capsules_core/console.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Provides userspace with access to a serial interface.
//!
//! Setup
//! -----
//!
//! You need a device that provides the `hil::uart::UART` trait.
//!
//! ```rust,ignore
//! # use kernel::static_init;
//! # use capsules_core::console::Console;
//!
//! let console = static_init!(
//! Console<usart::USART>,
//! Console::new(&usart::USART0,
//! 115200,
//! &mut console::WRITE_BUF,
//! &mut console::READ_BUF,
//! board_kernel.create_grant(&grant_cap)));
//! hil::uart::UART::set_client(&usart::USART0, console);
//! ```
//!
//! Usage
//! -----
//!
//! The user must perform three steps in order to write a buffer:
//!
//! ```c
//! // (Optional) Set a callback to be invoked when the buffer has been written
//! subscribe(CONSOLE_DRIVER_NUM, 1, my_callback);
//! // Share the buffer from userspace with the driver
//! allow(CONSOLE_DRIVER_NUM, buffer, buffer_len_in_bytes);
//! // Initiate the transaction
//! command(CONSOLE_DRIVER_NUM, 1, len_to_write_in_bytes)
//! ```
//!
//! When the buffer has been written successfully, the buffer is released from
//! the driver. Successive writes must call `allow` each time a buffer is to be
//! written.
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, GrantKernelData, UpcallCount};
use kernel::hil::uart;
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use crate::driver;
pub const DRIVER_NUM: usize = driver::NUM::Console as usize;
/// Default size for the read and write buffers used by the console.
/// Boards may pass different-size buffers if needed.
pub const DEFAULT_BUF_SIZE: usize = 64;
/// IDs for subscribed upcalls.
mod upcall {
/// Write buffer completed callback
pub const WRITE_DONE: usize = 1;
/// Read buffer completed callback
pub const READ_DONE: usize = 2;
/// Number of upcalls. Even though we only use two, indexing starts at 0 so
/// to be able to use indices 1 and 2 we need to specify three upcalls.
pub const COUNT: u8 = 3;
}
/// Ids for read-only allow buffers
mod ro_allow {
/// Readonly buffer for write buffer
///
/// Before the allow syscall was handled by the kernel,
/// console used allow number "1", so to preserve compatibility
/// we still use allow number 1 now.
pub const WRITE: usize = 1;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 2;
}
/// Ids for read-write allow buffers
mod rw_allow {
/// Writeable buffer for read buffer
///
/// Before the allow syscall was handled by the kernel,
/// console used allow number "1", so to preserve compatibility
/// we still use allow number 1 now.
pub const READ: usize = 1;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 2;
}
#[derive(Default)]
pub struct App {
write_len: usize,
write_remaining: usize, // How many bytes didn't fit in the buffer and still need to be printed.
pending_write: bool,
read_len: usize,
}
pub struct Console<'a> {
uart: &'a dyn uart::UartData<'a>,
apps: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
tx_in_progress: OptionalCell<ProcessId>,
tx_buffer: TakeCell<'static, [u8]>,
rx_in_progress: OptionalCell<ProcessId>,
rx_buffer: TakeCell<'static, [u8]>,
}
impl<'a> Console<'a> {
pub fn new(
uart: &'a dyn uart::UartData<'a>,
tx_buffer: &'static mut [u8],
rx_buffer: &'static mut [u8],
grant: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
) -> Console<'a> {
Console {
uart,
apps: grant,
tx_in_progress: OptionalCell::empty(),
tx_buffer: TakeCell::new(tx_buffer),
rx_in_progress: OptionalCell::empty(),
rx_buffer: TakeCell::new(rx_buffer),
}
}
/// Internal helper function for setting up a new send transaction
fn send_new(
&self,
processid: ProcessId,
app: &mut App,
kernel_data: &GrantKernelData,
len: usize,
) -> Result<(), ErrorCode> {
app.write_len = kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.map_or(0, |write| write.len())
.min(len);
app.write_remaining = app.write_len;
self.send(processid, app, kernel_data);
Ok(())
}
/// Internal helper function for continuing a previously set up transaction.
/// Returns `true` if this send is still active, or `false` if it has
/// completed.
fn send_continue(
&self,
processid: ProcessId,
app: &mut App,
kernel_data: &GrantKernelData,
) -> bool {
if app.write_remaining > 0 {
self.send(processid, app, kernel_data);
// The send may have errored, meaning nothing is being transmitted.
// In that case there is nothing pending and we return false. In the
// common case, this will return true.
self.tx_in_progress.is_some()
} else {
false
}
}
/// Internal helper function for sending data for an existing transaction.
/// Cannot fail. If can't send now, it will schedule for sending later.
fn send(&self, processid: ProcessId, app: &mut App, kernel_data: &GrantKernelData) {
if self.tx_in_progress.is_none() {
self.tx_in_progress.set(processid);
self.tx_buffer.take().map(|buffer| {
let transaction_len = kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.and_then(|write| {
write.enter(|data| {
let remaining_data = match data
.get(app.write_len - app.write_remaining..app.write_len)
{
Some(remaining_data) => remaining_data,
None => {
// A slice has changed under us and is now
// smaller than what we need to write. Our
// behavior in this case is documented as
// undefined; the simplest thing we can do
// that doesn't panic is to abort the write.
// We update app.write_len so that the
// number of bytes written (which is passed
// to the write done upcall) is correct.
app.write_len -= app.write_remaining;
app.write_remaining = 0;
return 0;
}
};
for (i, c) in remaining_data.iter().enumerate() {
if buffer.len() <= i {
return i; // Short circuit on partial send
}
buffer[i] = c.get();
}
app.write_remaining
})
})
.unwrap_or(0);
app.write_remaining -= transaction_len;
match self.uart.transmit_buffer(buffer, transaction_len) {
Err((_e, tx_buffer)) => {
// The UART didn't start, so we will not get a transmit
// done callback. Need to signal the app now.
self.tx_buffer.replace(tx_buffer);
self.tx_in_progress.clear();
// Go ahead and signal the application
let written = app.write_len;
app.write_len = 0;
kernel_data.schedule_upcall(1, (written, 0, 0)).ok();
}
Ok(()) => {}
}
});
} else {
app.pending_write = true;
}
}
/// Internal helper function for starting a receive operation
fn receive_new(
&self,
processid: ProcessId,
app: &mut App,
kernel_data: &GrantKernelData,
len: usize,
) -> Result<(), ErrorCode> {
if self.rx_buffer.is_none() {
// For now, we tolerate only one concurrent receive operation on this console.
// Competing apps will have to retry until success.
return Err(ErrorCode::BUSY);
}
let read_len = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.map_or(0, |read| read.len())
.min(len);
if read_len > self.rx_buffer.map_or(0, |buf| buf.len()) {
// For simplicity, impose a small maximum receive length
// instead of doing incremental reads
Err(ErrorCode::INVAL)
} else {
// Note: We have ensured above that rx_buffer is present
app.read_len = read_len;
self.rx_buffer
.take()
.map_or(Err(ErrorCode::INVAL), |buffer| {
self.rx_in_progress.set(processid);
if let Err((e, buf)) = self.uart.receive_buffer(buffer, app.read_len) {
self.rx_buffer.replace(buf);
return Err(e);
}
Ok(())
})
}
}
}
impl SyscallDriver for Console<'_> {
/// Initiate serial transfers
///
/// ### `command_num`
///
/// - `0`: Driver existence check.
/// - `1`: Transmits a buffer passed via `allow`, up to the length
/// passed in `arg1`
/// - `2`: Receives into a buffer passed via `allow`, up to the length
/// passed in `arg1`
/// - `3`: Cancel any in progress receives and return (via callback)
/// what has been received so far.
fn command(
&self,
cmd_num: usize,
arg1: usize,
_: usize,
processid: ProcessId,
) -> CommandReturn {
let res = self
.apps
.enter(processid, |app, kernel_data| {
match cmd_num {
0 => Ok(()),
1 => {
// putstr
let len = arg1;
self.send_new(processid, app, kernel_data, len)
}
2 => {
// getnstr
let len = arg1;
self.receive_new(processid, app, kernel_data, len)
}
3 => {
// Abort RX
let _ = self.uart.receive_abort();
Ok(())
}
_ => Err(ErrorCode::NOSUPPORT),
}
})
.map_err(ErrorCode::from);
match res {
Ok(Ok(())) => CommandReturn::success(),
Ok(Err(e)) => CommandReturn::failure(e),
Err(e) => CommandReturn::failure(e),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.apps.enter(processid, |_, _| {})
}
}
impl uart::TransmitClient for Console<'_> {
fn transmitted_buffer(
&self,
buffer: &'static mut [u8],
_tx_len: usize,
_rcode: Result<(), ErrorCode>,
) {
// Either print more from the AppSlice or send a callback to the
// application.
self.tx_buffer.replace(buffer);
self.tx_in_progress.take().map(|processid| {
self.apps.enter(processid, |app, kernel_data| {
match self.send_continue(processid, app, kernel_data) {
true => {
// Still more to send. Wait to notify the process.
}
false => {
// Go ahead and signal the application
let written = app.write_len;
app.write_len = 0;
kernel_data
.schedule_upcall(upcall::WRITE_DONE, (written, 0, 0))
.ok();
}
}
})
});
// If we are not printing more from the current AppSlice,
// see if any other applications have pending messages.
if self.tx_in_progress.is_none() {
for cntr in self.apps.iter() {
let processid = cntr.processid();
let started_tx = cntr.enter(|app, kernel_data| {
if app.pending_write {
app.pending_write = false;
self.send_continue(processid, app, kernel_data)
} else {
false
}
});
if started_tx {
break;
}
}
}
}
}
impl uart::ReceiveClient for Console<'_> {
fn received_buffer(
&self,
buffer: &'static mut [u8],
rx_len: usize,
rcode: Result<(), ErrorCode>,
error: uart::Error,
) {
self.rx_in_progress
.take()
.map(|processid| {
self.apps
.enter(processid, |_, kernel_data| {
// An iterator over the returned buffer yielding only the first `rx_len`
// bytes
let rx_buffer = buffer.iter().take(rx_len);
match error {
uart::Error::None | uart::Error::Aborted => {
// Receive some bytes, signal error type and return bytes to process buffer
let count = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.and_then(|read| {
read.mut_enter(|data| {
let mut c = 0;
for (a, b) in data.iter().zip(rx_buffer) {
c += 1;
a.set(*b);
}
c
})
})
.unwrap_or(-1);
// Make sure we report the same number
// of bytes that we actually copied into
// the app's buffer. This is defensive:
// we shouldn't ever receive more bytes
// than will fit in the app buffer since
// we use the app_buffer's length when
// calling `receive()`. However, a buggy
// lower layer could return more bytes
// than we asked for, and we don't want
// to propagate that length error to
// userspace. However, we do return an
// error code so that userspace knows
// something went wrong.
//
// If count < 0 this means the buffer
// disappeared: return NOMEM.
let read_buffer_len = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.map_or(0, |read| read.len());
let (ret, received_length) = if count < 0 {
(Err(ErrorCode::NOMEM), 0)
} else if rx_len > read_buffer_len {
// Return `SIZE` indicating that
// some received bytes were dropped.
// We report the length that we
// actually copied into the buffer,
// but also indicate that there was
// an issue in the kernel with the
// receive.
(Err(ErrorCode::SIZE), read_buffer_len)
} else {
// This is the normal and expected
// case.
(rcode, rx_len)
};
kernel_data
.schedule_upcall(
upcall::READ_DONE,
(
kernel::errorcode::into_statuscode(ret),
received_length,
0,
),
)
.ok();
}
_ => {
// Some UART error occurred
kernel_data
.schedule_upcall(
upcall::READ_DONE,
(
kernel::errorcode::into_statuscode(Err(
ErrorCode::FAIL,
)),
0,
0,
),
)
.ok();
}
}
})
.unwrap_or_default();
})
.unwrap_or_default();
// Whatever happens, we want to make sure to replace the rx_buffer for future transactions
self.rx_buffer.replace(buffer);
}
}