kernel/
grant.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Support for processes granting memory from their allocations to the kernel.
//!
//! ## Grant Overview
//!
//! Grants allow capsules to dynamically allocate memory from a process to hold
//! state on the process's behalf.
//!
//! Each capsule that wishes to do this needs to have a [`Grant`] type. Grants
//! are created at boot, and each have a unique ID and a type `T`. This type
//! only allows the capsule to allocate memory from a process in the future. It
//! does not initially represent any allocated memory.
//!
//! When a capsule does wish to use its Grant to allocate memory from a process,
//! it must "enter" the Grant with a specific [`ProcessId`]. Entering a Grant
//! for a specific process instructs the core kernel to create an object `T` in
//! the process's memory space and provide the capsule with access to it. If the
//! Grant has not previously been entered for that process, the memory for
//! object `T` will be allocated from the "grant region" within the
//! kernel-accessible portion of the process's memory.
//!
//! If a Grant has never been entered for a process, the object `T` will _not_
//! be allocated in that process's grant region, even if the `Grant` has been
//! entered for other processes.
//!
//! Upcalls and allowed buffer references are stored in the dynamically
//! allocated grant for a particular Driver as well. Upcalls and allowed buffer
//! references are stored outside of the `T` object to enable the kernel to
//! manage them and ensure swapping guarantees are met.
//!
//! The type `T` of a Grant is fixed in size and the number of upcalls and
//! allowed buffers associated with a grant is fixed. That is, when a Grant is
//! entered for a process the resulting allocated object will be the size of
//! `SizeOf<T>` plus the size for the structure to hold upcalls and allowed
//! buffer references. If capsules need additional process-specific memory for
//! their operation, they can use an [`GrantRegionAllocator`] to request
//! additional memory from the process's grant region.
//!
//! ```text,ignore
//!                            ┌──────────────────┐
//!                            │                  │
//!                            │ Capsule          │
//!                            │                  │
//!                            └─┬────────────────┘
//!                              │ Capsules hold
//!                              │ references to
//!                              │ grants.
//!                              ▼
//!                            ┌──────────────────┐
//!                            │ Grant            │
//!                            │                  │
//!  Process Memory            │ Type: T          │
//! ┌────────────────────────┐ │ grant_num: 1     │
//! │                        │ │ driver_num: 0x4  │
//! │  ...                   │ └───┬─────────────┬┘
//! ├────────────────────────┤     │Each Grant   │
//! │ Grant       ptr 0      │     │has a pointer│
//! │ Pointers    ptr 1 ───┐ │ ◄───┘per process. │
//! │             ...      │ │                   │
//! │             ptr N    │ │                   │
//! ├──────────────────────┼─┤                   │
//! │  ...                 │ │                   │
//! ├──────────────────────┼─┤                   │
//! │ Grant Region         │ │     When a Grant  │
//! │                      │ │     is allocated  │
//! │ ┌─────────────────┐  │ │     for a process │
//! │ │ Allocated Grant │  │ │ ◄─────────────────┘
//! │ │                 │  │ │     it uses memory
//! │ │  [ SizeOf<T> ]  │  │ │     from the grant
//! │ │─────────────────│  │ │     region.
//! │ │ Padding         │  │ │
//! │ │─────────────────│  │ │
//! │ │ GrantKernelData │  │ │
//! │ └─────────────────┘◄─┘ │
//! │                        │
//! │ ┌─────────────────┐    │
//! │ │ Custom Grant    │    │ ◄── Capsules can
//! │ │                 │    │     allocate extra
//! │ └─────────────────┘    │     memory if needed.
//! │                        │
//! ├─kernel_brk─────────────┤
//! │                        │
//! │ ...                    │
//! └────────────────────────┘
//! ```
//!
//! ## Grant Mechanisms and Types
//!
//! Here is an overview of the types used by grant.rs to implement the Grant
//! functionality in Tock:
//!
//! ```text,ignore
//!                         ┌──────────────────────────┐
//!                         │ struct Grant<T, ...> {   │
//!                         │   driver_num: usize      │
//!                         │   grant_num: usize       │
//!                         │ }                        ├───┐
//! Entering a Grant for a  └──┬───────────────────────┘   │
//! process causes the         │                           │
//! memory for T to be         │ .enter(ProcessId)         │ .enter(ProcessId, fn)
//! allocated.                 ▼                           │
//!                         ┌──────────────────────────┐   │ For convenience,
//! ProcessGrant represents │ struct ProcessGrant<T> { │   │ allocating and getting
//! a Grant allocated for a │   number: usize          │   │ access to the T object
//! specific process.       │   process: &Process      │   │ is combined in one
//!                         │ }                        │   │ .enter() call.
//! A provided closure      └──┬───────────────────────┘   │
//! is given access to         │                           │
//! the underlying memory      │ .enter(fn)                │
//! where the T is stored.     ▼                           │
//!                         ┌────────────────────────────┐ │
//! GrantData wraps the     │ struct GrantData<T>   {    │◄┘
//! type and provides       │   data: &mut T             │
//! mutable access.         │ }                          │
//! GrantKernelData         │ struct GrantKernelData {   │
//! provides access to      │   upcalls: [SavedUpcall]   │
//! scheduling upcalls      │   allow_ro: [SavedAllowRo] │
//! and process buffers.    │   allow_rw: [SavedAllowRW] │
//!                         │ }                          │
//!                         └──┬─────────────────────────┘
//! The actual object T can    │
//! only be accessed inside    │ fn(mem: &GrantData, kernel_data: &GrantKernelData)
//! the closure.               ▼
//! ```

use core::cmp;
use core::marker::PhantomData;
use core::mem::{align_of, size_of};
use core::ops::{Deref, DerefMut};
use core::ptr::{write, NonNull};
use core::slice;

use crate::kernel::Kernel;
use crate::process::{Error, Process, ProcessCustomGrantIdentifier, ProcessId};
use crate::processbuffer::{ReadOnlyProcessBuffer, ReadWriteProcessBuffer};
use crate::processbuffer::{ReadOnlyProcessBufferRef, ReadWriteProcessBufferRef};
use crate::upcall::{Upcall, UpcallError, UpcallId};
use crate::utilities::capability_ptr::CapabilityPtr;
use crate::ErrorCode;

/// Tracks how many upcalls a grant instance supports automatically.
pub trait UpcallSize {
    /// The number of upcalls the grant supports.
    const COUNT: u8;
}

/// Specifies how many upcalls a grant instance supports automatically.
pub struct UpcallCount<const NUM: u8>;
impl<const NUM: u8> UpcallSize for UpcallCount<NUM> {
    const COUNT: u8 = NUM;
}

/// Tracks how many read-only allows a grant instance supports automatically.
pub trait AllowRoSize {
    /// The number of read-only allows the grant supports.
    const COUNT: u8;
}

/// Specifies how many read-only allows a grant instance supports automatically.
pub struct AllowRoCount<const NUM: u8>;
impl<const NUM: u8> AllowRoSize for AllowRoCount<NUM> {
    const COUNT: u8 = NUM;
}

/// Tracks how many read-write allows a grant instance supports automatically.
pub trait AllowRwSize {
    /// The number of read-write allows the grant supports.
    const COUNT: u8;
}

/// Specifies how many read-write allows a grant instance supports
/// automatically.
pub struct AllowRwCount<const NUM: u8>;
impl<const NUM: u8> AllowRwSize for AllowRwCount<NUM> {
    const COUNT: u8 = NUM;
}

/// Helper that calculated offsets within the kernel owned memory (i.e. the
/// non-T part of grant).
///
/// Example layout of full grant belonging to a single app and driver:
///
/// ```text,ignore
/// 0x003FFC8  ┌────────────────────────────────────┐
///            │   T                                |
/// 0x003FFxx  ├  ───────────────────────── ┐ K     |
///            │   Padding (ensure T aligns)| e     |
/// 0x003FF44  ├  ───────────────────────── | r     |
///            │   SavedAllowRwN            | n     |
///            │   ...                      | e     | G
///            │   SavedAllowRw1            | l     | r
///            │   SavedAllowRw0            |       | a
/// 0x003FF44  ├  ───────────────────────── | O     | n
///            │   SavedAllowRoN            | w     | t
///            │   ...                      | n     |
///            │   SavedAllowRo1            | e     | M
///            │   SavedAllowRo0            | d     | e
/// 0x003FF30  ├  ───────────────────────── |       | m
///            │   SavedUpcallN             | D     | o
///            │   ...                      | a     | r
///            │   SavedUpcall1             | t     | y
///            │   SavedUpcall0             | a     |
/// 0x003FF24  ├  ───────────────────────── |       |
///            │   Counters (usize)         |       |
/// 0x003FF20  └────────────────────────────────────┘
/// ```
///
/// The counters structure is composed as:
///
/// ```text,ignore
/// 0             1             2             3         bytes
/// |-------------|-------------|-------------|-------------|
/// | # Upcalls   | # RO Allows | # RW Allows | [unused]    |
/// |-------------|-------------|-------------|-------------|
/// ```
///
/// This type is created whenever a grant is entered, and is responsible for
/// ensuring that the grant is closed when it is no longer used. On `Drop`, we
/// leave the grant. This protects against calling `grant.enter()` without
/// calling the corresponding `grant.leave()`, perhaps due to accidentally using
/// the `?` operator.
struct EnteredGrantKernelManagedLayout<'a> {
    /// Leaving a grant is handled through the process implementation, so must
    /// keep a reference to the relevant process.
    process: &'a dyn Process,
    /// The grant number of the entered grant that we want to ensure we leave
    /// properly.
    grant_num: usize,

    /// The location of the counters structure for the grant.
    counters_ptr: *mut usize,
    /// Pointer to the array of saved upcalls.
    upcalls_array: *mut SavedUpcall,
    /// Pointer to the array of saved read-only allows.
    allow_ro_array: *mut SavedAllowRo,
    /// Pointer to the array of saved read-write allows.
    allow_rw_array: *mut SavedAllowRw,
}

/// Represents the number of the upcall elements in the kernel owned section of
/// the grant.
#[derive(Copy, Clone)]
struct UpcallItems(u8);
/// Represents the number of the read-only allow elements in the kernel owned
/// section of the grant.
#[derive(Copy, Clone)]
struct AllowRoItems(u8);
/// Represents the number of the read-write allow elements in the kernel owned
/// section of the grant.
#[derive(Copy, Clone)]
struct AllowRwItems(u8);
/// Represents the size data (in bytes) T within the grant.
#[derive(Copy, Clone)]
struct GrantDataSize(usize);
/// Represents the alignment of data T within the grant.
#[derive(Copy, Clone)]
struct GrantDataAlign(usize);

impl<'a> EnteredGrantKernelManagedLayout<'a> {
    /// Reads the specified pointer as the base of the kernel owned grant region
    /// that has previously been initialized.
    ///
    /// # Safety
    ///
    /// The incoming base pointer must be well aligned and already contain
    /// initialized data in the expected form. There must not be any other
    /// `EnteredGrantKernelManagedLayout` for the given `base_ptr` at the same
    /// time, otherwise multiple mutable references to the same upcall/allow
    /// slices could be created.
    unsafe fn read_from_base(
        base_ptr: NonNull<u8>,
        process: &'a dyn Process,
        grant_num: usize,
    ) -> Self {
        let counters_ptr = base_ptr.as_ptr() as *mut usize;
        let counters_val = counters_ptr.read();

        // Parse the counters field for each of the fields
        let [_, _, allow_ro_num, upcalls_num] = u32::to_be_bytes(counters_val as u32);

        // Skip over the counter usize, then the stored array of `SavedAllowRo`
        // items and `SavedAllowRw` items.
        let upcalls_array = counters_ptr.add(1) as *mut SavedUpcall;
        let allow_ro_array = upcalls_array.add(upcalls_num as usize) as *mut SavedAllowRo;
        let allow_rw_array = allow_ro_array.add(allow_ro_num as usize) as *mut SavedAllowRw;

        Self {
            process,
            grant_num,
            counters_ptr,
            upcalls_array,
            allow_ro_array,
            allow_rw_array,
        }
    }

    /// Creates a layout from the specified pointer and lengths of arrays and
    /// initializes the kernel owned portion of the layout.
    ///
    /// # Safety
    ///
    /// The incoming base pointer must be well aligned and reference enough
    /// memory to hold the entire kernel managed grant structure. There must
    /// not be any other `EnteredGrantKernelManagedLayout` for
    /// the given `base_ptr` at the same time, otherwise multiple mutable
    /// references to the same upcall/allow slices could be created.
    unsafe fn initialize_from_counts(
        base_ptr: NonNull<u8>,
        upcalls_num_val: UpcallItems,
        allow_ro_num_val: AllowRoItems,
        allow_rw_num_val: AllowRwItems,
        process: &'a dyn Process,
        grant_num: usize,
    ) -> Self {
        let counters_ptr = base_ptr.as_ptr() as *mut usize;

        // Create the counters usize value by correctly packing the various
        // counts into 8 bit fields.
        let counter: usize =
            u32::from_be_bytes([0, allow_rw_num_val.0, allow_ro_num_val.0, upcalls_num_val.0])
                as usize;

        let upcalls_array = counters_ptr.add(1) as *mut SavedUpcall;
        let allow_ro_array = upcalls_array.add(upcalls_num_val.0.into()) as *mut SavedAllowRo;
        let allow_rw_array = allow_ro_array.add(allow_ro_num_val.0.into()) as *mut SavedAllowRw;

        counters_ptr.write(counter);
        write_default_array(upcalls_array, upcalls_num_val.0.into());
        write_default_array(allow_ro_array, allow_ro_num_val.0.into());
        write_default_array(allow_rw_array, allow_rw_num_val.0.into());

        Self {
            process,
            grant_num,
            counters_ptr,
            upcalls_array,
            allow_ro_array,
            allow_rw_array,
        }
    }

    /// Returns the entire grant size including the kernel owned memory,
    /// padding, and data for T. Requires that grant_t_align be a power of 2,
    /// which is guaranteed from align_of rust calls.
    fn grant_size(
        upcalls_num: UpcallItems,
        allow_ro_num: AllowRoItems,
        allow_rw_num: AllowRwItems,
        grant_t_size: GrantDataSize,
        grant_t_align: GrantDataAlign,
    ) -> usize {
        let kernel_managed_size = size_of::<usize>()
            + upcalls_num.0 as usize * size_of::<SavedUpcall>()
            + allow_ro_num.0 as usize * size_of::<SavedAllowRo>()
            + allow_rw_num.0 as usize * size_of::<SavedAllowRw>();
        // We know that grant_t_align is a power of 2, so we can make a mask
        // that will save only the remainder bits.
        let grant_t_align_mask = grant_t_align.0 - 1;
        // Determine padding to get to the next multiple of grant_t_align by
        // taking the remainder and subtracting that from the alignment, then
        // ensuring a full alignment value maps to 0.
        let padding =
            (grant_t_align.0 - (kernel_managed_size & grant_t_align_mask)) & grant_t_align_mask;
        kernel_managed_size + padding + grant_t_size.0
    }

    /// Returns the alignment of the entire grant region based on the alignment
    /// of data T.
    fn grant_align(grant_t_align: GrantDataAlign) -> usize {
        // The kernel owned memory all aligned to usize. We need to use the
        // higher of the two alignment to ensure our padding calculations work
        // for any alignment of T.
        cmp::max(align_of::<usize>(), grant_t_align.0)
    }

    /// Returns the offset for the grant data t within the entire grant region.
    ///
    /// # Safety
    ///
    /// The caller must ensure that the specified base pointer is aligned to at
    /// least the alignment of T and points to a grant that is of size
    /// grant_size bytes.
    unsafe fn offset_of_grant_data_t(
        base_ptr: NonNull<u8>,
        grant_size: usize,
        grant_t_size: GrantDataSize,
    ) -> NonNull<u8> {
        // The location of the grant data T is the last element in the entire
        // grant region. Caller must verify that memory is accessible and well
        // aligned to T.
        let grant_t_size_usize: usize = grant_t_size.0;
        NonNull::new_unchecked(base_ptr.as_ptr().add(grant_size - grant_t_size_usize))
    }

    /// Read an 8 bit value from the counter field offset by the specified
    /// number of bits. This is a helper function for reading the counter field.
    fn get_counter_offset(&self, offset_bits: usize) -> usize {
        // # Safety
        //
        // Creating a `EnteredGrantKernelManagedLayout` object requires that the
        // pointers are well aligned and point to valid memory.
        let counters_val = unsafe { self.counters_ptr.read() };
        (counters_val >> offset_bits) & 0xFF
    }

    /// Return the number of upcalls stored by the core kernel for this grant.
    fn get_upcalls_number(&self) -> usize {
        self.get_counter_offset(0)
    }

    /// Return the number of read-only allow buffers stored by the core kernel
    /// for this grant.
    fn get_allow_ro_number(&self) -> usize {
        self.get_counter_offset(8)
    }

    /// Return the number of read-write allow buffers stored by the core kernel
    /// for this grant.
    fn get_allow_rw_number(&self) -> usize {
        self.get_counter_offset(16)
    }

    /// Return mutable access to the slice of stored upcalls for this grant.
    /// This is necessary for storing a new upcall.
    fn get_upcalls_slice(&mut self) -> &mut [SavedUpcall] {
        // # Safety
        //
        // Creating a `EnteredGrantKernelManagedLayout` object ensures that the
        // pointer to the upcall array is valid.
        unsafe { slice::from_raw_parts_mut(self.upcalls_array, self.get_upcalls_number()) }
    }

    /// Return mutable access to the slice of stored read-only allow buffers for
    /// this grant. This is necessary for storing a new read-only allow.
    fn get_allow_ro_slice(&mut self) -> &mut [SavedAllowRo] {
        // # Safety
        //
        // Creating a `EnteredGrantKernelManagedLayout` object ensures that the
        // pointer to the RO allow array is valid.
        unsafe { slice::from_raw_parts_mut(self.allow_ro_array, self.get_allow_ro_number()) }
    }

    /// Return mutable access to the slice of stored read-write allow buffers
    /// for this grant. This is necessary for storing a new read-write allow.
    fn get_allow_rw_slice(&mut self) -> &mut [SavedAllowRw] {
        // # Safety
        //
        // Creating a `EnteredGrantKernelManagedLayout` object ensures that the
        // pointer to the RW allow array is valid.
        unsafe { slice::from_raw_parts_mut(self.allow_rw_array, self.get_allow_rw_number()) }
    }

    /// Return slices to the kernel managed upcalls and allow buffers. This
    /// permits using upcalls and allow buffers when a capsule is accessing a
    /// grant.
    fn get_resource_slices(&self) -> (&[SavedUpcall], &[SavedAllowRo], &[SavedAllowRw]) {
        // # Safety
        //
        // Creating a `EnteredGrantKernelManagedLayout` object ensures that the
        // pointer to the upcall array is valid.
        let upcall_slice =
            unsafe { slice::from_raw_parts(self.upcalls_array, self.get_upcalls_number()) };

        // # Safety
        //
        // Creating a `EnteredGrantKernelManagedLayout` object ensures that the
        // pointer to the RO allow array is valid.
        let allow_ro_slice =
            unsafe { slice::from_raw_parts(self.allow_ro_array, self.get_allow_ro_number()) };

        // # Safety
        //
        // Creating a `KernelManagedLayout` object ensures that the pointer to
        // the RW allow array is valid.
        let allow_rw_slice =
            unsafe { slice::from_raw_parts(self.allow_rw_array, self.get_allow_rw_number()) };

        (upcall_slice, allow_ro_slice, allow_rw_slice)
    }
}

// Ensure that we leave the grant once this goes out of scope.
impl Drop for EnteredGrantKernelManagedLayout<'_> {
    fn drop(&mut self) {
        // ### Safety
        //
        // To safely call this function we must ensure that no references will
        // exist to the grant once `leave_grant()` returns. Because using a
        // `EnteredGrantKernelManagedLayout` object is the only only way we
        // access the actual memory of a grant, and we are calling
        // `leave_grant()` from its `drop()` method, we are sure there will be
        // no remaining references to the grant.
        unsafe {
            self.process.leave_grant(self.grant_num);
        }
    }
}

/// This [`GrantData`] object provides access to the memory allocated for a
/// grant for a specific process.
///
/// The [`GrantData`] type is templated on `T`, the actual type of the object in
/// the grant. [`GrantData'] holds a mutable reference to the type, allowing
/// users access to the object in process memory.
///
/// Capsules gain access to a [`GrantData`] object by calling
/// [`Grant::enter()`].
pub struct GrantData<'a, T: 'a + ?Sized> {
    /// The mutable reference to the actual object type stored in the grant.
    data: &'a mut T,
}

impl<'a, T: 'a + ?Sized> GrantData<'a, T> {
    /// Create a [`GrantData`] object to provide access to the actual object
    /// allocated for a process.
    ///
    /// Only one can [`GrantData`] per underlying object can be created at a
    /// time. Otherwise, there would be multiple mutable references to the same
    /// object which is undefined behavior.
    fn new(data: &'a mut T) -> GrantData<'a, T> {
        GrantData { data }
    }
}

impl<'a, T: 'a + ?Sized> Deref for GrantData<'a, T> {
    type Target = T;
    fn deref(&self) -> &T {
        self.data
    }
}

impl<'a, T: 'a + ?Sized> DerefMut for GrantData<'a, T> {
    fn deref_mut(&mut self) -> &mut T {
        self.data
    }
}

/// This [`GrantKernelData`] object provides a handle to access upcalls and
/// process buffers stored on behalf of a particular grant/driver.
///
/// Capsules gain access to a [`GrantKernelData`] object by calling
/// [`Grant::enter()`]. From there, they can schedule upcalls or access process
/// buffers.
///
/// It is expected that this type will only exist as a short-lived stack
/// allocation, so its size is not a significant concern.
pub struct GrantKernelData<'a> {
    /// A reference to the actual upcall slice stored in the grant.
    upcalls: &'a [SavedUpcall],

    /// A reference to the actual read only allow slice stored in the grant.
    allow_ro: &'a [SavedAllowRo],

    /// A reference to the actual read write allow slice stored in the grant.
    allow_rw: &'a [SavedAllowRw],

    /// We need to keep track of the driver number so we can properly identify
    /// the Upcall that is called. We need to keep track of its source so we can
    /// remove it if the Upcall is unsubscribed.
    driver_num: usize,

    /// A reference to the process that these upcalls are for. This is used for
    /// actually scheduling the upcalls.
    process: &'a dyn Process,
}

impl<'a> GrantKernelData<'a> {
    /// Create a [`GrantKernelData`] object to provide a handle for capsules to
    /// call Upcalls.
    fn new(
        upcalls: &'a [SavedUpcall],
        allow_ro: &'a [SavedAllowRo],
        allow_rw: &'a [SavedAllowRw],
        driver_num: usize,
        process: &'a dyn Process,
    ) -> GrantKernelData<'a> {
        Self {
            upcalls,
            allow_ro,
            allow_rw,
            driver_num,
            process,
        }
    }

    /// Schedule the specified upcall for the process with r0, r1, r2 as
    /// provided values.
    ///
    /// Capsules call this function to schedule upcalls, and upcalls are
    /// identified by the `subscribe_num`, which must match the subscribe number
    /// used when the upcall was originally subscribed by a process.
    /// `subscribe_num`s are indexed starting at zero.
    pub fn schedule_upcall(
        &self,
        subscribe_num: usize,
        r: (usize, usize, usize),
    ) -> Result<(), UpcallError> {
        // Implement `self.upcalls[subscribe_num]` without a chance of a panic.
        self.upcalls.get(subscribe_num).map_or(
            Err(UpcallError::InvalidSubscribeNum),
            |saved_upcall| {
                // We can create an `Upcall` object based on what is stored in
                // the process grant and use that to add the upcall to the
                // pending array for the process.
                let upcall = Upcall::new(
                    self.process.processid(),
                    UpcallId {
                        subscribe_num,
                        driver_num: self.driver_num,
                    },
                    saved_upcall.appdata,
                    saved_upcall.fn_ptr,
                );
                upcall.schedule(self.process, r.0, r.1, r.2)
            },
        )
    }

    /// Search the work queue for the first pending operation with the given
    /// `subscribe_num` and if one exists remove it from the task queue.
    ///
    /// Returns the associated [`Task`] if one was found, otherwise returns
    /// [`None`].
    pub fn remove_upcall(&self, subscribe_num: usize) -> Option<crate::process::Task> {
        self.process.remove_upcall(UpcallId {
            subscribe_num,
            driver_num: self.driver_num,
        })
    }

    /// Remove all scheduled upcalls with the given `subscribe_num` from the
    /// task queue.
    ///
    /// Returns the number of removed upcalls.
    pub fn remove_pending_upcalls(&self, subscribe_num: usize) -> usize {
        self.process.remove_pending_upcalls(UpcallId {
            subscribe_num,
            driver_num: self.driver_num,
        })
    }

    /// Returns a lifetime limited reference to the requested
    /// [`ReadOnlyProcessBuffer`].
    ///
    /// The len of the returned [`ReadOnlyProcessBuffer`] must be checked by the
    /// caller to ensure that a buffer has in fact been allocated. An
    /// unallocated buffer will be returned as a [`ReadOnlyProcessBuffer`] of
    /// length 0.
    ///
    /// The [`ReadOnlyProcessBuffer`] is only valid for as long as this object
    /// is valid, i.e. the lifetime of the app enter closure.
    ///
    /// If the specified allow number is invalid, then a
    /// [`crate::process::Error::AddressOutOfBounds`] will be returned. This
    /// returns a [`crate::process::Error`] to allow for easy chaining of this
    /// function with the `ReadOnlyProcessBuffer::enter()` function with
    /// `and_then`.
    pub fn get_readonly_processbuffer(
        &self,
        allow_ro_num: usize,
    ) -> Result<ReadOnlyProcessBufferRef, crate::process::Error> {
        self.allow_ro.get(allow_ro_num).map_or(
            Err(crate::process::Error::AddressOutOfBounds),
            |saved_ro| {
                // # Safety
                //
                // This is the saved process buffer data has been validated to
                // be wholly contained within this process before it was stored.
                // The lifetime of the ReadOnlyProcessBuffer is bound to the
                // lifetime of self, which correctly limits dereferencing this
                // saved pointer to only when it is valid.
                unsafe {
                    Ok(ReadOnlyProcessBufferRef::new(
                        saved_ro.ptr,
                        saved_ro.len,
                        self.process.processid(),
                    ))
                }
            },
        )
    }

    /// Returns a lifetime limited reference to the requested
    /// [`ReadWriteProcessBuffer`].
    ///
    /// The length of the returned [`ReadWriteProcessBuffer`] must be checked by
    /// the caller to ensure that a buffer has in fact been allocated. An
    /// unallocated buffer will be returned as a [`ReadWriteProcessBuffer`] of
    /// length 0.
    ///
    /// The [`ReadWriteProcessBuffer`] is only value for as long as this object
    /// is valid, i.e. the lifetime of the app enter closure.
    ///
    /// If the specified allow number is invalid, then a
    /// [`crate::process::Error::AddressOutOfBounds`] will be returned. This
    /// returns a [`crate::process::Error`] to allow for easy chaining of this
    /// function with the `ReadWriteProcessBuffer::enter()` function with
    /// `and_then`.
    pub fn get_readwrite_processbuffer(
        &self,
        allow_rw_num: usize,
    ) -> Result<ReadWriteProcessBufferRef, crate::process::Error> {
        self.allow_rw.get(allow_rw_num).map_or(
            Err(crate::process::Error::AddressOutOfBounds),
            |saved_rw| {
                // # Safety
                //
                // This is the saved process buffer data has been validated to
                // be wholly contained within this process before it was stored.
                // The lifetime of the ReadWriteProcessBuffer is bound to the
                // lifetime of self, which correctly limits dereferencing this
                // saved pointer to only when it is valid.
                unsafe {
                    Ok(ReadWriteProcessBufferRef::new(
                        saved_rw.ptr,
                        saved_rw.len,
                        self.process.processid(),
                    ))
                }
            },
        )
    }
}

/// A minimal representation of an upcall, used for storing an upcall in a
/// process' grant table without wasting memory duplicating information such as
/// process ID.
#[repr(C)]
#[derive(Default)]
struct SavedUpcall {
    appdata: CapabilityPtr,
    fn_ptr: CapabilityPtr,
}

/// A minimal representation of a read-only allow from app, used for storing a
/// read-only allow in a process' kernel managed grant space without wasting
/// memory duplicating information such as process ID.
#[repr(C)]
struct SavedAllowRo {
    ptr: *const u8,
    len: usize,
}

impl Default for SavedAllowRo {
    fn default() -> Self {
        Self {
            ptr: core::ptr::null(),
            len: 0,
        }
    }
}

/// A minimal representation of a read-write allow from app, used for storing a
/// read-write allow in a process' kernel managed grant space without wasting
/// memory duplicating information such as process ID.
#[repr(C)]
struct SavedAllowRw {
    ptr: *mut u8,
    len: usize,
}

impl Default for SavedAllowRw {
    fn default() -> Self {
        Self {
            ptr: core::ptr::null_mut(),
            len: 0,
        }
    }
}

/// Write the default value of T to every element of the array.
///
/// # Safety
///
/// The pointer must be well aligned and point to allocated memory that is
/// writable for `size_of::<T> * num` bytes. No Rust references may exist to
/// memory in the address range spanned by `base..base+num` at the time this
/// function is called. The memory does not need to be initialized yet. If it
/// already does contain initialized memory, then those contents will be
/// overwritten without being `Drop`ed first.
unsafe fn write_default_array<T: Default>(base: *mut T, num: usize) {
    for i in 0..num {
        base.add(i).write(T::default());
    }
}

/// Enters the grant for the specified process. Caller must hold on to the grant
/// lifetime guard while they accessing the memory in the layout (second
/// element).
fn enter_grant_kernel_managed(
    process: &dyn Process,
    driver_num: usize,
) -> Result<EnteredGrantKernelManagedLayout, ErrorCode> {
    let grant_num = process.lookup_grant_from_driver_num(driver_num)?;

    // Check if the grant has been allocated, and if not we cannot enter this
    // grant.
    match process.grant_is_allocated(grant_num) {
        Some(true) => { /* Allocated, nothing to do */ }
        Some(false) => return Err(ErrorCode::NOMEM),
        None => return Err(ErrorCode::FAIL),
    };

    // Return early if no grant.
    let grant_base_ptr = process.enter_grant(grant_num).or(Err(ErrorCode::NOMEM))?;
    // # Safety
    //
    // We know that this pointer is well aligned and initialized with meaningful
    // data when the grant region was allocated.
    let layout = unsafe {
        EnteredGrantKernelManagedLayout::read_from_base(grant_base_ptr, process, grant_num)
    };
    Ok(layout)
}

/// Subscribe to an upcall by saving the upcall in the grant region for the
/// process and returning the existing upcall for the same UpcallId.
pub(crate) fn subscribe(
    process: &dyn Process,
    upcall: Upcall,
) -> Result<Upcall, (Upcall, ErrorCode)> {
    // Enter grant and keep it open until _grant_open goes out of scope.
    let mut layout = match enter_grant_kernel_managed(process, upcall.upcall_id.driver_num) {
        Ok(val) => val,
        Err(e) => return Err((upcall, e)),
    };

    // Create the saved upcalls slice from the grant memory.
    //
    // # Safety
    //
    // This is safe because of how the grant was initially allocated and that
    // because we were able to enter the grant the grant region must be valid
    // and initialized. We are also holding the grant open until `_grant_open`
    // goes out of scope.
    let saved_upcalls_slice = layout.get_upcalls_slice();

    // Index into the saved upcall slice to get the old upcall. Use .get in case
    // userspace passed us a bad subscribe number.
    match saved_upcalls_slice.get_mut(upcall.upcall_id.subscribe_num) {
        Some(saved_upcall) => {
            // Create an `Upcall` object with the old saved upcall.
            let old_upcall = Upcall::new(
                process.processid(),
                upcall.upcall_id,
                saved_upcall.appdata,
                saved_upcall.fn_ptr,
            );

            // Overwrite the saved upcall with the new upcall.
            saved_upcall.appdata = upcall.appdata;
            saved_upcall.fn_ptr = upcall.fn_ptr;

            // Success!
            Ok(old_upcall)
        }
        None => Err((upcall, ErrorCode::NOSUPPORT)),
    }
}

/// Stores the specified read-only process buffer in the kernel managed grant
/// region for this process and driver. The previous read-only process buffer
/// stored at the same allow_num id is returned.
pub(crate) fn allow_ro(
    process: &dyn Process,
    driver_num: usize,
    allow_num: usize,
    buffer: ReadOnlyProcessBuffer,
) -> Result<ReadOnlyProcessBuffer, (ReadOnlyProcessBuffer, ErrorCode)> {
    // Enter grant and keep it open until `_grant_open` goes out of scope.
    let mut layout = match enter_grant_kernel_managed(process, driver_num) {
        Ok(val) => val,
        Err(e) => return Err((buffer, e)),
    };

    // Create the saved allow ro slice from the grant memory.
    //
    // # Safety
    //
    // This is safe because of how the grant was initially allocated and that
    // because we were able to enter the grant the grant region must be valid
    // and initialized. We are also holding the grant open until _grant_open
    // goes out of scope.
    let saved_allow_ro_slice = layout.get_allow_ro_slice();

    // Index into the saved slice to get the old value. Use .get in case
    // userspace passed us a bad allow number.
    match saved_allow_ro_slice.get_mut(allow_num) {
        Some(saved) => {
            // # Safety
            //
            // The pointer has already been validated to be within application
            // memory before storing the values in the saved slice.
            let old_allow =
                unsafe { ReadOnlyProcessBuffer::new(saved.ptr, saved.len, process.processid()) };

            // Replace old values with current buffer.
            let (ptr, len) = buffer.consume();
            saved.ptr = ptr;
            saved.len = len;

            // Success!
            Ok(old_allow)
        }
        None => Err((buffer, ErrorCode::NOSUPPORT)),
    }
}

/// Stores the specified read-write process buffer in the kernel managed grant
/// region for this process and driver. The previous read-write process buffer
/// stored at the same allow_num id is returned.
pub(crate) fn allow_rw(
    process: &dyn Process,
    driver_num: usize,
    allow_num: usize,
    buffer: ReadWriteProcessBuffer,
) -> Result<ReadWriteProcessBuffer, (ReadWriteProcessBuffer, ErrorCode)> {
    // Enter grant and keep it open until `_grant_open` goes out of scope.
    let mut layout = match enter_grant_kernel_managed(process, driver_num) {
        Ok(val) => val,
        Err(e) => return Err((buffer, e)),
    };

    // Create the saved allow rw slice from the grant memory.
    //
    // # Safety
    //
    // This is safe because of how the grant was initially allocated and that
    // because we were able to enter the grant the grant region must be valid
    // and initialized. We are also holding the grant open until `_grant_open`
    // goes out of scope.
    let saved_allow_rw_slice = layout.get_allow_rw_slice();

    // Index into the saved slice to get the old value. Use .get in case
    // userspace passed us a bad allow number.
    match saved_allow_rw_slice.get_mut(allow_num) {
        Some(saved) => {
            // # Safety
            //
            // The pointer has already been validated to be within application
            // memory before storing the values in the saved slice.
            let old_allow =
                unsafe { ReadWriteProcessBuffer::new(saved.ptr, saved.len, process.processid()) };

            // Replace old values with current buffer.
            let (ptr, len) = buffer.consume();
            saved.ptr = ptr;
            saved.len = len;

            // Success!
            Ok(old_allow)
        }
        None => Err((buffer, ErrorCode::NOSUPPORT)),
    }
}

/// An instance of a grant allocated for a particular process.
///
/// [`ProcessGrant`] is a handle to an instance of a grant that has been
/// allocated in a specific process's grant region. A [`ProcessGrant`]
/// guarantees that the memory for the grant has been allocated in the process's
/// memory.
///
/// This is created from a [`Grant`] when that grant is entered for a specific
/// process.
pub struct ProcessGrant<
    'a,
    T: 'a,
    Upcalls: UpcallSize,
    AllowROs: AllowRoSize,
    AllowRWs: AllowRwSize,
> {
    /// The process the grant is applied to.
    ///
    /// We use a reference here because instances of [`ProcessGrant`] are very
    /// short lived. They only exist while a [`Grant`] is being entered, so we
    /// can be sure the process still exists while a `ProcessGrant` exists. No
    /// [`ProcessGrant`] can be stored.
    process: &'a dyn Process,

    /// The syscall driver number this grant is associated with.
    driver_num: usize,

    /// The identifier of the Grant this is applied for.
    grant_num: usize,

    /// Used to store Rust types for grant.
    _phantom: PhantomData<(T, Upcalls, AllowROs, AllowRWs)>,
}

impl<'a, T: Default, Upcalls: UpcallSize, AllowROs: AllowRoSize, AllowRWs: AllowRwSize>
    ProcessGrant<'a, T, Upcalls, AllowROs, AllowRWs>
{
    /// Create a [`ProcessGrant`] for the given Grant in the given Process's
    /// grant region.
    ///
    /// If the grant in this process has not been setup before this will attempt
    /// to allocate the memory from the process's grant region.
    ///
    /// # Return
    ///
    /// If the grant is already allocated or could be allocated, and the process
    /// is valid, this returns `Ok(ProcessGrant)`. Otherwise it returns a
    /// relevant error.
    fn new(
        grant: &Grant<T, Upcalls, AllowROs, AllowRWs>,
        processid: ProcessId,
    ) -> Result<Self, Error> {
        // Moves non-generic code from new() into non-generic function to reduce
        // code bloat from the generic function being monomorphized, as it is
        // common to have over 50 copies of Grant::enter() in a Tock kernel (and
        // thus 50+ copies of this function). The returned Option indicates if
        // the returned pointer still needs to be initialized (in the case where
        // the grant was only just allocated).
        fn new_inner<'a>(
            grant_num: usize,
            driver_num: usize,
            grant_t_size: GrantDataSize,
            grant_t_align: GrantDataAlign,
            num_upcalls: UpcallItems,
            num_allow_ros: AllowRoItems,
            num_allow_rws: AllowRwItems,
            processid: ProcessId,
        ) -> Result<(Option<NonNull<u8>>, &'a dyn Process), Error> {
            // Here is an example of how the grants are laid out in the grant
            // region of process's memory:
            //
            // Mem. Addr.
            // 0x0040000  ┌────────────────────────────────────
            //            │   DriverNumN    [0x1]
            //            │   GrantPointerN [0x003FFC8]
            //            │   ...
            //            │   DriverNum1    [0x60000]
            //            │   GrantPointer1 [0x003FFC0]
            //            │   DriverNum0
            //            │   GrantPointer0 [0x0000000 (NULL)]
            //            ├────────────────────────────────────
            //            │   Process Control Block
            // 0x003FFE0  ├────────────────────────────────────  Grant Region ┐
            //            │   GrantDataN                                      │
            // 0x003FFC8  ├────────────────────────────────────               │
            //            │   GrantData1                                      ▼
            // 0x003FF20  ├────────────────────────────────────
            //            │
            //            │   --unallocated--
            //            │
            //            └────────────────────────────────────
            //
            // An array of pointers (one per possible grant region) point to
            // where the actual grant memory is allocated inside of the process.
            // The grant memory is not allocated until the actual grant region
            // is actually used.

            let process = processid
                .kernel
                .get_process(processid)
                .ok_or(Error::NoSuchApp)?;

            // Check if the grant is allocated. If not, we allocate it process
            // memory first. We then create an `ProcessGrant` object for this
            // grant.
            if let Some(is_allocated) = process.grant_is_allocated(grant_num) {
                if !is_allocated {
                    // Calculate the alignment and size for entire grant region.
                    let alloc_align = EnteredGrantKernelManagedLayout::grant_align(grant_t_align);
                    let alloc_size = EnteredGrantKernelManagedLayout::grant_size(
                        num_upcalls,
                        num_allow_ros,
                        num_allow_rws,
                        grant_t_size,
                        grant_t_align,
                    );

                    // Allocate grant, the memory is still uninitialized though.
                    if process
                        .allocate_grant(grant_num, driver_num, alloc_size, alloc_align)
                        .is_err()
                    {
                        return Err(Error::OutOfMemory);
                    }

                    let grant_ptr = process.enter_grant(grant_num)?;

                    // Create a layout from the counts we have and initialize
                    // all memory so it is valid in the future to read as a
                    // reference.
                    //
                    // # Safety
                    //
                    // - The grant base pointer is well aligned, yet does not
                    //   have initialized data.
                    // - The pointer points to a large enough space to correctly
                    //   write to is guaranteed by alloc of size
                    //   `EnteredGrantKernelManagedLayout::grant_size`.
                    // - There are no proper rust references that map to these
                    //   addresses.
                    unsafe {
                        let _layout = EnteredGrantKernelManagedLayout::initialize_from_counts(
                            grant_ptr,
                            num_upcalls,
                            num_allow_ros,
                            num_allow_rws,
                            process,
                            grant_num,
                        );
                    }

                    // # Safety
                    //
                    // The grant pointer points to an alloc that is alloc_size
                    // large and is at least as aligned as grant_t_align.
                    unsafe {
                        Ok((
                            Some(EnteredGrantKernelManagedLayout::offset_of_grant_data_t(
                                grant_ptr,
                                alloc_size,
                                grant_t_size,
                            )),
                            process,
                        ))
                    }
                } else {
                    // T was already allocated, outer function should not
                    // initialize T.
                    Ok((None, process))
                }
            } else {
                // Cannot use the grant region in any way if the process is
                // inactive.
                Err(Error::InactiveApp)
            }
        }

        // Handle the bulk of the work in a function which is not templated.
        let (opt_raw_grant_ptr_nn, process) = new_inner(
            grant.grant_num,
            grant.driver_num,
            GrantDataSize(size_of::<T>()),
            GrantDataAlign(align_of::<T>()),
            UpcallItems(Upcalls::COUNT),
            AllowRoItems(AllowROs::COUNT),
            AllowRwItems(AllowRWs::COUNT),
            processid,
        )?;

        // We can now do the initialization of T object if necessary.
        if let Some(allocated_ptr) = opt_raw_grant_ptr_nn {
            // Grant type T
            //
            // # Safety
            //
            // This is safe because:
            //
            // 1. The pointer address is valid. The pointer is allocated
            //    statically in process memory, and will exist for as long
            //    as the process does. The grant is only accessible while
            //    the process is still valid.
            //
            // 2. The pointer is correctly aligned. The newly allocated
            //    grant is aligned for type T, and there is padding inserted
            //    between the upcall array and the T object such that the T
            //    object starts a multiple of `align_of<T>` from the
            //    beginning of the allocation.
            unsafe {
                // Convert untyped `*mut u8` allocation to allocated type.
                let new_region = NonNull::cast::<T>(allocated_ptr);
                // We use `ptr::write` to avoid `Drop`ping the uninitialized
                // memory in case `T` implements the `Drop` trait.
                write(new_region.as_ptr(), T::default());
            }
        }

        // We have ensured the grant is already allocated or was just allocated,
        // so we can create and return the `ProcessGrant` type.
        Ok(ProcessGrant {
            process,
            driver_num: grant.driver_num,
            grant_num: grant.grant_num,
            _phantom: PhantomData,
        })
    }

    /// Return a [`ProcessGrant`] for a grant in a process if the process is
    /// valid and that process grant has already been allocated, or `None`
    /// otherwise.
    fn new_if_allocated(
        grant: &Grant<T, Upcalls, AllowROs, AllowRWs>,
        process: &'a dyn Process,
    ) -> Option<Self> {
        if let Some(is_allocated) = process.grant_is_allocated(grant.grant_num) {
            if is_allocated {
                Some(ProcessGrant {
                    process,
                    driver_num: grant.driver_num,
                    grant_num: grant.grant_num,
                    _phantom: PhantomData,
                })
            } else {
                // Grant has not been allocated.
                None
            }
        } else {
            // Process is invalid.
            None
        }
    }

    /// Return the [`ProcessId`] of the process this [`ProcessGrant`] is
    /// associated with.
    pub fn processid(&self) -> ProcessId {
        self.process.processid()
    }

    /// Run a function with access to the memory in the related process for the
    /// related Grant. This also provides access to any associated Upcalls and
    /// allowed buffers stored with the grant.
    ///
    /// This is "entering" the grant region, and the _only_ time when the
    /// contents of a grant region can be accessed.
    ///
    /// Note, a grant can only be entered once at a time. Attempting to call
    /// `.enter()` on a grant while it is already entered will result in a
    /// `panic!()`. See the comment in `access_grant()` for more information.
    pub fn enter<F, R>(self, fun: F) -> R
    where
        F: FnOnce(&mut GrantData<T>, &GrantKernelData) -> R,
    {
        // # `unwrap()` Safety
        //
        // `access_grant()` can only return `None` if the grant is already
        // entered. Since we are asking for a panic!() if the grant is entered,
        // `access_grant()` function will never return `None`.
        self.access_grant(fun, true).unwrap()
    }

    /// Run a function with access to the data in the related process for the
    /// related Grant only if that grant region is not already entered. If the
    /// grant is already entered silently skip it. Also provide access to
    /// associated Upcalls.
    ///
    /// **You almost certainly should use `.enter()` rather than
    /// `.try_enter()`.**
    ///
    /// While the `.enter()` version can panic, that panic likely indicates a
    /// bug in the code and not a condition that should be handled. For example,
    /// this benign looking code is wrong:
    ///
    /// ```ignore
    /// self.apps.enter(thisapp, |app_grant, _| {
    ///     // Update state in the grant region of `thisapp`. Also, mark that
    ///     // `thisapp` needs to run again.
    ///     app_grant.runnable = true;
    ///
    ///     // Now, check all apps to see if any are ready to run.
    ///     let mut work_left_to_do = false;
    ///     self.apps.iter().each(|other_app| {
    ///         other_app.enter(|other_app_grant, _| { // ERROR! This leads to a
    ///             if other_app_grant.runnable {      // grant being entered
    ///                 work_left_to_do = true;        // twice!
    ///             }
    ///         })
    ///     })
    /// })
    /// ```
    ///
    /// The example is wrong because it tries to iterate across all grant
    /// regions while one of them is already entered. This will lead to a grant
    /// region being entered twice which violates Rust's memory restrictions and
    /// is undefined behavior.
    ///
    /// However, since the example uses `.enter()` on the iteration, Tock will
    /// panic when the grant is entered for the second time, notifying the
    /// developer that something is wrong. The fix is to exit out of the first
    /// `.enter()` before attempting to iterate over the grant for all
    /// processes.
    ///
    /// However, if the example used `.try_enter()` in the iter loop, there
    /// would be no panic, but the already entered grant would be silently
    /// skipped. This can hide subtle bugs if the skipped grant is only relevant
    /// in certain cases.
    ///
    /// Therefore, only use `try_enter()` if you are sure you want to skip the
    /// already entered grant. Cases for this are rare.
    ///
    /// ## Return
    ///
    /// Returns `None` if the grant is already entered. Otherwise returns
    /// `Some(fun())`.
    pub fn try_enter<F, R>(self, fun: F) -> Option<R>
    where
        F: FnOnce(&mut GrantData<T>, &GrantKernelData) -> R,
    {
        self.access_grant(fun, false)
    }

    /// Run a function with access to the memory in the related process for the
    /// related Grant. Also provide this function with access to any associated
    /// Upcalls and an allocator for allocating additional memory in the
    /// process's grant region.
    ///
    /// This is "entering" the grant region, and the _only_ time when the
    /// contents of a grant region can be accessed.
    ///
    /// Note, a grant can only be entered once at a time. Attempting to call
    /// `.enter()` on a grant while it is already entered will result in a
    /// panic!()`. See the comment in `access_grant()` for more information.
    pub fn enter_with_allocator<F, R>(self, fun: F) -> R
    where
        F: FnOnce(&mut GrantData<T>, &GrantKernelData, &mut GrantRegionAllocator) -> R,
    {
        // # `unwrap()` Safety
        //
        // `access_grant()` can only return `None` if the grant is already
        // entered. Since we are asking for a panic!() if the grant is entered,
        // `access_grant()` function will never return `None`.
        self.access_grant_with_allocator(fun, true).unwrap()
    }

    /// Access the [`ProcessGrant`] memory and run a closure on the process's
    /// grant memory.
    ///
    /// If `panic_on_reenter` is `true`, this will panic if the grant region is
    /// already currently entered. If `panic_on_reenter` is `false`, this will
    /// return `None` if the grant region is entered and do nothing.
    fn access_grant<F, R>(self, fun: F, panic_on_reenter: bool) -> Option<R>
    where
        F: FnOnce(&mut GrantData<T>, &GrantKernelData) -> R,
    {
        self.access_grant_with_allocator(
            |grant_data, kernel_data, _allocator| fun(grant_data, kernel_data),
            panic_on_reenter,
        )
    }

    /// Access the [`ProcessGrant`] memory and run a closure on the process's
    /// grant memory.
    ///
    /// If `panic_on_reenter` is `true`, this will panic if the grant region is
    /// already currently entered. If `panic_on_reenter` is `false`, this will
    /// return `None` if the grant region is entered and do nothing.
    fn access_grant_with_allocator<F, R>(self, fun: F, panic_on_reenter: bool) -> Option<R>
    where
        F: FnOnce(&mut GrantData<T>, &GrantKernelData, &mut GrantRegionAllocator) -> R,
    {
        // Access the grant that is in process memory. This can only fail if
        // the grant is already entered.
        let grant_ptr = self
            .process
            .enter_grant(self.grant_num)
            .map_err(|_err| {
                // If we get an error it is because the grant is already
                // entered. `process.enter_grant()` can fail for several
                // reasons, but only the double enter case can happen once a
                // grant has been applied. The other errors would be detected
                // earlier (i.e. before the grant can be applied).

                // If `panic_on_reenter` is false, we skip this error and do
                // nothing with this grant.
                if !panic_on_reenter {
                    return;
                }

                // If `enter_grant` fails, we panic!() to notify the developer
                // that they tried to enter the same grant twice which is
                // prohibited because it would result in two mutable references
                // existing for the same memory. This preserves type correctness
                // (but does crash the system).
                //
                // ## Explanation and Rationale
                //
                // This panic represents a tradeoff. While it is undesirable to
                // have the potential for a runtime crash in this grant region
                // code, it balances usability with type correctness. The
                // challenge is that calling `self.apps.iter()` is a common
                // pattern in capsules to access the grant region of every app
                // that is using the capsule, and sometimes it is intuitive to
                // call that inside of a `self.apps.enter(processid, |app| {...})`
                // closure. However, `.enter()` means that app's grant region is
                // entered, and then a naive `.iter()` would re-enter the grant
                // region and cause undefined behavior. We considered different
                // options to resolve this.
                //
                // 1. Have `.iter()` only iterate over grant regions which are
                //    not entered. This avoids the bug, but could lead to
                //    unexpected behavior, as `self.apps.iter()` will do
                //    different things depending on where in a capsule it is
                //    called.
                // 2. Have the compiler detect when `.iter()` is called when a
                //    grant region has already been entered. We don't know of a
                //    viable way to implement this.
                // 3. Panic if `.iter()` is called when a grant is already
                //    entered.
                //
                // We decided on option 3 because it balances minimizing
                // surprises (`self.apps.iter()` will always iterate all grants)
                // while also protecting against the bug. We expect that any
                // code that attempts to call `self.apps.iter()` after calling
                // `.enter()` will immediately encounter this `panic!()` and
                // have to be refactored before any tests will be successful.
                // Therefore, this `panic!()` should only occur at
                // development/testing time.
                //
                // ## How to fix this error
                //
                // If you are seeing this panic, you need to refactor your
                // capsule to not call `.iter()` or `.each()` from inside a
                // `.enter()` closure. That is, you need to close the grant
                // region you are currently in before trying to iterate over all
                // grant regions.
                panic!("Attempted to re-enter a grant region.");
            })
            .ok()?;
        let grant_t_align = GrantDataAlign(align_of::<T>());
        let grant_t_size = GrantDataSize(size_of::<T>());

        let alloc_size = EnteredGrantKernelManagedLayout::grant_size(
            UpcallItems(Upcalls::COUNT),
            AllowRoItems(AllowROs::COUNT),
            AllowRwItems(AllowRWs::COUNT),
            grant_t_size,
            grant_t_align,
        );

        // Parse layout of entire grant allocation using the known base pointer.
        //
        // # Safety
        //
        // Grant pointer is well aligned and points to initialized data.
        let layout = unsafe {
            EnteredGrantKernelManagedLayout::read_from_base(grant_ptr, self.process, self.grant_num)
        };

        // Get references to all of the saved upcall data.
        //
        // # Safety
        //
        // - Pointer is well aligned and initialized with data from Self::new()
        //   call.
        // - Data will not be modified externally while this immutable reference
        //   is alive.
        // - Data is accessible for the entire duration of this immutable
        //   reference.
        // - No other mutable reference to this memory exists concurrently.
        //   Mutable reference to this memory are only created through the
        //   kernel in the syscall interface which is serialized in time with
        //   this call.
        let (saved_upcalls_slice, saved_allow_ro_slice, saved_allow_rw_slice) =
            layout.get_resource_slices();
        let grant_data = unsafe {
            EnteredGrantKernelManagedLayout::offset_of_grant_data_t(
                grant_ptr,
                alloc_size,
                grant_t_size,
            )
            .cast()
            .as_mut()
        };

        // Create a wrapped objects that are passed to functor.
        let mut grant_data = GrantData::new(grant_data);
        let kernel_data = GrantKernelData::new(
            saved_upcalls_slice,
            saved_allow_ro_slice,
            saved_allow_rw_slice,
            self.driver_num,
            self.process,
        );
        // Setup an allocator in case the capsule needs additional memory in the
        // grant space.
        let mut allocator = GrantRegionAllocator {
            processid: self.process.processid(),
        };

        // Call functor and pass back value.
        Some(fun(&mut grant_data, &kernel_data, &mut allocator))
    }
}

/// Grant which was allocated from the kernel-owned grant region in a specific
/// process's memory, separately from a normal `Grant`.
///
/// A [`CustomGrant`] allows a capsule to allocate additional memory on behalf
/// of a process.
pub struct CustomGrant<T> {
    /// An identifier for this custom grant within a process's grant region.
    ///
    /// Here, this is an opaque reference that Process uses to access the
    /// custom grant allocation. This setup ensures that Process owns the grant
    /// memory.
    identifier: ProcessCustomGrantIdentifier,

    /// Identifier for the process where this custom grant is allocated.
    processid: ProcessId,

    /// Used to keep the Rust type of the grant.
    _phantom: PhantomData<T>,
}

impl<T> CustomGrant<T> {
    /// Creates a new [`CustomGrant`].
    fn new(identifier: ProcessCustomGrantIdentifier, processid: ProcessId) -> Self {
        CustomGrant {
            identifier,
            processid,
            _phantom: PhantomData,
        }
    }

    /// Helper function to get the [`ProcessId`] from the custom grant.
    pub fn processid(&self) -> ProcessId {
        self.processid
    }

    /// Gives access to inner data within the given closure.
    ///
    /// If the process has since been restarted or crashed, or the memory is
    /// otherwise no longer present, then this function will not call the given
    /// closure, and will instead directly return `Err(Error::NoSuchApp)`.
    ///
    /// Because this function requires `&mut self`, it should be impossible to
    /// access the inner data of a given `CustomGrant` reentrantly. Thus the
    /// reentrance detection we use for non-custom grants is not needed here.
    pub fn enter<F, R>(&self, fun: F) -> Result<R, Error>
    where
        F: FnOnce(GrantData<'_, T>) -> R,
    {
        // Verify that the process this CustomGrant was allocated within still
        // exists.
        self.processid
            .kernel
            .process_map_or(Err(Error::NoSuchApp), self.processid, |process| {
                // App is valid.

                // Now try to access the custom grant memory.
                let grant_ptr = process.enter_custom_grant(self.identifier)?;

                // # Safety
                //
                // `grant_ptr` must be a valid pointer and there must not exist
                // any other references to the same memory. We verify the
                // pointer is valid and aligned when the memory is allocated and
                // `CustomGrant` is created. We are sure that there are no
                // other references because the only way to create a reference
                // is using this `enter()` function, and it can only be called
                // once (because of the `&mut self` requirement).
                let custom_grant = unsafe { &mut *(grant_ptr as *mut T) };
                let borrowed = GrantData::new(custom_grant);
                Ok(fun(borrowed))
            })
    }
}

/// Tool for allocating additional memory regions in a process's grant region.
///
/// This is optionally provided along with a grant so that if a capsule needs
/// per-process dynamic allocation it can allocate additional memory.
pub struct GrantRegionAllocator {
    /// The process the allocator will allocate memory from.
    processid: ProcessId,
}

impl GrantRegionAllocator {
    /// Allocates a new [`CustomGrant`] initialized using the given closure.
    ///
    /// The closure will be called exactly once, and the result will be used to
    /// initialize the owned value.
    ///
    /// This interface was chosen instead of a simple `alloc(val)` as it's
    /// much more likely to optimize out all stack intermediates. This
    /// helps to prevent stack overflows when allocating large values.
    ///
    /// # Panic Safety
    ///
    /// If `init` panics, the freshly allocated memory may leak.
    pub fn alloc_with<T, F>(&self, init: F) -> Result<CustomGrant<T>, Error>
    where
        F: FnOnce() -> T,
    {
        let (custom_grant_identifier, typed_ptr) = self.alloc_raw::<T>()?;

        // # Safety
        //
        // Writing to this pointer is safe as long as the pointer is valid
        // and aligned. `alloc_raw()` guarantees these constraints are met.
        unsafe {
            // We use `ptr::write` to avoid `Drop`ping the uninitialized memory
            // in case `T` implements the `Drop` trait.
            write(typed_ptr.as_ptr(), init());
        }

        Ok(CustomGrant::new(custom_grant_identifier, self.processid))
    }

    /// Allocates a slice of n instances of a given type. Each instance is
    /// initialized using the provided function.
    ///
    /// The provided function will be called exactly `n` times, and will be
    /// passed the index it's initializing, from `0` through `NUM_ITEMS - 1`.
    ///
    /// # Panic Safety
    ///
    /// If `val_func` panics, the freshly allocated memory and any values
    /// already written will be leaked.
    pub fn alloc_n_with<T, F, const NUM_ITEMS: usize>(
        &self,
        mut init: F,
    ) -> Result<CustomGrant<[T; NUM_ITEMS]>, Error>
    where
        F: FnMut(usize) -> T,
    {
        let (custom_grant_identifier, typed_ptr) = self.alloc_n_raw::<T>(NUM_ITEMS)?;

        for i in 0..NUM_ITEMS {
            // # Safety
            //
            // The allocate function guarantees that `ptr` points to memory
            // large enough to allocate `num_items` copies of the object.
            unsafe {
                write(typed_ptr.as_ptr().add(i), init(i));
            }
        }

        Ok(CustomGrant::new(custom_grant_identifier, self.processid))
    }

    /// Allocates uninitialized grant memory appropriate to store a `T`.
    ///
    /// The caller must initialize the memory.
    ///
    /// Also returns a ProcessCustomGrantIdentifier to access the memory later.
    fn alloc_raw<T>(&self) -> Result<(ProcessCustomGrantIdentifier, NonNull<T>), Error> {
        self.alloc_n_raw::<T>(1)
    }

    /// Allocates space for a dynamic number of items.
    ///
    /// The caller is responsible for initializing the returned memory.
    ///
    /// Returns memory appropriate for storing `num_items` contiguous instances
    /// of `T` and a ProcessCustomGrantIdentifier to access the memory later.
    fn alloc_n_raw<T>(
        &self,
        num_items: usize,
    ) -> Result<(ProcessCustomGrantIdentifier, NonNull<T>), Error> {
        let (custom_grant_identifier, raw_ptr) =
            self.alloc_n_raw_inner(num_items, size_of::<T>(), align_of::<T>())?;
        let typed_ptr = NonNull::cast::<T>(raw_ptr);

        Ok((custom_grant_identifier, typed_ptr))
    }

    /// Helper to reduce code bloat by avoiding monomorphization.
    fn alloc_n_raw_inner(
        &self,
        num_items: usize,
        single_alloc_size: usize,
        alloc_align: usize,
    ) -> Result<(ProcessCustomGrantIdentifier, NonNull<u8>), Error> {
        let alloc_size = single_alloc_size
            .checked_mul(num_items)
            .ok_or(Error::OutOfMemory)?;
        self.processid
            .kernel
            .process_map_or(Err(Error::NoSuchApp), self.processid, |process| {
                process
                    .allocate_custom_grant(alloc_size, alloc_align)
                    .map_or(
                        Err(Error::OutOfMemory),
                        |(custom_grant_identifier, raw_ptr)| Ok((custom_grant_identifier, raw_ptr)),
                    )
            })
    }
}

/// Type for storing an object of type T in process memory that is only
/// accessible by the kernel.
///
/// A single [`Grant`] can allocate space for one object of type T for each
/// process on the board. Each allocated object will reside in the grant region
/// belonging to the process that the object is allocated for. The [`Grant`]
/// type is used to get access to [`ProcessGrant`]s, which are tied to a
/// specific process and provide access to the memory object allocated for that
/// process.
pub struct Grant<T: Default, Upcalls: UpcallSize, AllowROs: AllowRoSize, AllowRWs: AllowRwSize> {
    /// Hold a reference to the core kernel so we can iterate processes.
    pub(crate) kernel: &'static Kernel,

    /// Keep track of the syscall driver number assigned to the capsule that is
    /// using this grant. This allows us to uniquely identify upcalls stored in
    /// this grant.
    driver_num: usize,

    /// The identifier for this grant. Having an identifier allows the Process
    /// implementation to lookup the memory for this grant in the specific
    /// process.
    grant_num: usize,

    /// Used to store the Rust types for grant.
    ptr: PhantomData<(T, Upcalls, AllowROs, AllowRWs)>,
}

impl<T: Default, Upcalls: UpcallSize, AllowROs: AllowRoSize, AllowRWs: AllowRwSize>
    Grant<T, Upcalls, AllowROs, AllowRWs>
{
    /// Create a new [`Grant`] type which allows a capsule to store
    /// process-specific data for each process in the process's memory region.
    ///
    /// This must only be called from the main kernel so that it can ensure that
    /// `grant_index` is a valid index.
    pub(crate) fn new(kernel: &'static Kernel, driver_num: usize, grant_index: usize) -> Self {
        Self {
            kernel,
            driver_num,
            grant_num: grant_index,
            ptr: PhantomData,
        }
    }

    /// Enter the grant for a specific process.
    ///
    /// This creates a [`ProcessGrant`] which is a handle for a grant allocated
    /// for a specific process. Then, that [`ProcessGrant`] is entered and the
    /// provided closure is run with access to the memory in the grant region.
    pub fn enter<F, R>(&self, processid: ProcessId, fun: F) -> Result<R, Error>
    where
        F: FnOnce(&mut GrantData<T>, &GrantKernelData) -> R,
    {
        let pg = ProcessGrant::new(self, processid)?;

        // If we have managed to create an `ProcessGrant`, all we need
        // to do is actually access the memory and run the
        // capsule-provided closure. This can only fail if the grant is
        // already entered, at which point the kernel will panic.
        Ok(pg.enter(fun))
    }

    /// Enter the grant for a specific process with access to an allocator.
    ///
    /// This creates an [`ProcessGrant`] which is a handle for a grant allocated
    /// for a specific process. Then, that [`ProcessGrant`] is entered and the
    /// provided closure is run with access to the memory in the grant region.
    ///
    /// The allocator allows the caller to dynamically allocate additional
    /// memory in the process's grant region.
    pub fn enter_with_allocator<F, R>(&self, processid: ProcessId, fun: F) -> Result<R, Error>
    where
        F: FnOnce(&mut GrantData<T>, &GrantKernelData, &mut GrantRegionAllocator) -> R,
    {
        // Get the `ProcessGrant` for the process, possibly needing to
        // actually allocate the memory in the process's grant region to
        // do so. This can fail for a variety of reasons, and if so we
        // return the error to the capsule.
        let pg = ProcessGrant::new(self, processid)?;

        // If we have managed to create an `ProcessGrant`, all we need
        // to do is actually access the memory and run the
        // capsule-provided closure. This can only fail if the grant is
        // already entered, at which point the kernel will panic.
        Ok(pg.enter_with_allocator(fun))
    }

    /// Run a function on the grant for each active process if the grant has
    /// been allocated for that process.
    ///
    /// This will silently skip any process where the grant has not previously
    /// been allocated. This will also silently skip any invalid processes.
    ///
    /// Calling this function when an [`ProcessGrant`] for a process is
    /// currently entered will result in a panic.
    pub fn each<F>(&self, mut fun: F)
    where
        F: FnMut(ProcessId, &mut GrantData<T>, &GrantKernelData),
    {
        // Create a the iterator across `ProcessGrant`s for each process.
        for pg in self.iter() {
            let processid = pg.processid();
            // Since we iterating, there is no return value we need to worry
            // about.
            pg.enter(|data, upcalls| fun(processid, data, upcalls));
        }
    }

    /// Get an iterator over all processes and their active grant regions for
    /// this particular grant.
    ///
    /// Calling this function when an [`ProcessGrant`] for a process is
    /// currently entered will result in a panic.
    pub fn iter(&self) -> Iter<T, Upcalls, AllowROs, AllowRWs> {
        Iter {
            grant: self,
            subiter: self.kernel.get_process_iter(),
        }
    }
}

/// Type to iterate [`ProcessGrant`]s across processes.
pub struct Iter<
    'a,
    T: 'a + Default,
    Upcalls: UpcallSize,
    AllowROs: AllowRoSize,
    AllowRWs: AllowRwSize,
> {
    /// The grant type to use.
    grant: &'a Grant<T, Upcalls, AllowROs, AllowRWs>,

    /// Iterator over valid processes.
    subiter: core::iter::FilterMap<
        core::slice::Iter<'a, Option<&'static dyn Process>>,
        fn(&Option<&'static dyn Process>) -> Option<&'static dyn Process>,
    >,
}

impl<'a, T: Default, Upcalls: UpcallSize, AllowROs: AllowRoSize, AllowRWs: AllowRwSize> Iterator
    for Iter<'a, T, Upcalls, AllowROs, AllowRWs>
{
    type Item = ProcessGrant<'a, T, Upcalls, AllowROs, AllowRWs>;

    fn next(&mut self) -> Option<Self::Item> {
        let grant = self.grant;
        // Get the next `ProcessId` from the kernel processes array that is
        // setup to use this grant. Since the iterator itself is saved calling
        // this function again will start where we left off.
        self.subiter
            .find_map(|process| ProcessGrant::new_if_allocated(grant, process))
    }
}