kernel/grant.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Support for processes granting memory from their allocations to the kernel.
//!
//! ## Grant Overview
//!
//! Grants allow capsules to dynamically allocate memory from a process to hold
//! state on the process's behalf.
//!
//! Each capsule that wishes to do this needs to have a [`Grant`] type. Grants
//! are created at boot, and each have a unique ID and a type `T`. This type
//! only allows the capsule to allocate memory from a process in the future. It
//! does not initially represent any allocated memory.
//!
//! When a capsule does wish to use its Grant to allocate memory from a process,
//! it must "enter" the Grant with a specific [`ProcessId`]. Entering a Grant
//! for a specific process instructs the core kernel to create an object `T` in
//! the process's memory space and provide the capsule with access to it. If the
//! Grant has not previously been entered for that process, the memory for
//! object `T` will be allocated from the "grant region" within the
//! kernel-accessible portion of the process's memory.
//!
//! If a Grant has never been entered for a process, the object `T` will _not_
//! be allocated in that process's grant region, even if the `Grant` has been
//! entered for other processes.
//!
//! Upcalls and allowed buffer references are stored in the dynamically
//! allocated grant for a particular Driver as well. Upcalls and allowed buffer
//! references are stored outside of the `T` object to enable the kernel to
//! manage them and ensure swapping guarantees are met.
//!
//! The type `T` of a Grant is fixed in size and the number of upcalls and
//! allowed buffers associated with a grant is fixed. That is, when a Grant is
//! entered for a process the resulting allocated object will be the size of
//! `SizeOf<T>` plus the size for the structure to hold upcalls and allowed
//! buffer references. If capsules need additional process-specific memory for
//! their operation, they can use an [`GrantRegionAllocator`] to request
//! additional memory from the process's grant region.
//!
//! ```text,ignore
//! ┌──────────────────┐
//! │ │
//! │ Capsule │
//! │ │
//! └─┬────────────────┘
//! │ Capsules hold
//! │ references to
//! │ grants.
//! ▼
//! ┌──────────────────┐
//! │ Grant │
//! │ │
//! Process Memory │ Type: T │
//! ┌────────────────────────┐ │ grant_num: 1 │
//! │ │ │ driver_num: 0x4 │
//! │ ... │ └───┬─────────────┬┘
//! ├────────────────────────┤ │Each Grant │
//! │ Grant ptr 0 │ │has a pointer│
//! │ Pointers ptr 1 ───┐ │ ◄───┘per process. │
//! │ ... │ │ │
//! │ ptr N │ │ │
//! ├──────────────────────┼─┤ │
//! │ ... │ │ │
//! ├──────────────────────┼─┤ │
//! │ Grant Region │ │ When a Grant │
//! │ │ │ is allocated │
//! │ ┌─────────────────┐ │ │ for a process │
//! │ │ Allocated Grant │ │ │ ◄─────────────────┘
//! │ │ │ │ │ it uses memory
//! │ │ [ SizeOf<T> ] │ │ │ from the grant
//! │ │─────────────────│ │ │ region.
//! │ │ Padding │ │ │
//! │ │─────────────────│ │ │
//! │ │ GrantKernelData │ │ │
//! │ └─────────────────┘◄─┘ │
//! │ │
//! │ ┌─────────────────┐ │
//! │ │ Custom Grant │ │ ◄── Capsules can
//! │ │ │ │ allocate extra
//! │ └─────────────────┘ │ memory if needed.
//! │ │
//! ├─kernel_brk─────────────┤
//! │ │
//! │ ... │
//! └────────────────────────┘
//! ```
//!
//! ## Grant Mechanisms and Types
//!
//! Here is an overview of the types used by grant.rs to implement the Grant
//! functionality in Tock:
//!
//! ```text,ignore
//! ┌──────────────────────────┐
//! │ struct Grant<T, ...> { │
//! │ driver_num: usize │
//! │ grant_num: usize │
//! │ } ├───┐
//! Entering a Grant for a └──┬───────────────────────┘ │
//! process causes the │ │
//! memory for T to be │ .enter(ProcessId) │ .enter(ProcessId, fn)
//! allocated. ▼ │
//! ┌──────────────────────────┐ │ For convenience,
//! ProcessGrant represents │ struct ProcessGrant<T> { │ │ allocating and getting
//! a Grant allocated for a │ number: usize │ │ access to the T object
//! specific process. │ process: &Process │ │ is combined in one
//! │ } │ │ .enter() call.
//! A provided closure └──┬───────────────────────┘ │
//! is given access to │ │
//! the underlying memory │ .enter(fn) │
//! where the T is stored. ▼ │
//! ┌────────────────────────────┐ │
//! GrantData wraps the │ struct GrantData<T> { │◄┘
//! type and provides │ data: &mut T │
//! mutable access. │ } │
//! GrantKernelData │ struct GrantKernelData { │
//! provides access to │ upcalls: [SavedUpcall] │
//! scheduling upcalls │ allow_ro: [SavedAllowRo] │
//! and process buffers. │ allow_rw: [SavedAllowRW] │
//! │ } │
//! └──┬─────────────────────────┘
//! The actual object T can │
//! only be accessed inside │ fn(mem: &GrantData, kernel_data: &GrantKernelData)
//! the closure. ▼
//! ```
use core::cmp;
use core::marker::PhantomData;
use core::mem::{align_of, size_of};
use core::ops::{Deref, DerefMut};
use core::ptr::{write, NonNull};
use core::slice;
use crate::kernel::Kernel;
use crate::process::{Error, Process, ProcessCustomGrantIdentifier, ProcessId};
use crate::processbuffer::{ReadOnlyProcessBuffer, ReadWriteProcessBuffer};
use crate::processbuffer::{ReadOnlyProcessBufferRef, ReadWriteProcessBufferRef};
use crate::upcall::{Upcall, UpcallError, UpcallId};
use crate::utilities::capability_ptr::CapabilityPtr;
use crate::ErrorCode;
/// Tracks how many upcalls a grant instance supports automatically.
pub trait UpcallSize {
/// The number of upcalls the grant supports.
const COUNT: u8;
}
/// Specifies how many upcalls a grant instance supports automatically.
pub struct UpcallCount<const NUM: u8>;
impl<const NUM: u8> UpcallSize for UpcallCount<NUM> {
const COUNT: u8 = NUM;
}
/// Tracks how many read-only allows a grant instance supports automatically.
pub trait AllowRoSize {
/// The number of read-only allows the grant supports.
const COUNT: u8;
}
/// Specifies how many read-only allows a grant instance supports automatically.
pub struct AllowRoCount<const NUM: u8>;
impl<const NUM: u8> AllowRoSize for AllowRoCount<NUM> {
const COUNT: u8 = NUM;
}
/// Tracks how many read-write allows a grant instance supports automatically.
pub trait AllowRwSize {
/// The number of read-write allows the grant supports.
const COUNT: u8;
}
/// Specifies how many read-write allows a grant instance supports
/// automatically.
pub struct AllowRwCount<const NUM: u8>;
impl<const NUM: u8> AllowRwSize for AllowRwCount<NUM> {
const COUNT: u8 = NUM;
}
/// Helper that calculated offsets within the kernel owned memory (i.e. the
/// non-T part of grant).
///
/// Example layout of full grant belonging to a single app and driver:
///
/// ```text,ignore
/// 0x003FFC8 ┌────────────────────────────────────┐
/// │ T |
/// 0x003FFxx ├ ───────────────────────── ┐ K |
/// │ Padding (ensure T aligns)| e |
/// 0x003FF44 ├ ───────────────────────── | r |
/// │ SavedAllowRwN | n |
/// │ ... | e | G
/// │ SavedAllowRw1 | l | r
/// │ SavedAllowRw0 | | a
/// 0x003FF44 ├ ───────────────────────── | O | n
/// │ SavedAllowRoN | w | t
/// │ ... | n |
/// │ SavedAllowRo1 | e | M
/// │ SavedAllowRo0 | d | e
/// 0x003FF30 ├ ───────────────────────── | | m
/// │ SavedUpcallN | D | o
/// │ ... | a | r
/// │ SavedUpcall1 | t | y
/// │ SavedUpcall0 | a |
/// 0x003FF24 ├ ───────────────────────── | |
/// │ Counters (usize) | |
/// 0x003FF20 └────────────────────────────────────┘
/// ```
///
/// The counters structure is composed as:
///
/// ```text,ignore
/// 0 1 2 3 bytes
/// |-------------|-------------|-------------|-------------|
/// | # Upcalls | # RO Allows | # RW Allows | [unused] |
/// |-------------|-------------|-------------|-------------|
/// ```
///
/// This type is created whenever a grant is entered, and is responsible for
/// ensuring that the grant is closed when it is no longer used. On `Drop`, we
/// leave the grant. This protects against calling `grant.enter()` without
/// calling the corresponding `grant.leave()`, perhaps due to accidentally using
/// the `?` operator.
struct EnteredGrantKernelManagedLayout<'a> {
/// Leaving a grant is handled through the process implementation, so must
/// keep a reference to the relevant process.
process: &'a dyn Process,
/// The grant number of the entered grant that we want to ensure we leave
/// properly.
grant_num: usize,
/// The location of the counters structure for the grant.
counters_ptr: *mut usize,
/// Pointer to the array of saved upcalls.
upcalls_array: *mut SavedUpcall,
/// Pointer to the array of saved read-only allows.
allow_ro_array: *mut SavedAllowRo,
/// Pointer to the array of saved read-write allows.
allow_rw_array: *mut SavedAllowRw,
}
/// Represents the number of the upcall elements in the kernel owned section of
/// the grant.
#[derive(Copy, Clone)]
struct UpcallItems(u8);
/// Represents the number of the read-only allow elements in the kernel owned
/// section of the grant.
#[derive(Copy, Clone)]
struct AllowRoItems(u8);
/// Represents the number of the read-write allow elements in the kernel owned
/// section of the grant.
#[derive(Copy, Clone)]
struct AllowRwItems(u8);
/// Represents the size data (in bytes) T within the grant.
#[derive(Copy, Clone)]
struct GrantDataSize(usize);
/// Represents the alignment of data T within the grant.
#[derive(Copy, Clone)]
struct GrantDataAlign(usize);
impl<'a> EnteredGrantKernelManagedLayout<'a> {
/// Reads the specified pointer as the base of the kernel owned grant region
/// that has previously been initialized.
///
/// # Safety
///
/// The incoming base pointer must be well aligned and already contain
/// initialized data in the expected form. There must not be any other
/// `EnteredGrantKernelManagedLayout` for the given `base_ptr` at the same
/// time, otherwise multiple mutable references to the same upcall/allow
/// slices could be created.
unsafe fn read_from_base(
base_ptr: NonNull<u8>,
process: &'a dyn Process,
grant_num: usize,
) -> Self {
let counters_ptr = base_ptr.as_ptr() as *mut usize;
let counters_val = counters_ptr.read();
// Parse the counters field for each of the fields
let [_, _, allow_ro_num, upcalls_num] = u32::to_be_bytes(counters_val as u32);
// Skip over the counter usize, then the stored array of `SavedAllowRo`
// items and `SavedAllowRw` items.
let upcalls_array = counters_ptr.add(1) as *mut SavedUpcall;
let allow_ro_array = upcalls_array.add(upcalls_num as usize) as *mut SavedAllowRo;
let allow_rw_array = allow_ro_array.add(allow_ro_num as usize) as *mut SavedAllowRw;
Self {
process,
grant_num,
counters_ptr,
upcalls_array,
allow_ro_array,
allow_rw_array,
}
}
/// Creates a layout from the specified pointer and lengths of arrays and
/// initializes the kernel owned portion of the layout.
///
/// # Safety
///
/// The incoming base pointer must be well aligned and reference enough
/// memory to hold the entire kernel managed grant structure. There must
/// not be any other `EnteredGrantKernelManagedLayout` for
/// the given `base_ptr` at the same time, otherwise multiple mutable
/// references to the same upcall/allow slices could be created.
unsafe fn initialize_from_counts(
base_ptr: NonNull<u8>,
upcalls_num_val: UpcallItems,
allow_ro_num_val: AllowRoItems,
allow_rw_num_val: AllowRwItems,
process: &'a dyn Process,
grant_num: usize,
) -> Self {
let counters_ptr = base_ptr.as_ptr() as *mut usize;
// Create the counters usize value by correctly packing the various
// counts into 8 bit fields.
let counter: usize =
u32::from_be_bytes([0, allow_rw_num_val.0, allow_ro_num_val.0, upcalls_num_val.0])
as usize;
let upcalls_array = counters_ptr.add(1) as *mut SavedUpcall;
let allow_ro_array = upcalls_array.add(upcalls_num_val.0.into()) as *mut SavedAllowRo;
let allow_rw_array = allow_ro_array.add(allow_ro_num_val.0.into()) as *mut SavedAllowRw;
counters_ptr.write(counter);
write_default_array(upcalls_array, upcalls_num_val.0.into());
write_default_array(allow_ro_array, allow_ro_num_val.0.into());
write_default_array(allow_rw_array, allow_rw_num_val.0.into());
Self {
process,
grant_num,
counters_ptr,
upcalls_array,
allow_ro_array,
allow_rw_array,
}
}
/// Returns the entire grant size including the kernel owned memory,
/// padding, and data for T. Requires that grant_t_align be a power of 2,
/// which is guaranteed from align_of rust calls.
fn grant_size(
upcalls_num: UpcallItems,
allow_ro_num: AllowRoItems,
allow_rw_num: AllowRwItems,
grant_t_size: GrantDataSize,
grant_t_align: GrantDataAlign,
) -> usize {
let kernel_managed_size = size_of::<usize>()
+ upcalls_num.0 as usize * size_of::<SavedUpcall>()
+ allow_ro_num.0 as usize * size_of::<SavedAllowRo>()
+ allow_rw_num.0 as usize * size_of::<SavedAllowRw>();
// We know that grant_t_align is a power of 2, so we can make a mask
// that will save only the remainder bits.
let grant_t_align_mask = grant_t_align.0 - 1;
// Determine padding to get to the next multiple of grant_t_align by
// taking the remainder and subtracting that from the alignment, then
// ensuring a full alignment value maps to 0.
let padding =
(grant_t_align.0 - (kernel_managed_size & grant_t_align_mask)) & grant_t_align_mask;
kernel_managed_size + padding + grant_t_size.0
}
/// Returns the alignment of the entire grant region based on the alignment
/// of data T.
fn grant_align(grant_t_align: GrantDataAlign) -> usize {
// The kernel owned memory all aligned to usize. We need to use the
// higher of the two alignment to ensure our padding calculations work
// for any alignment of T.
cmp::max(align_of::<usize>(), grant_t_align.0)
}
/// Returns the offset for the grant data t within the entire grant region.
///
/// # Safety
///
/// The caller must ensure that the specified base pointer is aligned to at
/// least the alignment of T and points to a grant that is of size
/// grant_size bytes.
unsafe fn offset_of_grant_data_t(
base_ptr: NonNull<u8>,
grant_size: usize,
grant_t_size: GrantDataSize,
) -> NonNull<u8> {
// The location of the grant data T is the last element in the entire
// grant region. Caller must verify that memory is accessible and well
// aligned to T.
let grant_t_size_usize: usize = grant_t_size.0;
NonNull::new_unchecked(base_ptr.as_ptr().add(grant_size - grant_t_size_usize))
}
/// Read an 8 bit value from the counter field offset by the specified
/// number of bits. This is a helper function for reading the counter field.
fn get_counter_offset(&self, offset_bits: usize) -> usize {
// # Safety
//
// Creating a `EnteredGrantKernelManagedLayout` object requires that the
// pointers are well aligned and point to valid memory.
let counters_val = unsafe { self.counters_ptr.read() };
(counters_val >> offset_bits) & 0xFF
}
/// Return the number of upcalls stored by the core kernel for this grant.
fn get_upcalls_number(&self) -> usize {
self.get_counter_offset(0)
}
/// Return the number of read-only allow buffers stored by the core kernel
/// for this grant.
fn get_allow_ro_number(&self) -> usize {
self.get_counter_offset(8)
}
/// Return the number of read-write allow buffers stored by the core kernel
/// for this grant.
fn get_allow_rw_number(&self) -> usize {
self.get_counter_offset(16)
}
/// Return mutable access to the slice of stored upcalls for this grant.
/// This is necessary for storing a new upcall.
fn get_upcalls_slice(&mut self) -> &mut [SavedUpcall] {
// # Safety
//
// Creating a `EnteredGrantKernelManagedLayout` object ensures that the
// pointer to the upcall array is valid.
unsafe { slice::from_raw_parts_mut(self.upcalls_array, self.get_upcalls_number()) }
}
/// Return mutable access to the slice of stored read-only allow buffers for
/// this grant. This is necessary for storing a new read-only allow.
fn get_allow_ro_slice(&mut self) -> &mut [SavedAllowRo] {
// # Safety
//
// Creating a `EnteredGrantKernelManagedLayout` object ensures that the
// pointer to the RO allow array is valid.
unsafe { slice::from_raw_parts_mut(self.allow_ro_array, self.get_allow_ro_number()) }
}
/// Return mutable access to the slice of stored read-write allow buffers
/// for this grant. This is necessary for storing a new read-write allow.
fn get_allow_rw_slice(&mut self) -> &mut [SavedAllowRw] {
// # Safety
//
// Creating a `EnteredGrantKernelManagedLayout` object ensures that the
// pointer to the RW allow array is valid.
unsafe { slice::from_raw_parts_mut(self.allow_rw_array, self.get_allow_rw_number()) }
}
/// Return slices to the kernel managed upcalls and allow buffers. This
/// permits using upcalls and allow buffers when a capsule is accessing a
/// grant.
fn get_resource_slices(&self) -> (&[SavedUpcall], &[SavedAllowRo], &[SavedAllowRw]) {
// # Safety
//
// Creating a `EnteredGrantKernelManagedLayout` object ensures that the
// pointer to the upcall array is valid.
let upcall_slice =
unsafe { slice::from_raw_parts(self.upcalls_array, self.get_upcalls_number()) };
// # Safety
//
// Creating a `EnteredGrantKernelManagedLayout` object ensures that the
// pointer to the RO allow array is valid.
let allow_ro_slice =
unsafe { slice::from_raw_parts(self.allow_ro_array, self.get_allow_ro_number()) };
// # Safety
//
// Creating a `KernelManagedLayout` object ensures that the pointer to
// the RW allow array is valid.
let allow_rw_slice =
unsafe { slice::from_raw_parts(self.allow_rw_array, self.get_allow_rw_number()) };
(upcall_slice, allow_ro_slice, allow_rw_slice)
}
}
// Ensure that we leave the grant once this goes out of scope.
impl Drop for EnteredGrantKernelManagedLayout<'_> {
fn drop(&mut self) {
// ### Safety
//
// To safely call this function we must ensure that no references will
// exist to the grant once `leave_grant()` returns. Because using a
// `EnteredGrantKernelManagedLayout` object is the only only way we
// access the actual memory of a grant, and we are calling
// `leave_grant()` from its `drop()` method, we are sure there will be
// no remaining references to the grant.
unsafe {
self.process.leave_grant(self.grant_num);
}
}
}
/// This [`GrantData`] object provides access to the memory allocated for a
/// grant for a specific process.
///
/// The [`GrantData`] type is templated on `T`, the actual type of the object in
/// the grant. [`GrantData'] holds a mutable reference to the type, allowing
/// users access to the object in process memory.
///
/// Capsules gain access to a [`GrantData`] object by calling
/// [`Grant::enter()`].
pub struct GrantData<'a, T: 'a + ?Sized> {
/// The mutable reference to the actual object type stored in the grant.
data: &'a mut T,
}
impl<'a, T: 'a + ?Sized> GrantData<'a, T> {
/// Create a [`GrantData`] object to provide access to the actual object
/// allocated for a process.
///
/// Only one can [`GrantData`] per underlying object can be created at a
/// time. Otherwise, there would be multiple mutable references to the same
/// object which is undefined behavior.
fn new(data: &'a mut T) -> GrantData<'a, T> {
GrantData { data }
}
}
impl<'a, T: 'a + ?Sized> Deref for GrantData<'a, T> {
type Target = T;
fn deref(&self) -> &T {
self.data
}
}
impl<'a, T: 'a + ?Sized> DerefMut for GrantData<'a, T> {
fn deref_mut(&mut self) -> &mut T {
self.data
}
}
/// This [`GrantKernelData`] object provides a handle to access upcalls and
/// process buffers stored on behalf of a particular grant/driver.
///
/// Capsules gain access to a [`GrantKernelData`] object by calling
/// [`Grant::enter()`]. From there, they can schedule upcalls or access process
/// buffers.
///
/// It is expected that this type will only exist as a short-lived stack
/// allocation, so its size is not a significant concern.
pub struct GrantKernelData<'a> {
/// A reference to the actual upcall slice stored in the grant.
upcalls: &'a [SavedUpcall],
/// A reference to the actual read only allow slice stored in the grant.
allow_ro: &'a [SavedAllowRo],
/// A reference to the actual read write allow slice stored in the grant.
allow_rw: &'a [SavedAllowRw],
/// We need to keep track of the driver number so we can properly identify
/// the Upcall that is called. We need to keep track of its source so we can
/// remove it if the Upcall is unsubscribed.
driver_num: usize,
/// A reference to the process that these upcalls are for. This is used for
/// actually scheduling the upcalls.
process: &'a dyn Process,
}
impl<'a> GrantKernelData<'a> {
/// Create a [`GrantKernelData`] object to provide a handle for capsules to
/// call Upcalls.
fn new(
upcalls: &'a [SavedUpcall],
allow_ro: &'a [SavedAllowRo],
allow_rw: &'a [SavedAllowRw],
driver_num: usize,
process: &'a dyn Process,
) -> GrantKernelData<'a> {
Self {
upcalls,
allow_ro,
allow_rw,
driver_num,
process,
}
}
/// Schedule the specified upcall for the process with r0, r1, r2 as
/// provided values.
///
/// Capsules call this function to schedule upcalls, and upcalls are
/// identified by the `subscribe_num`, which must match the subscribe number
/// used when the upcall was originally subscribed by a process.
/// `subscribe_num`s are indexed starting at zero.
pub fn schedule_upcall(
&self,
subscribe_num: usize,
r: (usize, usize, usize),
) -> Result<(), UpcallError> {
// Implement `self.upcalls[subscribe_num]` without a chance of a panic.
self.upcalls.get(subscribe_num).map_or(
Err(UpcallError::InvalidSubscribeNum),
|saved_upcall| {
// We can create an `Upcall` object based on what is stored in
// the process grant and use that to add the upcall to the
// pending array for the process.
let upcall = Upcall::new(
self.process.processid(),
UpcallId {
subscribe_num,
driver_num: self.driver_num,
},
saved_upcall.appdata,
saved_upcall.fn_ptr,
);
upcall.schedule(self.process, r.0, r.1, r.2)
},
)
}
/// Search the work queue for the first pending operation with the given
/// `subscribe_num` and if one exists remove it from the task queue.
///
/// Returns the associated [`Task`] if one was found, otherwise returns
/// [`None`].
pub fn remove_upcall(&self, subscribe_num: usize) -> Option<crate::process::Task> {
self.process.remove_upcall(UpcallId {
subscribe_num,
driver_num: self.driver_num,
})
}
/// Remove all scheduled upcalls with the given `subscribe_num` from the
/// task queue.
///
/// Returns the number of removed upcalls.
pub fn remove_pending_upcalls(&self, subscribe_num: usize) -> usize {
self.process.remove_pending_upcalls(UpcallId {
subscribe_num,
driver_num: self.driver_num,
})
}
/// Returns a lifetime limited reference to the requested
/// [`ReadOnlyProcessBuffer`].
///
/// The len of the returned [`ReadOnlyProcessBuffer`] must be checked by the
/// caller to ensure that a buffer has in fact been allocated. An
/// unallocated buffer will be returned as a [`ReadOnlyProcessBuffer`] of
/// length 0.
///
/// The [`ReadOnlyProcessBuffer`] is only valid for as long as this object
/// is valid, i.e. the lifetime of the app enter closure.
///
/// If the specified allow number is invalid, then a
/// [`crate::process::Error::AddressOutOfBounds`] will be returned. This
/// returns a [`crate::process::Error`] to allow for easy chaining of this
/// function with the `ReadOnlyProcessBuffer::enter()` function with
/// `and_then`.
pub fn get_readonly_processbuffer(
&self,
allow_ro_num: usize,
) -> Result<ReadOnlyProcessBufferRef, crate::process::Error> {
self.allow_ro.get(allow_ro_num).map_or(
Err(crate::process::Error::AddressOutOfBounds),
|saved_ro| {
// # Safety
//
// This is the saved process buffer data has been validated to
// be wholly contained within this process before it was stored.
// The lifetime of the ReadOnlyProcessBuffer is bound to the
// lifetime of self, which correctly limits dereferencing this
// saved pointer to only when it is valid.
unsafe {
Ok(ReadOnlyProcessBufferRef::new(
saved_ro.ptr,
saved_ro.len,
self.process.processid(),
))
}
},
)
}
/// Returns a lifetime limited reference to the requested
/// [`ReadWriteProcessBuffer`].
///
/// The length of the returned [`ReadWriteProcessBuffer`] must be checked by
/// the caller to ensure that a buffer has in fact been allocated. An
/// unallocated buffer will be returned as a [`ReadWriteProcessBuffer`] of
/// length 0.
///
/// The [`ReadWriteProcessBuffer`] is only value for as long as this object
/// is valid, i.e. the lifetime of the app enter closure.
///
/// If the specified allow number is invalid, then a
/// [`crate::process::Error::AddressOutOfBounds`] will be returned. This
/// returns a [`crate::process::Error`] to allow for easy chaining of this
/// function with the `ReadWriteProcessBuffer::enter()` function with
/// `and_then`.
pub fn get_readwrite_processbuffer(
&self,
allow_rw_num: usize,
) -> Result<ReadWriteProcessBufferRef, crate::process::Error> {
self.allow_rw.get(allow_rw_num).map_or(
Err(crate::process::Error::AddressOutOfBounds),
|saved_rw| {
// # Safety
//
// This is the saved process buffer data has been validated to
// be wholly contained within this process before it was stored.
// The lifetime of the ReadWriteProcessBuffer is bound to the
// lifetime of self, which correctly limits dereferencing this
// saved pointer to only when it is valid.
unsafe {
Ok(ReadWriteProcessBufferRef::new(
saved_rw.ptr,
saved_rw.len,
self.process.processid(),
))
}
},
)
}
}
/// A minimal representation of an upcall, used for storing an upcall in a
/// process' grant table without wasting memory duplicating information such as
/// process ID.
#[repr(C)]
#[derive(Default)]
struct SavedUpcall {
appdata: CapabilityPtr,
fn_ptr: CapabilityPtr,
}
/// A minimal representation of a read-only allow from app, used for storing a
/// read-only allow in a process' kernel managed grant space without wasting
/// memory duplicating information such as process ID.
#[repr(C)]
struct SavedAllowRo {
ptr: *const u8,
len: usize,
}
impl Default for SavedAllowRo {
fn default() -> Self {
Self {
ptr: core::ptr::null(),
len: 0,
}
}
}
/// A minimal representation of a read-write allow from app, used for storing a
/// read-write allow in a process' kernel managed grant space without wasting
/// memory duplicating information such as process ID.
#[repr(C)]
struct SavedAllowRw {
ptr: *mut u8,
len: usize,
}
impl Default for SavedAllowRw {
fn default() -> Self {
Self {
ptr: core::ptr::null_mut(),
len: 0,
}
}
}
/// Write the default value of T to every element of the array.
///
/// # Safety
///
/// The pointer must be well aligned and point to allocated memory that is
/// writable for `size_of::<T> * num` bytes. No Rust references may exist to
/// memory in the address range spanned by `base..base+num` at the time this
/// function is called. The memory does not need to be initialized yet. If it
/// already does contain initialized memory, then those contents will be
/// overwritten without being `Drop`ed first.
unsafe fn write_default_array<T: Default>(base: *mut T, num: usize) {
for i in 0..num {
base.add(i).write(T::default());
}
}
/// Enters the grant for the specified process. Caller must hold on to the grant
/// lifetime guard while they accessing the memory in the layout (second
/// element).
fn enter_grant_kernel_managed(
process: &dyn Process,
driver_num: usize,
) -> Result<EnteredGrantKernelManagedLayout, ErrorCode> {
let grant_num = process.lookup_grant_from_driver_num(driver_num)?;
// Check if the grant has been allocated, and if not we cannot enter this
// grant.
match process.grant_is_allocated(grant_num) {
Some(true) => { /* Allocated, nothing to do */ }
Some(false) => return Err(ErrorCode::NOMEM),
None => return Err(ErrorCode::FAIL),
};
// Return early if no grant.
let grant_base_ptr = process.enter_grant(grant_num).or(Err(ErrorCode::NOMEM))?;
// # Safety
//
// We know that this pointer is well aligned and initialized with meaningful
// data when the grant region was allocated.
let layout = unsafe {
EnteredGrantKernelManagedLayout::read_from_base(grant_base_ptr, process, grant_num)
};
Ok(layout)
}
/// Subscribe to an upcall by saving the upcall in the grant region for the
/// process and returning the existing upcall for the same UpcallId.
pub(crate) fn subscribe(
process: &dyn Process,
upcall: Upcall,
) -> Result<Upcall, (Upcall, ErrorCode)> {
// Enter grant and keep it open until _grant_open goes out of scope.
let mut layout = match enter_grant_kernel_managed(process, upcall.upcall_id.driver_num) {
Ok(val) => val,
Err(e) => return Err((upcall, e)),
};
// Create the saved upcalls slice from the grant memory.
//
// # Safety
//
// This is safe because of how the grant was initially allocated and that
// because we were able to enter the grant the grant region must be valid
// and initialized. We are also holding the grant open until `_grant_open`
// goes out of scope.
let saved_upcalls_slice = layout.get_upcalls_slice();
// Index into the saved upcall slice to get the old upcall. Use .get in case
// userspace passed us a bad subscribe number.
match saved_upcalls_slice.get_mut(upcall.upcall_id.subscribe_num) {
Some(saved_upcall) => {
// Create an `Upcall` object with the old saved upcall.
let old_upcall = Upcall::new(
process.processid(),
upcall.upcall_id,
saved_upcall.appdata,
saved_upcall.fn_ptr,
);
// Overwrite the saved upcall with the new upcall.
saved_upcall.appdata = upcall.appdata;
saved_upcall.fn_ptr = upcall.fn_ptr;
// Success!
Ok(old_upcall)
}
None => Err((upcall, ErrorCode::NOSUPPORT)),
}
}
/// Stores the specified read-only process buffer in the kernel managed grant
/// region for this process and driver. The previous read-only process buffer
/// stored at the same allow_num id is returned.
pub(crate) fn allow_ro(
process: &dyn Process,
driver_num: usize,
allow_num: usize,
buffer: ReadOnlyProcessBuffer,
) -> Result<ReadOnlyProcessBuffer, (ReadOnlyProcessBuffer, ErrorCode)> {
// Enter grant and keep it open until `_grant_open` goes out of scope.
let mut layout = match enter_grant_kernel_managed(process, driver_num) {
Ok(val) => val,
Err(e) => return Err((buffer, e)),
};
// Create the saved allow ro slice from the grant memory.
//
// # Safety
//
// This is safe because of how the grant was initially allocated and that
// because we were able to enter the grant the grant region must be valid
// and initialized. We are also holding the grant open until _grant_open
// goes out of scope.
let saved_allow_ro_slice = layout.get_allow_ro_slice();
// Index into the saved slice to get the old value. Use .get in case
// userspace passed us a bad allow number.
match saved_allow_ro_slice.get_mut(allow_num) {
Some(saved) => {
// # Safety
//
// The pointer has already been validated to be within application
// memory before storing the values in the saved slice.
let old_allow =
unsafe { ReadOnlyProcessBuffer::new(saved.ptr, saved.len, process.processid()) };
// Replace old values with current buffer.
let (ptr, len) = buffer.consume();
saved.ptr = ptr;
saved.len = len;
// Success!
Ok(old_allow)
}
None => Err((buffer, ErrorCode::NOSUPPORT)),
}
}
/// Stores the specified read-write process buffer in the kernel managed grant
/// region for this process and driver. The previous read-write process buffer
/// stored at the same allow_num id is returned.
pub(crate) fn allow_rw(
process: &dyn Process,
driver_num: usize,
allow_num: usize,
buffer: ReadWriteProcessBuffer,
) -> Result<ReadWriteProcessBuffer, (ReadWriteProcessBuffer, ErrorCode)> {
// Enter grant and keep it open until `_grant_open` goes out of scope.
let mut layout = match enter_grant_kernel_managed(process, driver_num) {
Ok(val) => val,
Err(e) => return Err((buffer, e)),
};
// Create the saved allow rw slice from the grant memory.
//
// # Safety
//
// This is safe because of how the grant was initially allocated and that
// because we were able to enter the grant the grant region must be valid
// and initialized. We are also holding the grant open until `_grant_open`
// goes out of scope.
let saved_allow_rw_slice = layout.get_allow_rw_slice();
// Index into the saved slice to get the old value. Use .get in case
// userspace passed us a bad allow number.
match saved_allow_rw_slice.get_mut(allow_num) {
Some(saved) => {
// # Safety
//
// The pointer has already been validated to be within application
// memory before storing the values in the saved slice.
let old_allow =
unsafe { ReadWriteProcessBuffer::new(saved.ptr, saved.len, process.processid()) };
// Replace old values with current buffer.
let (ptr, len) = buffer.consume();
saved.ptr = ptr;
saved.len = len;
// Success!
Ok(old_allow)
}
None => Err((buffer, ErrorCode::NOSUPPORT)),
}
}
/// An instance of a grant allocated for a particular process.
///
/// [`ProcessGrant`] is a handle to an instance of a grant that has been
/// allocated in a specific process's grant region. A [`ProcessGrant`]
/// guarantees that the memory for the grant has been allocated in the process's
/// memory.
///
/// This is created from a [`Grant`] when that grant is entered for a specific
/// process.
pub struct ProcessGrant<
'a,
T: 'a,
Upcalls: UpcallSize,
AllowROs: AllowRoSize,
AllowRWs: AllowRwSize,
> {
/// The process the grant is applied to.
///
/// We use a reference here because instances of [`ProcessGrant`] are very
/// short lived. They only exist while a [`Grant`] is being entered, so we
/// can be sure the process still exists while a `ProcessGrant` exists. No
/// [`ProcessGrant`] can be stored.
process: &'a dyn Process,
/// The syscall driver number this grant is associated with.
driver_num: usize,
/// The identifier of the Grant this is applied for.
grant_num: usize,
/// Used to store Rust types for grant.
_phantom: PhantomData<(T, Upcalls, AllowROs, AllowRWs)>,
}
impl<'a, T: Default, Upcalls: UpcallSize, AllowROs: AllowRoSize, AllowRWs: AllowRwSize>
ProcessGrant<'a, T, Upcalls, AllowROs, AllowRWs>
{
/// Create a [`ProcessGrant`] for the given Grant in the given Process's
/// grant region.
///
/// If the grant in this process has not been setup before this will attempt
/// to allocate the memory from the process's grant region.
///
/// # Return
///
/// If the grant is already allocated or could be allocated, and the process
/// is valid, this returns `Ok(ProcessGrant)`. Otherwise it returns a
/// relevant error.
fn new(
grant: &Grant<T, Upcalls, AllowROs, AllowRWs>,
processid: ProcessId,
) -> Result<Self, Error> {
// Moves non-generic code from new() into non-generic function to reduce
// code bloat from the generic function being monomorphized, as it is
// common to have over 50 copies of Grant::enter() in a Tock kernel (and
// thus 50+ copies of this function). The returned Option indicates if
// the returned pointer still needs to be initialized (in the case where
// the grant was only just allocated).
fn new_inner<'a>(
grant_num: usize,
driver_num: usize,
grant_t_size: GrantDataSize,
grant_t_align: GrantDataAlign,
num_upcalls: UpcallItems,
num_allow_ros: AllowRoItems,
num_allow_rws: AllowRwItems,
processid: ProcessId,
) -> Result<(Option<NonNull<u8>>, &'a dyn Process), Error> {
// Here is an example of how the grants are laid out in the grant
// region of process's memory:
//
// Mem. Addr.
// 0x0040000 ┌────────────────────────────────────
// │ DriverNumN [0x1]
// │ GrantPointerN [0x003FFC8]
// │ ...
// │ DriverNum1 [0x60000]
// │ GrantPointer1 [0x003FFC0]
// │ DriverNum0
// │ GrantPointer0 [0x0000000 (NULL)]
// ├────────────────────────────────────
// │ Process Control Block
// 0x003FFE0 ├──────────────────────────────────── Grant Region ┐
// │ GrantDataN │
// 0x003FFC8 ├──────────────────────────────────── │
// │ GrantData1 ▼
// 0x003FF20 ├────────────────────────────────────
// │
// │ --unallocated--
// │
// └────────────────────────────────────
//
// An array of pointers (one per possible grant region) point to
// where the actual grant memory is allocated inside of the process.
// The grant memory is not allocated until the actual grant region
// is actually used.
let process = processid
.kernel
.get_process(processid)
.ok_or(Error::NoSuchApp)?;
// Check if the grant is allocated. If not, we allocate it process
// memory first. We then create an `ProcessGrant` object for this
// grant.
if let Some(is_allocated) = process.grant_is_allocated(grant_num) {
if !is_allocated {
// Calculate the alignment and size for entire grant region.
let alloc_align = EnteredGrantKernelManagedLayout::grant_align(grant_t_align);
let alloc_size = EnteredGrantKernelManagedLayout::grant_size(
num_upcalls,
num_allow_ros,
num_allow_rws,
grant_t_size,
grant_t_align,
);
// Allocate grant, the memory is still uninitialized though.
if process
.allocate_grant(grant_num, driver_num, alloc_size, alloc_align)
.is_err()
{
return Err(Error::OutOfMemory);
}
let grant_ptr = process.enter_grant(grant_num)?;
// Create a layout from the counts we have and initialize
// all memory so it is valid in the future to read as a
// reference.
//
// # Safety
//
// - The grant base pointer is well aligned, yet does not
// have initialized data.
// - The pointer points to a large enough space to correctly
// write to is guaranteed by alloc of size
// `EnteredGrantKernelManagedLayout::grant_size`.
// - There are no proper rust references that map to these
// addresses.
unsafe {
let _layout = EnteredGrantKernelManagedLayout::initialize_from_counts(
grant_ptr,
num_upcalls,
num_allow_ros,
num_allow_rws,
process,
grant_num,
);
}
// # Safety
//
// The grant pointer points to an alloc that is alloc_size
// large and is at least as aligned as grant_t_align.
unsafe {
Ok((
Some(EnteredGrantKernelManagedLayout::offset_of_grant_data_t(
grant_ptr,
alloc_size,
grant_t_size,
)),
process,
))
}
} else {
// T was already allocated, outer function should not
// initialize T.
Ok((None, process))
}
} else {
// Cannot use the grant region in any way if the process is
// inactive.
Err(Error::InactiveApp)
}
}
// Handle the bulk of the work in a function which is not templated.
let (opt_raw_grant_ptr_nn, process) = new_inner(
grant.grant_num,
grant.driver_num,
GrantDataSize(size_of::<T>()),
GrantDataAlign(align_of::<T>()),
UpcallItems(Upcalls::COUNT),
AllowRoItems(AllowROs::COUNT),
AllowRwItems(AllowRWs::COUNT),
processid,
)?;
// We can now do the initialization of T object if necessary.
if let Some(allocated_ptr) = opt_raw_grant_ptr_nn {
// Grant type T
//
// # Safety
//
// This is safe because:
//
// 1. The pointer address is valid. The pointer is allocated
// statically in process memory, and will exist for as long
// as the process does. The grant is only accessible while
// the process is still valid.
//
// 2. The pointer is correctly aligned. The newly allocated
// grant is aligned for type T, and there is padding inserted
// between the upcall array and the T object such that the T
// object starts a multiple of `align_of<T>` from the
// beginning of the allocation.
unsafe {
// Convert untyped `*mut u8` allocation to allocated type.
let new_region = NonNull::cast::<T>(allocated_ptr);
// We use `ptr::write` to avoid `Drop`ping the uninitialized
// memory in case `T` implements the `Drop` trait.
write(new_region.as_ptr(), T::default());
}
}
// We have ensured the grant is already allocated or was just allocated,
// so we can create and return the `ProcessGrant` type.
Ok(ProcessGrant {
process,
driver_num: grant.driver_num,
grant_num: grant.grant_num,
_phantom: PhantomData,
})
}
/// Return a [`ProcessGrant`] for a grant in a process if the process is
/// valid and that process grant has already been allocated, or `None`
/// otherwise.
fn new_if_allocated(
grant: &Grant<T, Upcalls, AllowROs, AllowRWs>,
process: &'a dyn Process,
) -> Option<Self> {
if let Some(is_allocated) = process.grant_is_allocated(grant.grant_num) {
if is_allocated {
Some(ProcessGrant {
process,
driver_num: grant.driver_num,
grant_num: grant.grant_num,
_phantom: PhantomData,
})
} else {
// Grant has not been allocated.
None
}
} else {
// Process is invalid.
None
}
}
/// Return the [`ProcessId`] of the process this [`ProcessGrant`] is
/// associated with.
pub fn processid(&self) -> ProcessId {
self.process.processid()
}
/// Run a function with access to the memory in the related process for the
/// related Grant. This also provides access to any associated Upcalls and
/// allowed buffers stored with the grant.
///
/// This is "entering" the grant region, and the _only_ time when the
/// contents of a grant region can be accessed.
///
/// Note, a grant can only be entered once at a time. Attempting to call
/// `.enter()` on a grant while it is already entered will result in a
/// `panic!()`. See the comment in `access_grant()` for more information.
pub fn enter<F, R>(self, fun: F) -> R
where
F: FnOnce(&mut GrantData<T>, &GrantKernelData) -> R,
{
// # `unwrap()` Safety
//
// `access_grant()` can only return `None` if the grant is already
// entered. Since we are asking for a panic!() if the grant is entered,
// `access_grant()` function will never return `None`.
self.access_grant(fun, true).unwrap()
}
/// Run a function with access to the data in the related process for the
/// related Grant only if that grant region is not already entered. If the
/// grant is already entered silently skip it. Also provide access to
/// associated Upcalls.
///
/// **You almost certainly should use `.enter()` rather than
/// `.try_enter()`.**
///
/// While the `.enter()` version can panic, that panic likely indicates a
/// bug in the code and not a condition that should be handled. For example,
/// this benign looking code is wrong:
///
/// ```ignore
/// self.apps.enter(thisapp, |app_grant, _| {
/// // Update state in the grant region of `thisapp`. Also, mark that
/// // `thisapp` needs to run again.
/// app_grant.runnable = true;
///
/// // Now, check all apps to see if any are ready to run.
/// let mut work_left_to_do = false;
/// self.apps.iter().each(|other_app| {
/// other_app.enter(|other_app_grant, _| { // ERROR! This leads to a
/// if other_app_grant.runnable { // grant being entered
/// work_left_to_do = true; // twice!
/// }
/// })
/// })
/// })
/// ```
///
/// The example is wrong because it tries to iterate across all grant
/// regions while one of them is already entered. This will lead to a grant
/// region being entered twice which violates Rust's memory restrictions and
/// is undefined behavior.
///
/// However, since the example uses `.enter()` on the iteration, Tock will
/// panic when the grant is entered for the second time, notifying the
/// developer that something is wrong. The fix is to exit out of the first
/// `.enter()` before attempting to iterate over the grant for all
/// processes.
///
/// However, if the example used `.try_enter()` in the iter loop, there
/// would be no panic, but the already entered grant would be silently
/// skipped. This can hide subtle bugs if the skipped grant is only relevant
/// in certain cases.
///
/// Therefore, only use `try_enter()` if you are sure you want to skip the
/// already entered grant. Cases for this are rare.
///
/// ## Return
///
/// Returns `None` if the grant is already entered. Otherwise returns
/// `Some(fun())`.
pub fn try_enter<F, R>(self, fun: F) -> Option<R>
where
F: FnOnce(&mut GrantData<T>, &GrantKernelData) -> R,
{
self.access_grant(fun, false)
}
/// Run a function with access to the memory in the related process for the
/// related Grant. Also provide this function with access to any associated
/// Upcalls and an allocator for allocating additional memory in the
/// process's grant region.
///
/// This is "entering" the grant region, and the _only_ time when the
/// contents of a grant region can be accessed.
///
/// Note, a grant can only be entered once at a time. Attempting to call
/// `.enter()` on a grant while it is already entered will result in a
/// panic!()`. See the comment in `access_grant()` for more information.
pub fn enter_with_allocator<F, R>(self, fun: F) -> R
where
F: FnOnce(&mut GrantData<T>, &GrantKernelData, &mut GrantRegionAllocator) -> R,
{
// # `unwrap()` Safety
//
// `access_grant()` can only return `None` if the grant is already
// entered. Since we are asking for a panic!() if the grant is entered,
// `access_grant()` function will never return `None`.
self.access_grant_with_allocator(fun, true).unwrap()
}
/// Access the [`ProcessGrant`] memory and run a closure on the process's
/// grant memory.
///
/// If `panic_on_reenter` is `true`, this will panic if the grant region is
/// already currently entered. If `panic_on_reenter` is `false`, this will
/// return `None` if the grant region is entered and do nothing.
fn access_grant<F, R>(self, fun: F, panic_on_reenter: bool) -> Option<R>
where
F: FnOnce(&mut GrantData<T>, &GrantKernelData) -> R,
{
self.access_grant_with_allocator(
|grant_data, kernel_data, _allocator| fun(grant_data, kernel_data),
panic_on_reenter,
)
}
/// Access the [`ProcessGrant`] memory and run a closure on the process's
/// grant memory.
///
/// If `panic_on_reenter` is `true`, this will panic if the grant region is
/// already currently entered. If `panic_on_reenter` is `false`, this will
/// return `None` if the grant region is entered and do nothing.
fn access_grant_with_allocator<F, R>(self, fun: F, panic_on_reenter: bool) -> Option<R>
where
F: FnOnce(&mut GrantData<T>, &GrantKernelData, &mut GrantRegionAllocator) -> R,
{
// Access the grant that is in process memory. This can only fail if
// the grant is already entered.
let grant_ptr = self
.process
.enter_grant(self.grant_num)
.map_err(|_err| {
// If we get an error it is because the grant is already
// entered. `process.enter_grant()` can fail for several
// reasons, but only the double enter case can happen once a
// grant has been applied. The other errors would be detected
// earlier (i.e. before the grant can be applied).
// If `panic_on_reenter` is false, we skip this error and do
// nothing with this grant.
if !panic_on_reenter {
return;
}
// If `enter_grant` fails, we panic!() to notify the developer
// that they tried to enter the same grant twice which is
// prohibited because it would result in two mutable references
// existing for the same memory. This preserves type correctness
// (but does crash the system).
//
// ## Explanation and Rationale
//
// This panic represents a tradeoff. While it is undesirable to
// have the potential for a runtime crash in this grant region
// code, it balances usability with type correctness. The
// challenge is that calling `self.apps.iter()` is a common
// pattern in capsules to access the grant region of every app
// that is using the capsule, and sometimes it is intuitive to
// call that inside of a `self.apps.enter(processid, |app| {...})`
// closure. However, `.enter()` means that app's grant region is
// entered, and then a naive `.iter()` would re-enter the grant
// region and cause undefined behavior. We considered different
// options to resolve this.
//
// 1. Have `.iter()` only iterate over grant regions which are
// not entered. This avoids the bug, but could lead to
// unexpected behavior, as `self.apps.iter()` will do
// different things depending on where in a capsule it is
// called.
// 2. Have the compiler detect when `.iter()` is called when a
// grant region has already been entered. We don't know of a
// viable way to implement this.
// 3. Panic if `.iter()` is called when a grant is already
// entered.
//
// We decided on option 3 because it balances minimizing
// surprises (`self.apps.iter()` will always iterate all grants)
// while also protecting against the bug. We expect that any
// code that attempts to call `self.apps.iter()` after calling
// `.enter()` will immediately encounter this `panic!()` and
// have to be refactored before any tests will be successful.
// Therefore, this `panic!()` should only occur at
// development/testing time.
//
// ## How to fix this error
//
// If you are seeing this panic, you need to refactor your
// capsule to not call `.iter()` or `.each()` from inside a
// `.enter()` closure. That is, you need to close the grant
// region you are currently in before trying to iterate over all
// grant regions.
panic!("Attempted to re-enter a grant region.");
})
.ok()?;
let grant_t_align = GrantDataAlign(align_of::<T>());
let grant_t_size = GrantDataSize(size_of::<T>());
let alloc_size = EnteredGrantKernelManagedLayout::grant_size(
UpcallItems(Upcalls::COUNT),
AllowRoItems(AllowROs::COUNT),
AllowRwItems(AllowRWs::COUNT),
grant_t_size,
grant_t_align,
);
// Parse layout of entire grant allocation using the known base pointer.
//
// # Safety
//
// Grant pointer is well aligned and points to initialized data.
let layout = unsafe {
EnteredGrantKernelManagedLayout::read_from_base(grant_ptr, self.process, self.grant_num)
};
// Get references to all of the saved upcall data.
//
// # Safety
//
// - Pointer is well aligned and initialized with data from Self::new()
// call.
// - Data will not be modified externally while this immutable reference
// is alive.
// - Data is accessible for the entire duration of this immutable
// reference.
// - No other mutable reference to this memory exists concurrently.
// Mutable reference to this memory are only created through the
// kernel in the syscall interface which is serialized in time with
// this call.
let (saved_upcalls_slice, saved_allow_ro_slice, saved_allow_rw_slice) =
layout.get_resource_slices();
let grant_data = unsafe {
EnteredGrantKernelManagedLayout::offset_of_grant_data_t(
grant_ptr,
alloc_size,
grant_t_size,
)
.cast()
.as_mut()
};
// Create a wrapped objects that are passed to functor.
let mut grant_data = GrantData::new(grant_data);
let kernel_data = GrantKernelData::new(
saved_upcalls_slice,
saved_allow_ro_slice,
saved_allow_rw_slice,
self.driver_num,
self.process,
);
// Setup an allocator in case the capsule needs additional memory in the
// grant space.
let mut allocator = GrantRegionAllocator {
processid: self.process.processid(),
};
// Call functor and pass back value.
Some(fun(&mut grant_data, &kernel_data, &mut allocator))
}
}
/// Grant which was allocated from the kernel-owned grant region in a specific
/// process's memory, separately from a normal `Grant`.
///
/// A [`CustomGrant`] allows a capsule to allocate additional memory on behalf
/// of a process.
pub struct CustomGrant<T> {
/// An identifier for this custom grant within a process's grant region.
///
/// Here, this is an opaque reference that Process uses to access the
/// custom grant allocation. This setup ensures that Process owns the grant
/// memory.
identifier: ProcessCustomGrantIdentifier,
/// Identifier for the process where this custom grant is allocated.
processid: ProcessId,
/// Used to keep the Rust type of the grant.
_phantom: PhantomData<T>,
}
impl<T> CustomGrant<T> {
/// Creates a new [`CustomGrant`].
fn new(identifier: ProcessCustomGrantIdentifier, processid: ProcessId) -> Self {
CustomGrant {
identifier,
processid,
_phantom: PhantomData,
}
}
/// Helper function to get the [`ProcessId`] from the custom grant.
pub fn processid(&self) -> ProcessId {
self.processid
}
/// Gives access to inner data within the given closure.
///
/// If the process has since been restarted or crashed, or the memory is
/// otherwise no longer present, then this function will not call the given
/// closure, and will instead directly return `Err(Error::NoSuchApp)`.
///
/// Because this function requires `&mut self`, it should be impossible to
/// access the inner data of a given `CustomGrant` reentrantly. Thus the
/// reentrance detection we use for non-custom grants is not needed here.
pub fn enter<F, R>(&self, fun: F) -> Result<R, Error>
where
F: FnOnce(GrantData<'_, T>) -> R,
{
// Verify that the process this CustomGrant was allocated within still
// exists.
self.processid
.kernel
.process_map_or(Err(Error::NoSuchApp), self.processid, |process| {
// App is valid.
// Now try to access the custom grant memory.
let grant_ptr = process.enter_custom_grant(self.identifier)?;
// # Safety
//
// `grant_ptr` must be a valid pointer and there must not exist
// any other references to the same memory. We verify the
// pointer is valid and aligned when the memory is allocated and
// `CustomGrant` is created. We are sure that there are no
// other references because the only way to create a reference
// is using this `enter()` function, and it can only be called
// once (because of the `&mut self` requirement).
let custom_grant = unsafe { &mut *(grant_ptr as *mut T) };
let borrowed = GrantData::new(custom_grant);
Ok(fun(borrowed))
})
}
}
/// Tool for allocating additional memory regions in a process's grant region.
///
/// This is optionally provided along with a grant so that if a capsule needs
/// per-process dynamic allocation it can allocate additional memory.
pub struct GrantRegionAllocator {
/// The process the allocator will allocate memory from.
processid: ProcessId,
}
impl GrantRegionAllocator {
/// Allocates a new [`CustomGrant`] initialized using the given closure.
///
/// The closure will be called exactly once, and the result will be used to
/// initialize the owned value.
///
/// This interface was chosen instead of a simple `alloc(val)` as it's
/// much more likely to optimize out all stack intermediates. This
/// helps to prevent stack overflows when allocating large values.
///
/// # Panic Safety
///
/// If `init` panics, the freshly allocated memory may leak.
pub fn alloc_with<T, F>(&self, init: F) -> Result<CustomGrant<T>, Error>
where
F: FnOnce() -> T,
{
let (custom_grant_identifier, typed_ptr) = self.alloc_raw::<T>()?;
// # Safety
//
// Writing to this pointer is safe as long as the pointer is valid
// and aligned. `alloc_raw()` guarantees these constraints are met.
unsafe {
// We use `ptr::write` to avoid `Drop`ping the uninitialized memory
// in case `T` implements the `Drop` trait.
write(typed_ptr.as_ptr(), init());
}
Ok(CustomGrant::new(custom_grant_identifier, self.processid))
}
/// Allocates a slice of n instances of a given type. Each instance is
/// initialized using the provided function.
///
/// The provided function will be called exactly `n` times, and will be
/// passed the index it's initializing, from `0` through `NUM_ITEMS - 1`.
///
/// # Panic Safety
///
/// If `val_func` panics, the freshly allocated memory and any values
/// already written will be leaked.
pub fn alloc_n_with<T, F, const NUM_ITEMS: usize>(
&self,
mut init: F,
) -> Result<CustomGrant<[T; NUM_ITEMS]>, Error>
where
F: FnMut(usize) -> T,
{
let (custom_grant_identifier, typed_ptr) = self.alloc_n_raw::<T>(NUM_ITEMS)?;
for i in 0..NUM_ITEMS {
// # Safety
//
// The allocate function guarantees that `ptr` points to memory
// large enough to allocate `num_items` copies of the object.
unsafe {
write(typed_ptr.as_ptr().add(i), init(i));
}
}
Ok(CustomGrant::new(custom_grant_identifier, self.processid))
}
/// Allocates uninitialized grant memory appropriate to store a `T`.
///
/// The caller must initialize the memory.
///
/// Also returns a ProcessCustomGrantIdentifier to access the memory later.
fn alloc_raw<T>(&self) -> Result<(ProcessCustomGrantIdentifier, NonNull<T>), Error> {
self.alloc_n_raw::<T>(1)
}
/// Allocates space for a dynamic number of items.
///
/// The caller is responsible for initializing the returned memory.
///
/// Returns memory appropriate for storing `num_items` contiguous instances
/// of `T` and a ProcessCustomGrantIdentifier to access the memory later.
fn alloc_n_raw<T>(
&self,
num_items: usize,
) -> Result<(ProcessCustomGrantIdentifier, NonNull<T>), Error> {
let (custom_grant_identifier, raw_ptr) =
self.alloc_n_raw_inner(num_items, size_of::<T>(), align_of::<T>())?;
let typed_ptr = NonNull::cast::<T>(raw_ptr);
Ok((custom_grant_identifier, typed_ptr))
}
/// Helper to reduce code bloat by avoiding monomorphization.
fn alloc_n_raw_inner(
&self,
num_items: usize,
single_alloc_size: usize,
alloc_align: usize,
) -> Result<(ProcessCustomGrantIdentifier, NonNull<u8>), Error> {
let alloc_size = single_alloc_size
.checked_mul(num_items)
.ok_or(Error::OutOfMemory)?;
self.processid
.kernel
.process_map_or(Err(Error::NoSuchApp), self.processid, |process| {
process
.allocate_custom_grant(alloc_size, alloc_align)
.map_or(
Err(Error::OutOfMemory),
|(custom_grant_identifier, raw_ptr)| Ok((custom_grant_identifier, raw_ptr)),
)
})
}
}
/// Type for storing an object of type T in process memory that is only
/// accessible by the kernel.
///
/// A single [`Grant`] can allocate space for one object of type T for each
/// process on the board. Each allocated object will reside in the grant region
/// belonging to the process that the object is allocated for. The [`Grant`]
/// type is used to get access to [`ProcessGrant`]s, which are tied to a
/// specific process and provide access to the memory object allocated for that
/// process.
pub struct Grant<T: Default, Upcalls: UpcallSize, AllowROs: AllowRoSize, AllowRWs: AllowRwSize> {
/// Hold a reference to the core kernel so we can iterate processes.
pub(crate) kernel: &'static Kernel,
/// Keep track of the syscall driver number assigned to the capsule that is
/// using this grant. This allows us to uniquely identify upcalls stored in
/// this grant.
driver_num: usize,
/// The identifier for this grant. Having an identifier allows the Process
/// implementation to lookup the memory for this grant in the specific
/// process.
grant_num: usize,
/// Used to store the Rust types for grant.
ptr: PhantomData<(T, Upcalls, AllowROs, AllowRWs)>,
}
impl<T: Default, Upcalls: UpcallSize, AllowROs: AllowRoSize, AllowRWs: AllowRwSize>
Grant<T, Upcalls, AllowROs, AllowRWs>
{
/// Create a new [`Grant`] type which allows a capsule to store
/// process-specific data for each process in the process's memory region.
///
/// This must only be called from the main kernel so that it can ensure that
/// `grant_index` is a valid index.
pub(crate) fn new(kernel: &'static Kernel, driver_num: usize, grant_index: usize) -> Self {
Self {
kernel,
driver_num,
grant_num: grant_index,
ptr: PhantomData,
}
}
/// Enter the grant for a specific process.
///
/// This creates a [`ProcessGrant`] which is a handle for a grant allocated
/// for a specific process. Then, that [`ProcessGrant`] is entered and the
/// provided closure is run with access to the memory in the grant region.
pub fn enter<F, R>(&self, processid: ProcessId, fun: F) -> Result<R, Error>
where
F: FnOnce(&mut GrantData<T>, &GrantKernelData) -> R,
{
let pg = ProcessGrant::new(self, processid)?;
// If we have managed to create an `ProcessGrant`, all we need
// to do is actually access the memory and run the
// capsule-provided closure. This can only fail if the grant is
// already entered, at which point the kernel will panic.
Ok(pg.enter(fun))
}
/// Enter the grant for a specific process with access to an allocator.
///
/// This creates an [`ProcessGrant`] which is a handle for a grant allocated
/// for a specific process. Then, that [`ProcessGrant`] is entered and the
/// provided closure is run with access to the memory in the grant region.
///
/// The allocator allows the caller to dynamically allocate additional
/// memory in the process's grant region.
pub fn enter_with_allocator<F, R>(&self, processid: ProcessId, fun: F) -> Result<R, Error>
where
F: FnOnce(&mut GrantData<T>, &GrantKernelData, &mut GrantRegionAllocator) -> R,
{
// Get the `ProcessGrant` for the process, possibly needing to
// actually allocate the memory in the process's grant region to
// do so. This can fail for a variety of reasons, and if so we
// return the error to the capsule.
let pg = ProcessGrant::new(self, processid)?;
// If we have managed to create an `ProcessGrant`, all we need
// to do is actually access the memory and run the
// capsule-provided closure. This can only fail if the grant is
// already entered, at which point the kernel will panic.
Ok(pg.enter_with_allocator(fun))
}
/// Run a function on the grant for each active process if the grant has
/// been allocated for that process.
///
/// This will silently skip any process where the grant has not previously
/// been allocated. This will also silently skip any invalid processes.
///
/// Calling this function when an [`ProcessGrant`] for a process is
/// currently entered will result in a panic.
pub fn each<F>(&self, mut fun: F)
where
F: FnMut(ProcessId, &mut GrantData<T>, &GrantKernelData),
{
// Create a the iterator across `ProcessGrant`s for each process.
for pg in self.iter() {
let processid = pg.processid();
// Since we iterating, there is no return value we need to worry
// about.
pg.enter(|data, upcalls| fun(processid, data, upcalls));
}
}
/// Get an iterator over all processes and their active grant regions for
/// this particular grant.
///
/// Calling this function when an [`ProcessGrant`] for a process is
/// currently entered will result in a panic.
pub fn iter(&self) -> Iter<T, Upcalls, AllowROs, AllowRWs> {
Iter {
grant: self,
subiter: self.kernel.get_process_iter(),
}
}
}
/// Type to iterate [`ProcessGrant`]s across processes.
pub struct Iter<
'a,
T: 'a + Default,
Upcalls: UpcallSize,
AllowROs: AllowRoSize,
AllowRWs: AllowRwSize,
> {
/// The grant type to use.
grant: &'a Grant<T, Upcalls, AllowROs, AllowRWs>,
/// Iterator over valid processes.
subiter: core::iter::FilterMap<
core::slice::Iter<'a, Option<&'static dyn Process>>,
fn(&Option<&'static dyn Process>) -> Option<&'static dyn Process>,
>,
}
impl<'a, T: Default, Upcalls: UpcallSize, AllowROs: AllowRoSize, AllowRWs: AllowRwSize> Iterator
for Iter<'a, T, Upcalls, AllowROs, AllowRWs>
{
type Item = ProcessGrant<'a, T, Upcalls, AllowROs, AllowRWs>;
fn next(&mut self) -> Option<Self::Item> {
let grant = self.grant;
// Get the next `ProcessId` from the kernel processes array that is
// setup to use this grant. Since the iterator itself is saved calling
// this function again will start where we left off.
self.subiter
.find_map(|process| ProcessGrant::new_if_allocated(grant, process))
}
}