capsules_core/virtualizers/
virtual_uart.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Virtualize a UART bus.
//!
//! This allows multiple Tock capsules to use the same UART bus. This is likely
//! most useful for `printf()` like applications where multiple things want to
//! write to the same UART channel.
//!
//! Clients can choose if they want to receive. Incoming messages will be sent
//! to all clients that have enabled receiving.
//!
//! `MuxUart` provides shared access to a single UART bus for multiple users.
//! `UartDevice` provides access for a single client.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::{hil, static_init};
//! # use capsules_core::virtual_uart::{MuxUart, UartDevice};
//!
//! // Create a shared UART channel for the console and for kernel debug.
//! let uart_mux = static_init!(
//!     MuxUart<'static>,
//!     MuxUart::new(&sam4l::usart::USART0, &mut capsules_core::virtual_uart::RX_BUF)
//! );
//! hil::uart::UART::set_receive_client(&sam4l::usart::USART0, uart_mux);
//! hil::uart::UART::set_transmit_client(&sam4l::usart::USART0, uart_mux);
//!
//! // Create a UartDevice for the console.
//! let console_uart = static_init!(UartDevice, UartDevice::new(uart_mux, true));
//! console_uart.setup(); // This is important!
//! let console = static_init!(
//!     capsules_core::console::Console<'static>,
//!     capsules_core::console::Console::new(
//!         console_uart,
//!         &mut capsules_core::console::WRITE_BUF,
//!         &mut capsules_core::console::READ_BUF,
//!         board_kernel.create_grant(&grant_cap)
//!     )
//! );
//! hil::uart::UART::set_transmit_client(console_uart, console);
//! hil::uart::UART::set_receive_client(console_uart, console);
//! ```

use core::cell::Cell;
use core::cmp;

use kernel::collections::list::{List, ListLink, ListNode};
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil::uart;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;

pub const RX_BUF_LEN: usize = 64;

pub struct MuxUart<'a> {
    uart: &'a dyn uart::Uart<'a>,
    speed: u32,
    devices: List<'a, UartDevice<'a>>,
    inflight: OptionalCell<&'a UartDevice<'a>>,
    buffer: TakeCell<'static, [u8]>,
    completing_read: Cell<bool>,
    deferred_call: DeferredCall,
}

impl uart::TransmitClient for MuxUart<'_> {
    fn transmitted_buffer(
        &self,
        tx_buffer: &'static mut [u8],
        tx_len: usize,
        rcode: Result<(), ErrorCode>,
    ) {
        self.inflight.map(move |device| {
            self.inflight.clear();
            device.transmitted_buffer(tx_buffer, tx_len, rcode);
        });
        self.do_next_op();
    }
}

impl uart::ReceiveClient for MuxUart<'_> {
    fn received_buffer(
        &self,
        buffer: &'static mut [u8],
        rx_len: usize,
        rcode: Result<(), ErrorCode>,
        error: uart::Error,
    ) {
        // Likely we will issue another receive in response to the previous one
        // finishing. `next_read_len` keeps track of the shortest outstanding
        // receive requested by any client. We start with the longest it can be,
        // i.e. the length of the buffer we pass to the UART.
        let mut next_read_len = buffer.len();
        let mut read_pending = false;

        // Set a flag that we are in this callback handler. This allows us to
        // note that we can wait until all callbacks are finished before
        // starting a new UART receive.
        self.completing_read.set(true);

        // Because clients may issue another read in their callback we need to
        // first copy out all the data, then make the callbacks.
        //
        // Multiple client reads of different sizes can be pending. This code
        // copies the underlying UART read into each of the client buffers.
        self.devices.iter().for_each(|device| {
            if device.receiver {
                device.rx_buffer.take().map(|rxbuf| {
                    let state = device.state.get();
                    // Copy the read into the buffer starting at rx_position
                    let position = device.rx_position.get();
                    let remaining = device.rx_len.get() - position;
                    let len = cmp::min(rx_len, remaining);
                    if state == UartDeviceReceiveState::Receiving
                        || state == UartDeviceReceiveState::Aborting
                    {
                        // debug!("Have {} bytes, copying in bytes {}-{}, {} remain", rx_len, position, position + len, remaining);
                        rxbuf[position..(len + position)].copy_from_slice(&buffer[..len]);
                    }
                    device.rx_position.set(position + len);
                    device.rx_buffer.replace(rxbuf);
                });
            }
        });
        // If the underlying read completes a client read, issue a callback to
        // that client. In the meanwhile, compute the length of the next
        // underlying UART read as the shortest outstanding read, including and
        // new reads setup in the callback. If any client has more to read or
        // has started a new read, issue another underlying UART receive.
        self.devices.iter().for_each(|device| {
            if device.receiver {
                device.rx_buffer.take().map(|rxbuf| {
                    let state = device.state.get();
                    let position = device.rx_position.get();
                    let remaining = device.rx_len.get() - position;
                    // If this finishes the read, signal to the caller,
                    // otherwise update state so next read will fill in
                    // more data.
                    if remaining == 0 {
                        device.state.set(UartDeviceReceiveState::Idle);
                        device.received_buffer(rxbuf, position, rcode, error);
                        // Need to check if receive was called in callback
                        if device.state.get() == UartDeviceReceiveState::Receiving {
                            read_pending = true;
                            next_read_len = cmp::min(next_read_len, device.rx_len.get());
                        }
                    } else if state == UartDeviceReceiveState::Aborting {
                        device.state.set(UartDeviceReceiveState::Idle);
                        device.received_buffer(
                            rxbuf,
                            position,
                            Err(ErrorCode::CANCEL),
                            uart::Error::Aborted,
                        );
                        // Need to check if receive was called in callback
                        if device.state.get() == UartDeviceReceiveState::Receiving {
                            read_pending = true;
                            next_read_len = cmp::min(next_read_len, device.rx_len.get());
                        }
                    } else {
                        device.rx_buffer.replace(rxbuf);
                        next_read_len = cmp::min(next_read_len, remaining);
                        read_pending = true;
                    }
                });
            }
        });

        // After we have finished all callbacks we can replace this buffer. We
        // have to wait to replace this to make sure that a client calling
        // `receive_buffer()` in its callback does not start an underlying UART
        // receive before all callbacks have finished.
        self.buffer.replace(buffer);

        // Clear the flag that we are in this handler.
        self.completing_read.set(false);

        // If either our outstanding receive was longer than the number of bytes
        // we just received, or if a new receive has been started, we start the
        // underlying UART receive again.
        if read_pending {
            if let Err((e, buf)) = self.start_receive(next_read_len) {
                self.buffer.replace(buf);

                // Report the error to all devices
                self.devices.iter().for_each(|device| {
                    if device.receiver {
                        device.rx_buffer.take().map(|rxbuf| {
                            let state = device.state.get();
                            let position = device.rx_position.get();

                            if state == UartDeviceReceiveState::Receiving {
                                device.state.set(UartDeviceReceiveState::Idle);

                                device.received_buffer(
                                    rxbuf,
                                    position,
                                    Err(e),
                                    uart::Error::Aborted,
                                );
                            }
                        });
                    }
                });
            }
        }
    }
}

impl<'a> MuxUart<'a> {
    pub fn new(uart: &'a dyn uart::Uart<'a>, buffer: &'static mut [u8], speed: u32) -> MuxUart<'a> {
        MuxUart {
            uart,
            speed,
            devices: List::new(),
            inflight: OptionalCell::empty(),
            buffer: TakeCell::new(buffer),
            completing_read: Cell::new(false),
            deferred_call: DeferredCall::new(),
        }
    }

    pub fn initialize(&self) {
        let _ = self.uart.configure(uart::Parameters {
            baud_rate: self.speed,
            width: uart::Width::Eight,
            stop_bits: uart::StopBits::One,
            parity: uart::Parity::None,
            hw_flow_control: false,
        });
    }

    fn do_next_op(&self) {
        if self.inflight.is_none() {
            let mnode = self.devices.iter().find(|node| node.operation.is_some());
            mnode.map(|node| {
                node.tx_buffer.take().map(|buf| {
                    node.operation.take().map(move |op| match op {
                        Operation::Transmit { len } => match self.uart.transmit_buffer(buf, len) {
                            Ok(()) => {
                                self.inflight.set(node);
                            }
                            Err((ecode, buf)) => {
                                node.tx_client.map(move |client| {
                                    node.transmitting.set(false);
                                    client.transmitted_buffer(buf, 0, Err(ecode));
                                });
                            }
                        },
                        Operation::TransmitWord { word } => {
                            let rcode = self.uart.transmit_word(word);
                            if rcode != Ok(()) {
                                node.tx_client.map(|client| {
                                    node.transmitting.set(false);
                                    client.transmitted_word(rcode);
                                });
                            }
                        }
                    });
                });
            });
        }
    }

    /// Starts a new UART reception, return value denotes whether starting
    /// the reception will issue a callback before the new read. A callback
    /// needs to be issued before the new read if a read was ongoing; the
    /// callback finishes the current read so the new one can start.
    ///
    /// Three cases:
    /// 1. We are in the midst of completing a read: let the `received_buffer()`
    ///    handler restart the reads if needed (return false)
    /// 2. We are in the midst of a read: abort so we can start a new read now
    ///    (return true)
    /// 3. We are idle: start reading (return false)
    fn start_receive(&self, rx_len: usize) -> Result<bool, (ErrorCode, &'static mut [u8])> {
        self.buffer.take().map_or_else(
            || {
                // No rxbuf which means a read is ongoing
                if self.completing_read.get() {
                    // Case (1). Do nothing here, `received_buffer()` handler
                    // will call start_receive when ready.
                    Ok(false)
                } else {
                    // Case (2). Stop the previous read so we can use the
                    // `received_buffer()` handler to recalculate the minimum
                    // length for a read.
                    let _ = self.uart.receive_abort();
                    Ok(true)
                }
            },
            |rxbuf| {
                // Case (3). No ongoing receive calls, we can start one now.
                let len = cmp::min(rx_len, rxbuf.len());
                self.uart.receive_buffer(rxbuf, len)?;
                Ok(false)
            },
        )
    }

    /// Asynchronously executes the next operation, if any. Used by calls
    /// to trigger do_next_op such that it will execute after the call
    /// returns. This is important in case the operation triggers an error,
    /// requiring a callback with an error condition; if the operation
    /// is executed synchronously, the callback may be reentrant (executed
    /// during the downcall). Please see
    /// <https://github.com/tock/tock/issues/1496>
    fn do_next_op_async(&self) {
        self.deferred_call.set();
    }
}

impl DeferredCallClient for MuxUart<'_> {
    fn handle_deferred_call(&self) {
        self.do_next_op();
    }

    fn register(&'static self) {
        self.deferred_call.register(self);
    }
}

#[derive(Copy, Clone, PartialEq)]
enum Operation {
    Transmit { len: usize },
    TransmitWord { word: u32 },
}

#[derive(Copy, Clone, PartialEq)]
enum UartDeviceReceiveState {
    Idle,
    Receiving,
    Aborting,
}

pub struct UartDevice<'a> {
    state: Cell<UartDeviceReceiveState>,
    mux: &'a MuxUart<'a>,
    receiver: bool, // Whether or not to pass this UartDevice incoming messages.
    tx_buffer: TakeCell<'static, [u8]>,
    transmitting: Cell<bool>,
    rx_buffer: TakeCell<'static, [u8]>,
    rx_position: Cell<usize>,
    rx_len: Cell<usize>,
    operation: OptionalCell<Operation>,
    next: ListLink<'a, UartDevice<'a>>,
    rx_client: OptionalCell<&'a dyn uart::ReceiveClient>,
    tx_client: OptionalCell<&'a dyn uart::TransmitClient>,
}

impl<'a> UartDevice<'a> {
    pub fn new(mux: &'a MuxUart<'a>, receiver: bool) -> UartDevice<'a> {
        UartDevice {
            state: Cell::new(UartDeviceReceiveState::Idle),
            mux,
            receiver,
            tx_buffer: TakeCell::empty(),
            transmitting: Cell::new(false),
            rx_buffer: TakeCell::empty(),
            rx_position: Cell::new(0),
            rx_len: Cell::new(0),
            operation: OptionalCell::empty(),
            next: ListLink::empty(),
            rx_client: OptionalCell::empty(),
            tx_client: OptionalCell::empty(),
        }
    }

    /// Must be called right after `static_init!()`.
    pub fn setup(&'a self) {
        self.mux.devices.push_head(self);
    }
}

impl uart::TransmitClient for UartDevice<'_> {
    fn transmitted_buffer(
        &self,
        tx_buffer: &'static mut [u8],
        tx_len: usize,
        rcode: Result<(), ErrorCode>,
    ) {
        self.tx_client.map(move |client| {
            self.transmitting.set(false);
            client.transmitted_buffer(tx_buffer, tx_len, rcode);
        });
    }

    fn transmitted_word(&self, rcode: Result<(), ErrorCode>) {
        self.tx_client.map(move |client| {
            self.transmitting.set(false);
            client.transmitted_word(rcode);
        });
    }
}
impl uart::ReceiveClient for UartDevice<'_> {
    fn received_buffer(
        &self,
        rx_buffer: &'static mut [u8],
        rx_len: usize,
        rcode: Result<(), ErrorCode>,
        error: uart::Error,
    ) {
        self.rx_client.map(move |client| {
            self.state.set(UartDeviceReceiveState::Idle);
            client.received_buffer(rx_buffer, rx_len, rcode, error);
        });
    }
}

impl<'a> ListNode<'a, UartDevice<'a>> for UartDevice<'a> {
    fn next(&'a self) -> &'a ListLink<'a, UartDevice<'a>> {
        &self.next
    }
}

impl<'a> uart::Transmit<'a> for UartDevice<'a> {
    fn set_transmit_client(&self, client: &'a dyn uart::TransmitClient) {
        self.tx_client.set(client);
    }

    fn transmit_abort(&self) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }

    /// Transmit data.
    fn transmit_buffer(
        &self,
        tx_data: &'static mut [u8],
        tx_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        if tx_len == 0 {
            Err((ErrorCode::SIZE, tx_data))
        } else if self.transmitting.get() {
            Err((ErrorCode::BUSY, tx_data))
        } else {
            self.tx_buffer.replace(tx_data);
            self.transmitting.set(true);
            self.operation.set(Operation::Transmit { len: tx_len });
            self.mux.do_next_op_async();
            Ok(())
        }
    }

    fn transmit_word(&self, word: u32) -> Result<(), ErrorCode> {
        if self.transmitting.get() {
            Err(ErrorCode::BUSY)
        } else {
            self.transmitting.set(true);
            self.operation.set(Operation::TransmitWord { word });
            self.mux.do_next_op_async();
            Ok(())
        }
    }
}

impl<'a> uart::Receive<'a> for UartDevice<'a> {
    fn set_receive_client(&self, client: &'a dyn uart::ReceiveClient) {
        self.rx_client.set(client);
    }

    /// Receive data until buffer is full.
    fn receive_buffer(
        &self,
        rx_buffer: &'static mut [u8],
        rx_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        if self.rx_buffer.is_some() {
            Err((ErrorCode::BUSY, rx_buffer))
        } else if rx_len > rx_buffer.len() {
            Err((ErrorCode::SIZE, rx_buffer))
        } else {
            self.rx_buffer.replace(rx_buffer);
            self.rx_len.set(rx_len);
            self.rx_position.set(0);
            self.state.set(UartDeviceReceiveState::Idle);
            self.mux.start_receive(rx_len)?;
            self.state.set(UartDeviceReceiveState::Receiving);
            Ok(())
        }
    }

    // This virtualized device will abort its read: other devices
    // devices will continue with their reads.
    fn receive_abort(&self) -> Result<(), ErrorCode> {
        self.state.set(UartDeviceReceiveState::Aborting);
        let _ = self.mux.uart.receive_abort();
        Err(ErrorCode::BUSY)
    }

    fn receive_word(&self) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }
}