litex/uart.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! LiteX UART core
//!
//! Hardware source and documentation available at
//! [`litex/soc/cores/uart.py`](https://github.com/enjoy-digital/litex/blob/master/litex/soc/cores/uart.py).
use core::cell::Cell;
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil::uart;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
use crate::event_manager::LiteXEventManager;
use crate::litex_registers::{
register_bitfields, LiteXSoCRegisterConfiguration, Read, ReadRegWrapper, Write, WriteRegWrapper,
};
const EVENT_MANAGER_INDEX_TX: usize = 0;
const EVENT_MANAGER_INDEX_RX: usize = 1;
type LiteXUartEV<'a, R> = LiteXEventManager<
'a,
u8,
<R as LiteXSoCRegisterConfiguration>::ReadOnly8,
<R as LiteXSoCRegisterConfiguration>::ReadWrite8,
<R as LiteXSoCRegisterConfiguration>::ReadWrite8,
>;
/// LiteX UART PHY registers
///
/// This is a separate register set, as it is not necessarily present
/// on every LiteX SoC with UART (e.g. a verilated simulation)
#[repr(C)]
pub struct LiteXUartPhyRegisters<R: LiteXSoCRegisterConfiguration> {
/// Tuning word (UART baudrate)
tuning_word: R::ReadWrite32,
}
/// LiteX UART registers
#[repr(C)]
pub struct LiteXUartRegisters<R: LiteXSoCRegisterConfiguration> {
/// receive & transmit register
rxtx: R::ReadWrite8,
/// transmit buffer full
txfull: R::ReadOnly8,
/// receive buffer empty
rxempty: R::ReadOnly8,
/// LiteX EventManager status register
ev_status: R::ReadOnly8,
/// LiteX EventManager pending register
ev_pending: R::ReadWrite8,
/// LiteX EventManager pending register
ev_enable: R::ReadWrite8,
/// transmit buffer empty
txempty: R::ReadOnly8,
/// receive buffer full
rxfull: R::ReadOnly8,
}
impl<R: LiteXSoCRegisterConfiguration> LiteXUartRegisters<R> {
/// Create an event manager instance for the UART events
fn ev(&self) -> LiteXUartEV<'_, R> {
LiteXUartEV::<R>::new(&self.ev_status, &self.ev_pending, &self.ev_enable)
}
}
register_bitfields![u8,
rxtx [
data OFFSET(0) NUMBITS(8) []
],
txfull [
full OFFSET(0) NUMBITS(1) []
],
rxempty [
empty OFFSET(0) NUMBITS(1) []
],
txempty [
empty OFFSET(0) NUMBITS(1) []
],
rxfull [
full OFFSET(0) NUMBITS(1) []
]
];
pub struct LiteXUart<'a, R: LiteXSoCRegisterConfiguration> {
uart_regs: StaticRef<LiteXUartRegisters<R>>,
phy: Option<(StaticRef<LiteXUartPhyRegisters<R>>, u32)>,
tx_client: OptionalCell<&'a dyn uart::TransmitClient>,
rx_client: OptionalCell<&'a dyn uart::ReceiveClient>,
tx_buffer: TakeCell<'static, [u8]>,
tx_len: Cell<usize>,
tx_progress: Cell<usize>,
tx_aborted: Cell<bool>,
tx_deferred_call: Cell<bool>,
rx_buffer: TakeCell<'static, [u8]>,
rx_len: Cell<usize>,
rx_progress: Cell<usize>,
rx_aborted: Cell<bool>,
rx_deferred_call: Cell<bool>,
deferred_call: DeferredCall,
initialized: Cell<bool>,
}
impl<'a, R: LiteXSoCRegisterConfiguration> LiteXUart<'a, R> {
pub fn new(
uart_base: StaticRef<LiteXUartRegisters<R>>,
phy_args: Option<(StaticRef<LiteXUartPhyRegisters<R>>, u32)>,
) -> LiteXUart<'a, R> {
LiteXUart {
uart_regs: uart_base,
phy: phy_args,
tx_client: OptionalCell::empty(),
rx_client: OptionalCell::empty(),
tx_buffer: TakeCell::empty(),
tx_len: Cell::new(0),
tx_progress: Cell::new(0),
tx_aborted: Cell::new(false),
tx_deferred_call: Cell::new(false),
rx_buffer: TakeCell::empty(),
rx_len: Cell::new(0),
rx_progress: Cell::new(0),
rx_aborted: Cell::new(false),
rx_deferred_call: Cell::new(false),
deferred_call: DeferredCall::new(),
initialized: Cell::new(false),
}
}
pub fn initialize(&self) {
self.uart_regs.ev().disable_all();
self.initialized.set(true);
}
pub fn transmit_sync(&self, bytes: &[u8]) {
// We need to make sure that we're not modifying interrupt
// pending and enabled bits here!
let regs = self.uart_regs;
let ev = regs.ev();
// Store whether there was a pending interrupt before and
// whether interrupts were enabled, and if we cause one, clear
// it after waiting until the buffer has space again.
let interrupt_pending = ev.event_pending(EVENT_MANAGER_INDEX_TX);
let interrupt_enabled = ev.event_enabled(EVENT_MANAGER_INDEX_TX);
ev.disable_event(EVENT_MANAGER_INDEX_TX);
for b in bytes.iter() {
while ReadRegWrapper::wrap(®s.txfull).is_set(txfull::full) {}
WriteRegWrapper::wrap(®s.rxtx).write(rxtx::data.val(*b));
}
// Wait until there is space for at least one byte
while ReadRegWrapper::wrap(®s.txfull).is_set(txfull::full) {}
// Check if we generated an additional event and clear it
if !interrupt_pending && ev.event_pending(EVENT_MANAGER_INDEX_TX) {
ev.clear_event(EVENT_MANAGER_INDEX_TX);
}
// Check if interrupts were previously enabled and reenable in that case
if interrupt_enabled {
ev.enable_event(EVENT_MANAGER_INDEX_TX);
}
}
pub fn service_interrupt(&self) {
let ev = self.uart_regs.ev();
if ev.event_asserted(EVENT_MANAGER_INDEX_RX) {
// We cannot clear the event here, as that would discard
// data from the UART RX FIFO
self.rx_data();
}
if ev.event_asserted(EVENT_MANAGER_INDEX_TX) {
ev.clear_event(EVENT_MANAGER_INDEX_TX);
self.resume_tx();
}
}
fn deferred_rx_abort(&self) {
// The RX event has already been disabled
// Just return the buffer to the client
let buffer = self.rx_buffer.take().unwrap(); // Unwrap fail = no rx buffer
let progress = self.rx_progress.get();
self.rx_client.map(move |client| {
client.received_buffer(buffer, progress, Err(ErrorCode::CANCEL), uart::Error::None)
});
}
fn rx_data(&self) {
// New data is available for reception
let ev = self.uart_regs.ev();
let buffer = self.rx_buffer.take().unwrap(); // Unwrap fail = no rx buffer
let len = self.rx_len.get();
let mut progress = self.rx_progress.get();
// Read all available data, until we've reached the length limit
while {
!ReadRegWrapper::wrap(&self.uart_regs.rxempty).is_set(rxempty::empty) && progress < len
} {
buffer[progress] = ReadRegWrapper::wrap(&self.uart_regs.rxtx).read(rxtx::data);
progress += 1;
// Mark the byte as read by acknowledging the event
ev.clear_event(EVENT_MANAGER_INDEX_RX);
}
// Check whether we've reached the length limit and call to
// the client respectively
if progress == len {
// Disable RX events
self.uart_regs.ev().disable_event(EVENT_MANAGER_INDEX_RX);
self.rx_client
.map(move |client| client.received_buffer(buffer, len, Ok(()), uart::Error::None));
} else {
self.rx_buffer.replace(buffer);
self.rx_progress.set(progress);
}
}
fn deferred_tx_abort(&self) {
// The TX event has already been disabled
// Just return the buffer to the client
let buffer = self.tx_buffer.take().unwrap(); // Unwrap fail = no tx buffer
let progress = self.tx_progress.get();
self.tx_client
.map(move |client| client.transmitted_buffer(buffer, progress, Err(ErrorCode::CANCEL)));
}
// This is either called as a deferred call or by a
// hardware-generated interrupt, hence it is guaranteed to be an
// callback
fn resume_tx(&self) {
// Context: when called from an interrupt, the event source
// has already been cleared
let len = self.tx_len.get();
let mut progress = self.tx_progress.get();
let buffer = self.tx_buffer.take().unwrap(); // Unwrap fail = no tx buffer
// Try to transmit any remaining data
// Store this to check whether we will get another interrupt
//
// An interrupt will be generated if fifo_full is true
// (i.e. the fifo limit has been reached) OR if after the
// while loop, the TX event is already pending (meaning we've
// reached the fifo limit AND the end of operation at the same
// time, but the hardware has managed to transmit a byte
// before we had a chance to read `fifo_full`)
let mut fifo_full: bool;
while {
fifo_full = ReadRegWrapper::wrap(&self.uart_regs.txfull).is_set(txfull::full);
!fifo_full && progress < len
} {
WriteRegWrapper::wrap(&self.uart_regs.rxtx).write(rxtx::data.val(buffer[progress]));
progress += 1;
}
if progress < len {
// If we haven't transmitted all data, we _must_ have
// reached the fifo-limit
assert!(fifo_full);
// Place all information and buffers back for the next
// call to `resume_tx`, triggered by an interrupt.
self.tx_progress.set(progress);
self.tx_buffer.replace(buffer);
} else if fifo_full || self.uart_regs.ev().event_pending(EVENT_MANAGER_INDEX_TX) {
// All data is transmitted, but an interrupt will still be
// generated, for which we wait
// Place all information and buffers back for the next
// call to `resume_tx`
self.tx_progress.set(progress);
self.tx_buffer.replace(buffer);
} else {
// All data is transmitted and we will get no further
// interrupt
//
// Disable TX events until the next transmission and call back to the client
self.uart_regs.ev().disable_event(EVENT_MANAGER_INDEX_TX);
self.tx_client
.map(move |client| client.transmitted_buffer(buffer, len, Ok(())));
}
}
}
impl<R: LiteXSoCRegisterConfiguration> uart::Configure for LiteXUart<'_, R> {
fn configure(&self, params: uart::Parameters) -> Result<(), ErrorCode> {
// LiteX UART supports only
// - a fixed with of 8 bits
// - no parity
// - 1 stop bit
// - no hardware flow control(?)
if let Some((ref phy_regs, system_clock)) = self.phy {
if params.width != uart::Width::Eight
|| params.parity != uart::Parity::None
|| params.stop_bits != uart::StopBits::One
|| params.hw_flow_control
{
Err(ErrorCode::NOSUPPORT)
} else if params.baud_rate == 0 || params.baud_rate > system_clock {
Err(ErrorCode::INVAL)
} else {
let tuning_word = if params.baud_rate == system_clock {
u32::MAX
} else {
(((params.baud_rate as u64) * (1 << 32)) / (system_clock as u64)) as u32
};
phy_regs.tuning_word.set(tuning_word);
Ok(())
}
} else {
Err(ErrorCode::NOSUPPORT)
}
}
}
impl<'a, R: LiteXSoCRegisterConfiguration> uart::Transmit<'a> for LiteXUart<'a, R> {
fn set_transmit_client(&self, client: &'a dyn uart::TransmitClient) {
self.tx_client.set(client);
}
fn transmit_buffer(
&self,
tx_buffer: &'static mut [u8],
tx_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
// Make sure the UART is initialized
assert!(self.initialized.get());
if tx_buffer.len() < tx_len {
return Err((ErrorCode::SIZE, tx_buffer));
}
if self.tx_buffer.is_some() {
return Err((ErrorCode::BUSY, tx_buffer));
}
// Enable TX events (interrupts)
self.uart_regs.ev().clear_event(EVENT_MANAGER_INDEX_TX);
self.uart_regs.ev().enable_event(EVENT_MANAGER_INDEX_TX);
// Try to send the buffer
//
// If it does not fill the FIFO, an
// interrupt will _not_ be generated and hence we have to
// perform the callback using a deferred call.
//
// If we fill up the FIFO, an interrupt _will_ be
// generated. We can transmit the rest using `resume_tx` and
// directly call the callback there, as we are guaranteed to
// be in a callback.
//
// An interrupt will be generated if fifo_full is true
// (i.e. the fifo limit has been reached) OR if after the
// while loop, the TX event is already pending (meaning we've
// reached the fifo limit AND the end of operation at the same
// time, but the hardware has managed to transmit a byte
// before we had a chance to read `fifo_full`)
let mut fifo_full: bool;
let mut progress: usize = 0;
while {
fifo_full = ReadRegWrapper::wrap(&self.uart_regs.txfull).is_set(txfull::full);
(progress < tx_len) && !fifo_full
} {
WriteRegWrapper::wrap(&self.uart_regs.rxtx).write(rxtx::data.val(tx_buffer[progress]));
progress += 1;
}
// Store the respective values (implicitly setting the device as busy)
self.tx_progress.set(progress);
self.tx_len.set(tx_len);
self.tx_buffer.replace(tx_buffer);
self.tx_aborted.set(false);
// If we did not reach the fifo-limit, the entire buffer
// _must_ have been written to the device
//
// In this case, we must request a deferred call for the
// callback, as an interrupt will not be generated.
//
// However, we might have reached the fifo limit but not
// noticed, as the device has sent a byte between writing rxtx
// and reading txfull. Hence, if an event is pending, rely on
// the fact that an interrupt will be generated.
if !(fifo_full || self.uart_regs.ev().event_pending(EVENT_MANAGER_INDEX_TX)) {
assert!(progress == tx_len);
self.tx_deferred_call.set(true);
self.deferred_call.set();
}
// If fifo_full == true, we will get an interrupt
Ok(())
}
fn transmit_word(&self, _word: u32) -> Result<(), ErrorCode> {
// Make sure the UART is initialized
assert!(self.initialized.get());
Err(ErrorCode::FAIL)
}
fn transmit_abort(&self) -> Result<(), ErrorCode> {
// Disable TX events
//
// A deferred call might still be pending from the started
// transmission, however that will be routed to
// `deferred_tx_abort` if `tx_aborted` is set
// Make sure the UART is initialized
assert!(self.initialized.get());
self.uart_regs.ev().disable_event(EVENT_MANAGER_INDEX_TX);
if self.tx_buffer.is_some() {
self.tx_aborted.set(true);
self.tx_deferred_call.set(true);
self.deferred_call.set();
Err(ErrorCode::BUSY)
} else {
Ok(())
}
}
}
impl<'a, R: LiteXSoCRegisterConfiguration> uart::Receive<'a> for LiteXUart<'a, R> {
fn set_receive_client(&self, client: &'a dyn uart::ReceiveClient) {
self.rx_client.set(client);
}
fn receive_buffer(
&self,
rx_buffer: &'static mut [u8],
rx_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
// Make sure the UART is initialized
assert!(self.initialized.get());
if rx_len > rx_buffer.len() {
return Err((ErrorCode::SIZE, rx_buffer));
}
if self.rx_buffer.is_some() {
return Err((ErrorCode::BUSY, rx_buffer));
}
// Store the slice and length for receiving, set the progress
// to 0
self.rx_buffer.replace(rx_buffer);
self.rx_len.set(rx_len);
self.rx_progress.set(0);
self.rx_aborted.set(false);
// If there is already data in the FIFO but the event is not
// pending (has been cleared), request a deferred call,
// otherwise rely on the interrupts
//
// This is required as the EventSourceProcess only triggers on
// a falling edge, which will not happen if the FIFO had valid
// data left over from the previous transaction.
if !ReadRegWrapper::wrap(&self.uart_regs.rxempty).is_set(rxempty::empty)
&& !self.uart_regs.ev().event_pending(EVENT_MANAGER_INDEX_RX)
{
// We do not enable interrupts just yet, but rely on a
// deferred call for the bytes left over from a previous
// transaction in the FIFO
//
// Enable the event interrupt in the deferred callback
// instead! Otherwise we risk double-delivery of the
// interrupt _and_ the deferred call
self.rx_deferred_call.set(true);
self.deferred_call.set();
} else {
// We do _not_ clear any pending data in the FIFO by
// acknowledging previous events
self.uart_regs.ev().enable_event(EVENT_MANAGER_INDEX_RX);
}
Ok(())
}
fn receive_word(&self) -> Result<(), ErrorCode> {
// Make sure the UART is initialized
assert!(self.initialized.get());
Err(ErrorCode::FAIL)
}
fn receive_abort(&self) -> Result<(), ErrorCode> {
// Make sure the UART is initialized
assert!(self.initialized.get());
// Disable RX events
self.uart_regs.ev().disable_event(EVENT_MANAGER_INDEX_RX);
if self.rx_buffer.is_some() {
// Set the UART transmission to aborted and request a deferred
// call
self.rx_aborted.set(true);
self.rx_deferred_call.set(true);
self.deferred_call.set();
Err(ErrorCode::BUSY)
} else {
Ok(())
}
}
}
impl<R: LiteXSoCRegisterConfiguration> DeferredCallClient for LiteXUart<'_, R> {
fn register(&'static self) {
self.deferred_call.register(self)
}
fn handle_deferred_call(&self) {
// Are we currently in a TX or RX transaction?
if self.tx_deferred_call.get() {
self.tx_deferred_call.set(false);
// Has the transmission been aborted?
if self.tx_aborted.get() {
self.deferred_tx_abort();
} else {
// The buffer has been completely transmitted in the initial
// `transmit_buffer` call, finish the operation
self.resume_tx();
}
}
if self.rx_deferred_call.get() {
self.rx_deferred_call.set(false);
// Has the reception been aborted?
if self.rx_aborted.get() {
self.deferred_rx_abort();
} else {
// The deferred call is used as there is some leftover
// data in the FIFO from a previous transaction, which
// won't trigger the falling-edge based
// EventSourceProcess
//
// We need to instead enable interrupts here (can't be
// done in the original receive_buffer method, as that
// would risk double-delivery of interrupts and
// deferred calls)
self.uart_regs.ev().enable_event(EVENT_MANAGER_INDEX_RX);
self.rx_data();
}
}
}
}