litex/timer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! LiteX timer core
//!
//! Hardware source and documentation available at
//! [`litex/soc/cores/timer.py`](https://github.com/enjoy-digital/litex/blob/master/litex/soc/cores/timer.py).
use core::cell::Cell;
use core::marker::PhantomData;
use kernel::hil::time::{
Alarm, AlarmClient, Frequency, Ticks, Ticks32, Ticks64, Time, Timer, TimerClient,
};
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
use crate::event_manager::LiteXEventManager;
use crate::litex_registers::{
register_bitfields, LiteXSoCRegisterConfiguration, Read, ReadRegWrapper, Write, WriteRegWrapper,
};
const EVENT_MANAGER_INDEX: usize = 0;
type LiteXTimerEV<'a, R> = LiteXEventManager<
'a,
u8,
<R as LiteXSoCRegisterConfiguration>::ReadOnly8,
<R as LiteXSoCRegisterConfiguration>::ReadWrite8,
<R as LiteXSoCRegisterConfiguration>::ReadWrite8,
>;
/// [`LiteXTimer`] register layout
#[repr(C)]
pub struct LiteXTimerRegisters<R: LiteXSoCRegisterConfiguration> {
/// Load value when Timer is (re-)enabled. In One-Shot mode, the
/// value written to this register specifies the Timer's duration
/// in clock cycles.
load: R::ReadWrite32,
/// Reload value when Timer reaches `0`. In Periodic mode, the
/// value written to this register specify the Timer's period in
/// clock cycles.
reload: R::ReadWrite32,
/// Enable flag of the Timer. Set this flag to `1` to enable/start
/// the Timer. Set to `0` to disable the Timer.
en: R::ReadWrite8,
/// Update trigger for the current countdown value. A write to
/// this register latches the current countdown value to `value`
/// register.
update_value: R::ReadWrite8,
/// Latched countdown value. This value is updated by writing to
/// `update_value`.
value: R::ReadWrite32,
/// LiteX EventManager status register
ev_status: R::ReadOnly8,
/// LiteX EventManager pending register
ev_pending: R::ReadWrite8,
/// LiteX EventManager pending register
ev_enable: R::ReadWrite8,
/// Write a `1` to latch current Uptime cycles to `uptime_cycles`
/// register.
///
/// # Optional register
///
/// This register is only present if the SoC was configured with
/// `timer_update = True`. Therefore, it's only indirectly
/// accessed by the [`LiteXTimerUptime`] struct,
/// which a board will need to construct separately.
uptime_latch: R::ReadWrite8,
/// Latched uptime since power-up (in `sys_clk` cycles)
///
/// # Optional register
///
/// This register is only present if the SoC was configured with
/// `timer_update = True`. Therefore, it's only indirectly
/// accessed by the [`LiteXTimerUptime`] struct,
/// which a board will need to construct separately.
uptime: R::ReadOnly64,
}
impl<R: LiteXSoCRegisterConfiguration> LiteXTimerRegisters<R> {
fn ev(&self) -> LiteXTimerEV<'_, R> {
LiteXTimerEV::<R>::new(&self.ev_status, &self.ev_pending, &self.ev_enable)
}
}
register_bitfields![u8,
en [
enable OFFSET(0) NUMBITS(1) []
],
update_value [
latch_value OFFSET(0) NUMBITS(1) []
],
uptime_latch [
latch_value OFFSET(0) NUMBITS(1) []
]
];
/// LiteX hardware timer core uptime extension
///
/// Defined in
/// [`litex/soc/cores/timer.py`](https://github.com/enjoy-digital/litex/blob/master/litex/soc/cores/timer.py).
///
/// This hardware peripheral can optionally feature an uptime
/// register, which counts the current ticks since power on. This
/// wrapper can be used to provide users a safe way to access this
/// register through the [`Time::now`] interface, if it is available
/// in hardware.
pub struct LiteXTimerUptime<'t, R: LiteXSoCRegisterConfiguration, F: Frequency> {
timer: &'t LiteXTimer<'t, R, F>,
}
impl<'t, R: LiteXSoCRegisterConfiguration, F: Frequency> LiteXTimerUptime<'t, R, F> {
/// Contruct a new [`LiteXTimerUptime`] wrapper
///
/// The function is marked `unsafe` as it will provide a safe
/// method to access the `uptime`-register on the underlying
/// [`LiteXTimer`]. If this register is not present (i.e. the
/// uptime feature is disabled), this will result in undefined
/// behavior.
pub const unsafe fn new(timer: &'t LiteXTimer<'t, R, F>) -> LiteXTimerUptime<'t, R, F> {
LiteXTimerUptime { timer }
}
}
impl<R: LiteXSoCRegisterConfiguration, F: Frequency> Time for LiteXTimerUptime<'_, R, F> {
type Frequency = F;
type Ticks = Ticks64;
/// Return the current ticks since sytem power on
fn now(&self) -> Self::Ticks {
unsafe { self.timer.uptime() }
}
}
/// LiteX hardware timer core
///
/// Defined in
/// [`litex/soc/cores/timer.py`](https://github.com/enjoy-digital/litex/blob/master/litex/soc/cores/timer.py).
///
/// This peripheral supports counting down a certain interval, either
/// as a oneshot timer or in a repeated fashion.
///
/// # Uptime extension
///
/// LiteX timers can _optionally_ be extended to feature an uptime
/// register integrated into the timer peripheral, monotonically
/// counting the clock ticks and wrapping at the maximum value.
///
/// The uptime register may have a different width as the [`Timer`]
/// peripheral itself, hence it must be implemented using a separate
/// type. The type must contain a reference to this [`Timer`]
/// instance, since the register is located on this register bank.
///
/// Since this extension is not always configured, the Timer features
/// an _unsafe_ function to read the uptime. It must only be called by
/// [`LiteXTimerUptime`] struct and only if the uptime has been
/// configured.
pub struct LiteXTimer<'a, R: LiteXSoCRegisterConfiguration, F: Frequency> {
registers: StaticRef<LiteXTimerRegisters<R>>,
client: OptionalCell<&'a dyn TimerClient>,
/// Variable to store whether an interval has been set at least
/// once (e.g. the timer has been started once)
interval_set: Cell<bool>,
_frequency: PhantomData<F>,
}
impl<R: LiteXSoCRegisterConfiguration, F: Frequency> LiteXTimer<'_, R, F> {
pub fn new(base: StaticRef<LiteXTimerRegisters<R>>) -> Self {
LiteXTimer {
registers: base,
client: OptionalCell::empty(),
interval_set: Cell::new(false),
_frequency: PhantomData,
}
}
/// Get the uptime register value.
///
/// This function is marked as unsafe to avoid clients calling it,
/// if the underlying LiteX hardware timer does not feature the
/// uptime registers.
///
/// Clients should use the [`LiteXTimerUptime`] wrapper instead,
/// which exposes this value as part of their
/// [`Time::now`] implementation.
unsafe fn uptime(&self) -> Ticks64 {
WriteRegWrapper::wrap(&self.registers.uptime_latch).write(uptime_latch::latch_value::SET);
self.registers.uptime.get().into()
}
pub fn service_interrupt(&self) {
// Check whether the event is still asserted.
//
// It could be that an interrupt was fired and the timer was
// reset / disabled in the mean time.
if self.registers.ev().event_asserted(EVENT_MANAGER_INDEX) {
if self.registers.reload.get() == 0 {
// Timer is a oneshot
// If the timer really is a oneshot, the remaining time must be 0
WriteRegWrapper::wrap(&self.registers.update_value)
.write(update_value::latch_value::SET);
assert!(self.registers.value.get() == 0);
// Completely disable and make sure it doesn't generate
// more interrupts until it is started again
let _ = self.cancel();
} else {
// Timer is repeating
//
// Simply only acknowledge the current interrupt
self.registers.ev().clear_event(EVENT_MANAGER_INDEX);
}
// In any case, perform a callback to the client
self.client.map(|client| {
client.timer();
});
}
}
fn start_timer(&self, tics: u32, repeat_ticks: Option<u32>) {
// If the timer is already enabled, cancel it and disable all
// interrupts
if self.is_enabled() {
let _ = self.cancel();
}
if let Some(reload) = repeat_ticks {
// Reload the timer with `reload_ticks` after it has
// expired (reloading mode)
self.registers.reload.set(reload);
} else {
// Prevent reloading of the timer (oneshot mode)
self.registers.reload.set(0);
}
// Load the countdown in ticks (this register won't get
// overwritten, hence it is a safe reference to the original
// tics value which we don't need to save locally)
self.registers.load.set(tics);
// Since the timer is disabled, the load register is
// immediately mirrored to the internal register, which will
// cause the event source to be off.
//
// It is important for the internal value to be non-zero prior
// to enabling the event, as it could otherwise immediately
// generate an event again (which might be desired for a timer
// with tics == 0).
//
// Clear any pending event of a previous timer, then enable
// the event.
self.registers.ev().clear_event(EVENT_MANAGER_INDEX);
self.registers.ev().enable_event(EVENT_MANAGER_INDEX);
// The timer has been started at least once by now
self.interval_set.set(true);
// Start the timer
WriteRegWrapper::wrap(&self.registers.en).write(en::enable::SET);
}
}
impl<R: LiteXSoCRegisterConfiguration, F: Frequency> Time for LiteXTimer<'_, R, F> {
type Frequency = F;
type Ticks = Ticks32;
fn now(&self) -> Self::Ticks {
WriteRegWrapper::wrap(&self.registers.update_value).write(update_value::latch_value::SET);
self.registers.value.get().into()
}
}
impl<'a, R: LiteXSoCRegisterConfiguration, F: Frequency> Timer<'a> for LiteXTimer<'a, R, F> {
fn set_timer_client(&self, client: &'a dyn TimerClient) {
self.client.set(client);
}
fn oneshot(&self, interval: Self::Ticks) -> Self::Ticks {
self.start_timer(interval.into_u32(), None);
interval
}
fn repeating(&self, interval: Self::Ticks) -> Self::Ticks {
self.start_timer(interval.into_u32(), Some(interval.into_u32()));
interval
}
fn interval(&self) -> Option<Self::Ticks> {
if self.interval_set.get() {
// The timer has been started at least once, so we can
// trust that the `load` register will have the interval
// of the last requested timer.
Some(self.registers.load.get().into())
} else {
// The timer was never started and so does not have an
// interval set.
None
}
}
fn is_repeating(&self) -> bool {
// The timer is repeating timer if it has been started at
// least once and the reload register is non-zero
self.interval_set.get() && self.registers.reload.get() != 0
}
fn is_oneshot(&self) -> bool {
// The timer is a oneshot if it has been started at least once
// and the reload register is 0
self.interval_set.get() && self.registers.reload.get() == 0
}
fn time_remaining(&self) -> Option<Self::Ticks> {
if self.is_enabled() {
WriteRegWrapper::wrap(&self.registers.update_value)
.write(update_value::latch_value::SET);
Some(self.registers.value.get().into())
} else {
None
}
}
fn is_enabled(&self) -> bool {
ReadRegWrapper::wrap(&self.registers.en).is_set(en::enable)
}
fn cancel(&self) -> Result<(), ErrorCode> {
// Prevent the event source from generating new interrupts
self.registers.ev().disable_event(EVENT_MANAGER_INDEX);
// Stop the timer
WriteRegWrapper::wrap(&self.registers.en).write(en::enable::CLEAR);
// Clear any previous event
self.registers.ev().clear_event(EVENT_MANAGER_INDEX);
Ok(())
}
}
/// LiteX alarm implementation, based on [`LiteXTimer`] and
/// [`LiteXTimerUptime`]
///
/// LiteX does not have an [`Alarm`] compatible hardware peripheral,
/// so an [`Alarm`] is emulated using a repeatedly set [`LiteXTimer`],
/// comparing the current time against the [`LiteXTimerUptime`] (which
/// is also exposed as [`Time::now`].
pub struct LiteXAlarm<'t, 'c, R: LiteXSoCRegisterConfiguration, F: Frequency> {
uptime: &'t LiteXTimerUptime<'t, R, F>,
timer: &'t LiteXTimer<'t, R, F>,
alarm_client: OptionalCell<&'c dyn AlarmClient>,
reference_time: Cell<<LiteXTimerUptime<'t, R, F> as Time>::Ticks>,
alarm_time: OptionalCell<<LiteXTimerUptime<'t, R, F> as Time>::Ticks>,
}
impl<'t, 'c, R: LiteXSoCRegisterConfiguration, F: Frequency> LiteXAlarm<'t, 'c, R, F> {
pub fn new(
uptime: &'t LiteXTimerUptime<'t, R, F>,
timer: &'t LiteXTimer<'t, R, F>,
) -> LiteXAlarm<'t, 'c, R, F> {
LiteXAlarm {
uptime,
timer,
alarm_client: OptionalCell::empty(),
reference_time: Cell::new((0_u32).into()),
alarm_time: OptionalCell::empty(),
}
}
/// Initialize the [`LiteXAlarm`]
///
/// This will register itself as a client for the underlying
/// [`LiteXTimer`].
pub fn initialize(&'t self) {
self.timer.set_timer_client(self);
}
fn timer_tick(&self, is_callback: bool) {
// Check whether we've already reached the alarm time,
// otherwise set the timer to the difference or the max value
// respectively
// This function gets called when initially setting the alarm
// and for every fired LiteXTimer oneshot operation. Since we
// can't call a client-callback within the same call stack of
// the initial `set_alarm` call, we need to wait on the timer
// at least once (even if the alarm time has already passed).
let reference = self.reference_time.get();
let alarm_time = self.alarm_time.unwrap_or_panic(); // Unwrap fail = alarm not set
if !self.now().within_range(reference, alarm_time) {
// It's time, ring the alarm
// Make sure we're in an callback, otherwise set the timer
// to a very small value to trigger a Timer interrupt
// immediately
if is_callback {
// Reset the alarm to 0
self.alarm_time.clear();
// Call the client
self.alarm_client.map(|c| c.alarm());
} else {
// Trigger an interrupt one tick from now, which will
// call this function again
self.timer.oneshot((1_u32).into());
}
} else {
// It's not yet time to call the client, set the timer
// again
let remaining = alarm_time.wrapping_sub(self.now());
if remaining < (u32::MAX as u64).into() {
// The remaining time fits into a single timer
// invocation
self.timer.oneshot(remaining.into_u32().into());
} else {
// The remaining time is longer than a single timer
// invocation can cover, set the timer to the maximum
// value
self.timer.oneshot(u32::MAX.into());
}
}
}
}
impl<'t, R: LiteXSoCRegisterConfiguration, F: Frequency> Time for LiteXAlarm<'t, '_, R, F> {
type Frequency = F;
type Ticks = <LiteXTimerUptime<'t, R, F> as Time>::Ticks;
fn now(&self) -> Self::Ticks {
self.uptime.now()
}
}
impl<'c, R: LiteXSoCRegisterConfiguration, F: Frequency> Alarm<'c> for LiteXAlarm<'_, 'c, R, F> {
fn set_alarm_client(&self, client: &'c dyn AlarmClient) {
self.alarm_client.set(client);
}
fn set_alarm(&self, reference: Self::Ticks, dt: Self::Ticks) {
// Cancel any pending alarm
if self.is_armed() {
let _ = self.disarm();
}
// Store both the reference and alarm time (required for
// reliable comparison with wrapping time)
self.reference_time.set(reference);
self.alarm_time.set(reference.wrapping_add(dt));
// Set the underlying timer at least once (`is_callback =
// false`) to trigger a callback to the client in a different
// call stack
self.timer_tick(false);
}
fn get_alarm(&self) -> Self::Ticks {
// Undefined at boot, so 0
self.alarm_time.unwrap_or((0_u32).into())
}
fn is_armed(&self) -> bool {
self.alarm_time.is_some()
}
fn disarm(&self) -> Result<(), ErrorCode> {
let _ = self.timer.cancel();
self.alarm_time.clear();
Ok(())
}
fn minimum_dt(&self) -> Self::Ticks {
(1_u32).into()
}
}
impl<R: LiteXSoCRegisterConfiguration, F: Frequency> TimerClient for LiteXAlarm<'_, '_, R, F> {
fn timer(&self) {
self.timer_tick(true);
}
}