capsules_core/virtualizers/virtual_uart.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Virtualize a UART bus.
//!
//! This allows multiple Tock capsules to use the same UART bus. This is likely
//! most useful for `printf()` like applications where multiple things want to
//! write to the same UART channel.
//!
//! Clients can choose if they want to receive. Incoming messages will be sent
//! to all clients that have enabled receiving.
//!
//! `MuxUart` provides shared access to a single UART bus for multiple users.
//! `UartDevice` provides access for a single client.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::{hil, static_init};
//! # use capsules_core::virtual_uart::{MuxUart, UartDevice};
//!
//! // Create a shared UART channel for the console and for kernel debug.
//! let uart_mux = static_init!(
//! MuxUart<'static>,
//! MuxUart::new(&sam4l::usart::USART0, &mut capsules_core::virtual_uart::RX_BUF)
//! );
//! hil::uart::UART::set_receive_client(&sam4l::usart::USART0, uart_mux);
//! hil::uart::UART::set_transmit_client(&sam4l::usart::USART0, uart_mux);
//!
//! // Create a UartDevice for the console.
//! let console_uart = static_init!(UartDevice, UartDevice::new(uart_mux, true));
//! console_uart.setup(); // This is important!
//! let console = static_init!(
//! capsules_core::console::Console<'static>,
//! capsules_core::console::Console::new(
//! console_uart,
//! &mut capsules_core::console::WRITE_BUF,
//! &mut capsules_core::console::READ_BUF,
//! board_kernel.create_grant(&grant_cap)
//! )
//! );
//! hil::uart::UART::set_transmit_client(console_uart, console);
//! hil::uart::UART::set_receive_client(console_uart, console);
//! ```
use core::cell::Cell;
use core::cmp;
use kernel::collections::list::{List, ListLink, ListNode};
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil::uart;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;
pub const RX_BUF_LEN: usize = 64;
pub struct MuxUart<'a> {
uart: &'a dyn uart::Uart<'a>,
speed: u32,
devices: List<'a, UartDevice<'a>>,
inflight: OptionalCell<&'a UartDevice<'a>>,
buffer: TakeCell<'static, [u8]>,
completing_read: Cell<bool>,
deferred_call: DeferredCall,
}
impl uart::TransmitClient for MuxUart<'_> {
fn transmitted_buffer(
&self,
tx_buffer: &'static mut [u8],
tx_len: usize,
rcode: Result<(), ErrorCode>,
) {
self.inflight.map(move |device| {
self.inflight.clear();
device.transmitted_buffer(tx_buffer, tx_len, rcode);
});
self.do_next_op();
}
}
impl uart::ReceiveClient for MuxUart<'_> {
fn received_buffer(
&self,
buffer: &'static mut [u8],
rx_len: usize,
rcode: Result<(), ErrorCode>,
error: uart::Error,
) {
// Likely we will issue another receive in response to the previous one
// finishing. `next_read_len` keeps track of the shortest outstanding
// receive requested by any client. We start with the longest it can be,
// i.e. the length of the buffer we pass to the UART.
let mut next_read_len = buffer.len();
let mut read_pending = false;
// Set a flag that we are in this callback handler. This allows us to
// note that we can wait until all callbacks are finished before
// starting a new UART receive.
self.completing_read.set(true);
// Because clients may issue another read in their callback we need to
// first copy out all the data, then make the callbacks.
//
// Multiple client reads of different sizes can be pending. This code
// copies the underlying UART read into each of the client buffers.
self.devices.iter().for_each(|device| {
if device.receiver {
device.rx_buffer.take().map(|rxbuf| {
let state = device.state.get();
// Copy the read into the buffer starting at rx_position
let position = device.rx_position.get();
let remaining = device.rx_len.get() - position;
let len = cmp::min(rx_len, remaining);
if state == UartDeviceReceiveState::Receiving
|| state == UartDeviceReceiveState::Aborting
{
// debug!("Have {} bytes, copying in bytes {}-{}, {} remain", rx_len, position, position + len, remaining);
rxbuf[position..(len + position)].copy_from_slice(&buffer[..len]);
}
device.rx_position.set(position + len);
device.rx_buffer.replace(rxbuf);
});
}
});
// If the underlying read completes a client read, issue a callback to
// that client. In the meanwhile, compute the length of the next
// underlying UART read as the shortest outstanding read, including and
// new reads setup in the callback. If any client has more to read or
// has started a new read, issue another underlying UART receive.
self.devices.iter().for_each(|device| {
if device.receiver {
device.rx_buffer.take().map(|rxbuf| {
let state = device.state.get();
let position = device.rx_position.get();
let remaining = device.rx_len.get() - position;
// If this finishes the read, signal to the caller,
// otherwise update state so next read will fill in
// more data.
if remaining == 0 {
device.state.set(UartDeviceReceiveState::Idle);
device.received_buffer(rxbuf, position, rcode, error);
// Need to check if receive was called in callback
if device.state.get() == UartDeviceReceiveState::Receiving {
read_pending = true;
next_read_len = cmp::min(next_read_len, device.rx_len.get());
}
} else if state == UartDeviceReceiveState::Aborting {
device.state.set(UartDeviceReceiveState::Idle);
device.received_buffer(
rxbuf,
position,
Err(ErrorCode::CANCEL),
uart::Error::Aborted,
);
// Need to check if receive was called in callback
if device.state.get() == UartDeviceReceiveState::Receiving {
read_pending = true;
next_read_len = cmp::min(next_read_len, device.rx_len.get());
}
} else {
device.rx_buffer.replace(rxbuf);
next_read_len = cmp::min(next_read_len, remaining);
read_pending = true;
}
});
}
});
// After we have finished all callbacks we can replace this buffer. We
// have to wait to replace this to make sure that a client calling
// `receive_buffer()` in its callback does not start an underlying UART
// receive before all callbacks have finished.
self.buffer.replace(buffer);
// Clear the flag that we are in this handler.
self.completing_read.set(false);
// If either our outstanding receive was longer than the number of bytes
// we just received, or if a new receive has been started, we start the
// underlying UART receive again.
if read_pending {
if let Err((e, buf)) = self.start_receive(next_read_len) {
self.buffer.replace(buf);
// Report the error to all devices
self.devices.iter().for_each(|device| {
if device.receiver {
device.rx_buffer.take().map(|rxbuf| {
let state = device.state.get();
let position = device.rx_position.get();
if state == UartDeviceReceiveState::Receiving {
device.state.set(UartDeviceReceiveState::Idle);
device.received_buffer(
rxbuf,
position,
Err(e),
uart::Error::Aborted,
);
}
});
}
});
}
}
}
}
impl<'a> MuxUart<'a> {
pub fn new(uart: &'a dyn uart::Uart<'a>, buffer: &'static mut [u8], speed: u32) -> MuxUart<'a> {
MuxUart {
uart,
speed,
devices: List::new(),
inflight: OptionalCell::empty(),
buffer: TakeCell::new(buffer),
completing_read: Cell::new(false),
deferred_call: DeferredCall::new(),
}
}
pub fn initialize(&self) {
let _ = self.uart.configure(uart::Parameters {
baud_rate: self.speed,
width: uart::Width::Eight,
stop_bits: uart::StopBits::One,
parity: uart::Parity::None,
hw_flow_control: false,
});
}
fn do_next_op(&self) {
if self.inflight.is_none() {
let mnode = self.devices.iter().find(|node| node.operation.is_some());
mnode.map(|node| {
node.tx_buffer.take().map(|buf| {
node.operation.take().map(move |op| match op {
Operation::Transmit { len } => match self.uart.transmit_buffer(buf, len) {
Ok(()) => {
self.inflight.set(node);
}
Err((ecode, buf)) => {
node.tx_client.map(move |client| {
node.transmitting.set(false);
client.transmitted_buffer(buf, 0, Err(ecode));
});
}
},
Operation::TransmitWord { word } => {
let rcode = self.uart.transmit_word(word);
if rcode != Ok(()) {
node.tx_client.map(|client| {
node.transmitting.set(false);
client.transmitted_word(rcode);
});
}
}
});
});
});
}
}
/// Starts a new UART reception, return value denotes whether starting
/// the reception will issue a callback before the new read. A callback
/// needs to be issued before the new read if a read was ongoing; the
/// callback finishes the current read so the new one can start.
///
/// Three cases:
/// 1. We are in the midst of completing a read: let the `received_buffer()`
/// handler restart the reads if needed (return false)
/// 2. We are in the midst of a read: abort so we can start a new read now
/// (return true)
/// 3. We are idle: start reading (return false)
fn start_receive(&self, rx_len: usize) -> Result<bool, (ErrorCode, &'static mut [u8])> {
self.buffer.take().map_or_else(
|| {
// No rxbuf which means a read is ongoing
if self.completing_read.get() {
// Case (1). Do nothing here, `received_buffer()` handler
// will call start_receive when ready.
Ok(false)
} else {
// Case (2). Stop the previous read so we can use the
// `received_buffer()` handler to recalculate the minimum
// length for a read.
let _ = self.uart.receive_abort();
Ok(true)
}
},
|rxbuf| {
// Case (3). No ongoing receive calls, we can start one now.
let len = cmp::min(rx_len, rxbuf.len());
self.uart.receive_buffer(rxbuf, len)?;
Ok(false)
},
)
}
/// Asynchronously executes the next operation, if any. Used by calls
/// to trigger do_next_op such that it will execute after the call
/// returns. This is important in case the operation triggers an error,
/// requiring a callback with an error condition; if the operation
/// is executed synchronously, the callback may be reentrant (executed
/// during the downcall). Please see
/// <https://github.com/tock/tock/issues/1496>
fn do_next_op_async(&self) {
self.deferred_call.set();
}
}
impl DeferredCallClient for MuxUart<'_> {
fn handle_deferred_call(&self) {
self.do_next_op();
}
fn register(&'static self) {
self.deferred_call.register(self);
}
}
#[derive(Copy, Clone, PartialEq)]
enum Operation {
Transmit { len: usize },
TransmitWord { word: u32 },
}
#[derive(Copy, Clone, PartialEq)]
enum UartDeviceReceiveState {
Idle,
Receiving,
Aborting,
}
pub struct UartDevice<'a> {
state: Cell<UartDeviceReceiveState>,
mux: &'a MuxUart<'a>,
receiver: bool, // Whether or not to pass this UartDevice incoming messages.
tx_buffer: TakeCell<'static, [u8]>,
transmitting: Cell<bool>,
rx_buffer: TakeCell<'static, [u8]>,
rx_position: Cell<usize>,
rx_len: Cell<usize>,
operation: OptionalCell<Operation>,
next: ListLink<'a, UartDevice<'a>>,
rx_client: OptionalCell<&'a dyn uart::ReceiveClient>,
tx_client: OptionalCell<&'a dyn uart::TransmitClient>,
}
impl<'a> UartDevice<'a> {
pub fn new(mux: &'a MuxUart<'a>, receiver: bool) -> UartDevice<'a> {
UartDevice {
state: Cell::new(UartDeviceReceiveState::Idle),
mux,
receiver,
tx_buffer: TakeCell::empty(),
transmitting: Cell::new(false),
rx_buffer: TakeCell::empty(),
rx_position: Cell::new(0),
rx_len: Cell::new(0),
operation: OptionalCell::empty(),
next: ListLink::empty(),
rx_client: OptionalCell::empty(),
tx_client: OptionalCell::empty(),
}
}
/// Must be called right after `static_init!()`.
pub fn setup(&'a self) {
self.mux.devices.push_head(self);
}
}
impl uart::TransmitClient for UartDevice<'_> {
fn transmitted_buffer(
&self,
tx_buffer: &'static mut [u8],
tx_len: usize,
rcode: Result<(), ErrorCode>,
) {
self.tx_client.map(move |client| {
self.transmitting.set(false);
client.transmitted_buffer(tx_buffer, tx_len, rcode);
});
}
fn transmitted_word(&self, rcode: Result<(), ErrorCode>) {
self.tx_client.map(move |client| {
self.transmitting.set(false);
client.transmitted_word(rcode);
});
}
}
impl uart::ReceiveClient for UartDevice<'_> {
fn received_buffer(
&self,
rx_buffer: &'static mut [u8],
rx_len: usize,
rcode: Result<(), ErrorCode>,
error: uart::Error,
) {
self.rx_client.map(move |client| {
self.state.set(UartDeviceReceiveState::Idle);
client.received_buffer(rx_buffer, rx_len, rcode, error);
});
}
}
impl<'a> ListNode<'a, UartDevice<'a>> for UartDevice<'a> {
fn next(&'a self) -> &'a ListLink<'a, UartDevice<'a>> {
&self.next
}
}
impl<'a> uart::Transmit<'a> for UartDevice<'a> {
fn set_transmit_client(&self, client: &'a dyn uart::TransmitClient) {
self.tx_client.set(client);
}
fn transmit_abort(&self) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
/// Transmit data.
fn transmit_buffer(
&self,
tx_data: &'static mut [u8],
tx_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
if tx_len == 0 {
Err((ErrorCode::SIZE, tx_data))
} else if self.transmitting.get() {
Err((ErrorCode::BUSY, tx_data))
} else {
self.tx_buffer.replace(tx_data);
self.transmitting.set(true);
self.operation.set(Operation::Transmit { len: tx_len });
self.mux.do_next_op_async();
Ok(())
}
}
fn transmit_word(&self, word: u32) -> Result<(), ErrorCode> {
if self.transmitting.get() {
Err(ErrorCode::BUSY)
} else {
self.transmitting.set(true);
self.operation.set(Operation::TransmitWord { word });
self.mux.do_next_op_async();
Ok(())
}
}
}
impl<'a> uart::Receive<'a> for UartDevice<'a> {
fn set_receive_client(&self, client: &'a dyn uart::ReceiveClient) {
self.rx_client.set(client);
}
/// Receive data until buffer is full.
fn receive_buffer(
&self,
rx_buffer: &'static mut [u8],
rx_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
if self.rx_buffer.is_some() {
Err((ErrorCode::BUSY, rx_buffer))
} else if rx_len > rx_buffer.len() {
Err((ErrorCode::SIZE, rx_buffer))
} else {
self.rx_buffer.replace(rx_buffer);
self.rx_len.set(rx_len);
self.rx_position.set(0);
self.state.set(UartDeviceReceiveState::Idle);
self.mux.start_receive(rx_len)?;
self.state.set(UartDeviceReceiveState::Receiving);
Ok(())
}
}
// This virtualized device will abort its read: other devices
// devices will continue with their reads.
fn receive_abort(&self) -> Result<(), ErrorCode> {
self.state.set(UartDeviceReceiveState::Aborting);
let _ = self.mux.uart.receive_abort();
Err(ErrorCode::BUSY)
}
fn receive_word(&self) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
}