.set(false);
Some(pos)
} else {
None
}
}
/// Try to remove an element from the Virtqueue available ring.
///
/// If there is an element in the Virtqueue's available ring, this removes
/// it from its internal state and returns the index of that element.
pub fn pop(&self) -> Option<u16> {
if !self.is_empty() {
let pos = self.start.get();
self.start.set(self.ring_wrapping_add(pos, 1));
if self.start.get() == self.end.get() {
self.empty.set(true);
}
Some(pos)
} else {
None
}
}
}
/// Internal representation of a slice of memory passed held in the Virtqueue.
///
/// Because of Tock's architecture combined with Rust's reference lifetime
/// rules, buffers are generally passed around as `&mut [u8]` slices with a
/// `'static` lifetime. Thus, clients pass a mutable static reference into the
/// Virtqueue, losing access. When the device has processed the provided buffer,
/// access is restored by passing the slice back to the client.
///
/// However, clients may not wish to expose the full slice length to the
/// device. They cannot simply subslice the slice, as that would mean that
/// clients loose access to the "sliced off" portion of the slice. Instead,
/// clients pass a seperate `length` parameter when inserting a buffer into a
/// virtqueue, by means of the [`VirtqueueBuffer`] struct. This information is
/// then written to the VirtIO descriptor.
///
/// Yet, to be able to reconstruct the entire buffer and hand it back to the
/// client, information such as the original length must be recorded. We cannot
/// retain the `&'static mut [u8]` in scope though, as the VirtIO device (host)
/// writing to it would violate Rust's memory aliasing rules. Thus, we convert a
/// slice into this struct (converting the slice into its raw parts) for
/// safekeeping, until we reconstruct a byte-slice from it to hand it back to
/// the client.
///
/// While we technically retain an identical pointer in the
/// [`VirtqueueDescriptors`] descriptor table, we record it here nonetheless, as
/// a method to sanity check internal buffer management consistency.
struct SharedDescriptorBuffer<'b> {
ptr: NonNull<u8>,
len: usize,
_lt: PhantomData<&'b mut [u8]>,
}
impl<'b> SharedDescriptorBuffer<'b> {
pub fn from_slice(slice: &'b mut [u8]) -> SharedDescriptorBuffer<'b> {
SharedDescriptorBuffer {
ptr: NonNull::new(slice.as_mut_ptr()).unwrap(),
len: slice.len(),
_lt: PhantomData,
}
}
pub fn into_slice(self) -> &'b mut [u8] {
// SAFETY: This is guaranteed to be safe because this struct can only be
// using the `from_slice()` constructor, `ptr` and `len` cannot be
// modified after this struct is created, and this method consumes the
// struct.
unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
}
}
/// A slice of memory to be shared with a VirtIO device.
///
/// The [`VirtqueueBuffer`] allows to limit the portion of the passed slice to
/// be shared with the device through the `len` field. Furthermore, the device
/// can be asked to not write to the shared buffer by setting `device_writeable`
/// to `false`.
///
/// The [`SplitVirtqueue`] does not actually enfore that a VirtIO device adheres
/// to the `device_writeable` flag, although compliant devices should.
pub struct VirtqueueBuffer<'b> {
pub buf: &'b mut [u8],
pub len: usize,
pub device_writeable: bool,
}
/// A VirtIO split Virtqueue.
///
/// For documentation on Virtqueues in general, please see the [`Virtqueue`
/// trait documentation](Virtqueue).
///
/// A split Virtqueue is split into separate memory areas, namely:
///
/// - a **descriptor table** (VirtIO driver / guest writeable,
/// [`VirtqueueDescriptors`])
///
/// - an **available ring** (VirtIO driver / guest writeable,
/// [`VirtqueueAvailableRing`])
///
/// - a **used ring** (VirtIO device / host writeable, [`VirtqueueUsedRing`])
///
/// Each of these areas must be located physically-contiguous in guest-memory
/// and have different alignment constraints.
///
/// This is in constrast to _packed Virtqueues_, which use memory regions that
/// are read and written by both the VirtIO device (host) and VirtIO driver
/// (guest).
pub struct SplitVirtqueue<'a, 'b, const MAX_QUEUE_SIZE: usize> {
descriptors: &'a mut VirtqueueDescriptors<MAX_QUEUE_SIZE>,
available_ring: &'a mut VirtqueueAvailableRing<MAX_QUEUE_SIZE>,
used_ring: &'a mut VirtqueueUsedRing<MAX_QUEUE_SIZE>,
available_ring_state: AvailableRingHelper,
last_used_idx: Cell<u16>,
transport: OptionalCell<&'a dyn VirtIOTransport>,
initialized: Cell<bool>,
queue_number: Cell<u32>,
max_elements: Cell<usize>,
descriptor_buffers: [OptionalCell<SharedDescriptorBuffer<'b>>; MAX_QUEUE_SIZE],
client: OptionalCell<&'a dyn SplitVirtqueueClient<'b>>,
used_callbacks_enabled: Cell<bool>,
}
impl<'a, 'b, const MAX_QUEUE_SIZE: usize> SplitVirtqueue<'a, 'b, MAX_QUEUE_SIZE> {
pub fn new(
descriptors: &'a mut VirtqueueDescriptors<MAX_QUEUE_SIZE>,
available_ring: &'a mut VirtqueueAvailableRing<MAX_QUEUE_SIZE>,
used_ring: &'a mut VirtqueueUsedRing<MAX_QUEUE_SIZE>,
) -> Self {
assert!(core::ptr::from_ref(descriptors) as usize % DESCRIPTOR_ALIGNMENT == 0);
assert!(core::ptr::from_ref(available_ring) as usize % AVAILABLE_RING_ALIGNMENT == 0);
assert!(core::ptr::from_ref(used_ring) as usize % USED_RING_ALIGNMENT == 0);
SplitVirtqueue {
descriptors,
available_ring,
used_ring,
available_ring_state: AvailableRingHelper::new(MAX_QUEUE_SIZE),
last_used_idx: Cell::new(0),
transport: OptionalCell::empty(),
initialized: Cell::new(false),
queue_number: Cell::new(0),
max_elements: Cell::new(MAX_QUEUE_SIZE),
descriptor_buffers: init_constgeneric_default_array(),
client: OptionalCell::empty(),
used_callbacks_enabled: Cell::new(false),
}
}
/// Set the [`SplitVirtqueueClient`].
pub fn set_client(&self, client: &'a dyn SplitVirtqueueClient<'b>) {
self.client.set(client);
}
/// Set the underlying [`VirtIOTransport`]. This must be done prior to
/// initialization.
pub fn set_transport(&self, transport: &'a dyn VirtIOTransport) {
assert!(!self.initialized.get());
self.transport.set(transport);
}
/// Get the queue number associated with this Virtqueue.
///
/// Prior to initialization the SplitVirtqueue does not have an associated
/// queue number and will return `None`.
pub fn queue_number(&self) -> Option<u32> {
if self.initialized.get() {
Some(self.queue_number.get())
} else {
None
}
}
/// Get the number of free descriptor slots in the descriptor table.
///
/// This takes into account the negotiated maximum queue length.
pub fn free_descriptor_count(&self) -> usize {
assert!(self.initialized.get());
self.descriptor_buffers
.iter()
.take(self.max_elements.get())
.fold(0, |count, descbuf_entry| {
if descbuf_entry.is_none() {
count + 1
} else {
count
}
})
}
/// Get the number of (unprocessed) descriptor chains in the Virtqueue's
/// used ring.
pub fn used_descriptor_chains_count(&self) -> usize {
let pending_chains = self
.used_ring
.idx
.get()
.wrapping_sub(self.last_used_idx.get());
// If we ever have more than max_elements pending descriptors,
// the used ring increased too fast and has overwritten data
assert!(pending_chains as usize <= self.max_elements.get());
pending_chains as usize
}
/// Remove an element from the Virtqueue's used ring.q
///
/// If `self.last_used_idx.get() == self.used_ring.idx.get()` (e.g. we don't
/// have an unprocessed used buffer chain) this will return
/// `None`. Otherwise it will return the remove ring element's index, as
/// well as the number of processed bytes as reported by the VirtIO device.
///
/// This will update `self.last_used_idx`.
///
/// The caller is responsible for keeping the available ring in sync,
/// freeing one entry if a used buffer was removed through this method.
fn remove_used_chain(&self) -> Option<(usize, usize)> {
assert!(self.initialized.get());
let pending_chains = self.used_descriptor_chains_count();
if pending_chains > 0 {
let last_used_idx = self.last_used_idx.get();
// Remove the element one below the index (as 0 indicates
// _no_ buffer has been written), hence the index points
// to the next element to be written
let ring_pos = (last_used_idx as usize) % self.max_elements.get();
let chain_top_idx = self.used_ring.ring[ring_pos].id.get();
let written_len = self.used_ring.ring[ring_pos].len.get();
// Increment our local idx counter
self.last_used_idx.set(last_used_idx.wrapping_add(1));
Some((chain_top_idx as usize, written_len as usize))
} else {
None
}
}
/// Add an element to the available queue.
///
/// Returns either the inserted ring index or `None` if the Virtqueue's
/// available ring is fully occupied.
///
/// This will update the available ring's `idx` field.
///
/// The caller is responsible for notifying the device about any inserted
/// available buffers.
fn add_available_descriptor(&self, descriptor_chain_head: usize) -> Option<usize> {
assert!(self.initialized.get());
if let Some(element_pos) = self.available_ring_state.insert() {
// Write the element
self.available_ring.ring[element_pos as usize]
.0
.set(descriptor_chain_head as u16);
// TODO: Perform a suitable memory barrier using a method exposed by
// the transport. For now, we don't negotiate
// VIRTIO_F_ORDER_PLATFORM, which means that any device which
// requires proper memory barriers (read: not implemented in
// software, like QEMU) should refuse operation. We use volatile
// memory accesses, so read/write reordering by the compiler is not
// an issue.
// Update the idx
self.available_ring
.idx
.set(self.available_ring.idx.get().wrapping_add(1));
Some(element_pos as usize)
} else {
None
}
}
fn add_descriptor_chain(
&self,
buffer_chain: &mut [Option<VirtqueueBuffer<'b>>],
) -> Result<usize, ErrorCode> {
assert!(self.initialized.get());
// Get size of actual chain, until the first None
let queue_length = buffer_chain
.iter()
.take_while(|elem| elem.is_some())
.count();
// Make sure we have sufficient space available
//
// This takes into account the negotiated max size and will
// only list free iterators within that range
if self.free_descriptor_count() < queue_length {
return Err(ErrorCode::NOMEM);
}
// Walk over the descriptor table & buffer chain in parallel,
// inserting where empty
//
// We don't need to do any bounds checking here, if we run
// over the boundary it's safe to panic as something is
// seriously wrong with `free_descriptor_count`
let mut i = 0;
let mut previous_descriptor: Option<usize> = None;
let mut head = None;
let queuebuf_iter = buffer_chain.iter_mut().peekable();
for queuebuf in queuebuf_iter.take_while(|queuebuf| queuebuf.is_some()) {
// Take the queuebuf out of the caller array
let taken_queuebuf = queuebuf.take().expect("queuebuf is None");
// Sanity check the buffer: the subslice length may never
// exceed the slice length
assert!(taken_queuebuf.buf.len() >= taken_queuebuf.len);
while self.descriptor_buffers[i].is_some() {
i += 1;
// We should never run over the end, as we should have
// sufficient free descriptors
assert!(i < self.descriptor_buffers.len());
}
// Alright, we found a slot to insert the descriptor
//
// Check if it's the first one and store it's index as head
if head.is_none() {
head = Some(i);
}
// Write out the descriptor
let desc = &self.descriptors.0[i];
desc.len.set(taken_queuebuf.len as u32);
assert!(desc.len.get() > 0);
desc.addr.set(taken_queuebuf.buf.as_ptr() as u64);
desc.flags.write(if taken_queuebuf.device_writeable {
DescriptorFlags::WriteOnly::SET
} else {
DescriptorFlags::WriteOnly::CLEAR
});
// Now that we know our descriptor position, check whether
// we must chain ourself to a previous descriptor
if let Some(prev_index) = previous_descriptor {
self.descriptors.0[prev_index]
.flags
.modify(DescriptorFlags::Next::SET);
self.descriptors.0[prev_index].next.set(i as u16);
}
// Finally, store the full slice for reference. We don't store a
// proper Rust slice reference, as this would violate aliasing
// requirements: while the buffer is in the chain, it may be written
// by the VirtIO device.
//
// This can be changed to something slightly more elegant, once the
// NonNull functions around slices have been stabilized:
// https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.slice_from_raw_parts
self.descriptor_buffers[i]
.replace(SharedDescriptorBuffer::from_slice(taken_queuebuf.buf));
// Set ourself as the previous descriptor, as we know the position
// of `next` only in the next loop iteration.
previous_descriptor = Some(i);
// Increment the counter to not check the current
// descriptor entry again
i += 1;
}
Ok(head.expect("No head added to the descriptor table"))
}
fn remove_descriptor_chain(
&self,
top_descriptor_index: usize,
) -> [Option<VirtqueueBuffer<'b>>; MAX_QUEUE_SIZE] {
assert!(self.initialized.get());
let mut res: [Option<VirtqueueBuffer<'b>>; MAX_QUEUE_SIZE] =
init_constgeneric_default_array();
let mut i = 0;
let mut next_index: Option<usize> = Some(top_descriptor_index);
while let Some(current_index) = next_index {
// Get a reference over the current descriptor
let current_desc = &self.descriptors.0[current_index];
// Check whether we have a chained descriptor and store that in next_index
if current_desc.flags.is_set(DescriptorFlags::Next) {
next_index = Some(current_desc.next.get() as usize);
} else {
next_index = None;
}
// Recover the slice originally associated with this
// descriptor & delete it from the buffers array
//
// The caller may have provided us a larger Rust slice,
// but indicated to only provide a subslice to VirtIO,
// hence we'll use the stored original slice and also
// return the subslice length
let supplied_slice = self.descriptor_buffers[current_index]
.take()
.expect("Virtqueue descriptors and slices out of sync")
.into_slice();
assert!(supplied_slice.as_mut_ptr() as u64 == current_desc.addr.get());
// Reconstruct the input VirtqueueBuffer to hand it back
res[i] = Some(VirtqueueBuffer {
buf: supplied_slice,
len: current_desc.len.get() as usize,
device_writeable: current_desc.flags.is_set(DescriptorFlags::WriteOnly),
});
// Zero the descriptor
current_desc.addr.set(0);
current_desc.len.set(0);
current_desc.flags.set(0);
current_desc.next.set(0);
// Increment the loop iterator
i += 1;
}
res
}
/// Provide a single chain of buffers to the device.
///
/// This method will iterate over the passed slice until it encounters the
/// first `None`. It will first validate that the number of buffers can be
/// inserted into its descriptor table, and if not return
/// `Err(ErrorCode::NOMEM)`. If sufficient space is available, it takes the
/// passed buffers out of the provided `Option`s until encountering the
/// first `None` and shares this buffer chain with the device.
///
/// When the device has finished processing the passed buffer chain, it is
/// returned to the client either through the
/// [`SplitVirtqueueClient::buffer_chain_ready`] callback, or can be
/// retrieved through the [`SplitVirtqueue::pop_used_buffer_chain`] method.
pub fn provide_buffer_chain(
&self,
buffer_chain: &mut [Option<VirtqueueBuffer<'b>>],
) -> Result<(), ErrorCode> {
assert!(self.initialized.get());
// Try to add the chain into the descriptor array
let descriptor_chain_head = self.add_descriptor_chain(buffer_chain)?;
// Now make it available to the device. If there was sufficient space
// available to add the chain's descriptors (of which there may be
// multiple), there should also be sufficient space in the available
// ring (where a multi-descriptor chain will occupy only one elements).
self.add_available_descriptor(descriptor_chain_head)
.expect("Insufficient space in available ring");
// Notify the queue. This must not fail, given that the SplitVirtqueue
// requires a transport to be set prior to initialization.
self.transport
.map(|t| t.queue_notify(self.queue_number.get()))
.unwrap();
Ok(())
}
/// Attempt to take a buffer chain out of the Virtqueue used ring.
///
/// Returns `None` if the used ring is empty.
pub fn pop_used_buffer_chain(
&self,
) -> Option<([Option<VirtqueueBuffer<'b>>; MAX_QUEUE_SIZE], usize)> {
assert!(self.initialized.get());
self.remove_used_chain()
.map(|(descriptor_idx, bytes_used)| {
// Get the descriptor chain
let chain = self.remove_descriptor_chain(descriptor_idx);
// Remove the first entry of the available ring, since we
// got a single buffer back and can therefore make another
// buffer available to the device without risking an
// overflow of the used ring
self.available_ring_state.pop();
(chain, bytes_used)
})
}
/// Disable callback delivery for the
/// [`SplitVirtqueueClient::buffer_chain_ready`] method on the registered
/// client.
pub fn enable_used_callbacks(&self) {
self.used_callbacks_enabled.set(true);
}
/// Enable callback delivery for the
/// [`SplitVirtqueueClient::buffer_chain_ready`] method on the registered
/// client.
///
/// Callback delivery is enabled by default. If this is not desired, call
/// this method prior to registering a client.
pub fn disable_used_callbacks(&self) {
self.used_callbacks_enabled.set(false);
}
}
impl<const MAX_QUEUE_SIZE: usize> Virtqueue for SplitVirtqueue<'_, '_, MAX_QUEUE_SIZE> {
fn used_interrupt(&self) {
assert!(self.initialized.get());
// A buffer MAY have been put into the used in by the device
//
// Try to extract all pending used buffers and return them to
// the clients via callbacks
while self.used_callbacks_enabled.get() {
if let Some((mut chain, bytes_used)) = self.pop_used_buffer_chain() {
self.client.map(move |client| {
client.buffer_chain_ready(self.queue_number.get(), chain.as_mut(), bytes_used)
});
} else {
break;
}
}
}
fn physical_addresses(&self) -> VirtqueueAddresses {
VirtqueueAddresses {
descriptor_area: core::ptr::from_ref(self.descriptors) as u64,
driver_area: core::ptr::from_ref(self.available_ring) as u64,
device_area: core::ptr::from_ref(self.used_ring) as u64,
}
}
fn negotiate_queue_size(&self, max_elements: usize) -> usize {
assert!(!self.initialized.get());
let negotiated = cmp::min(MAX_QUEUE_SIZE, max_elements);
self.max_elements.set(negotiated);
self.available_ring_state.reset(negotiated);
negotiated
}
fn initialize(&self, queue_number: u32, _queue_elements: usize) {
assert!(!self.initialized.get());
// The transport must be set prior to initialization:
assert!(self.transport.is_some());
// TODO: Zero the queue
//
// For now we assume all passed queue buffers are already
// zeroed
self.queue_number.set(queue_number);
self.initialized.set(true);
}
}
pub trait SplitVirtqueueClient<'b> {
fn buffer_chain_ready(
&self,
queue_number: u32,
buffer_chain: &mut [Option<VirtqueueBuffer<'b>>],
bytes_used: usize,
);
}